1
|
Custodio RJP, Ortiz DM, Lee HJ, Sayson LV, Kim M, Lee YS, Kim KM, Cheong JH, Kim HJ. Serotonin 2C receptors are also important in head-twitch responses in male mice. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06482-9. [PMID: 37882810 DOI: 10.1007/s00213-023-06482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
RATIONALE Serotonergic psychedelics exert their effects via their high affinity for serotonin (5-HT) receptors, particularly through activating 5-HT2A receptors (5-HT2AR), employing the frontal cortex-dependent head-twitch response (HTR). Although universally believed to be so, studies have not yet fully ascertained whether 5-HT2AR activation is the sole initiator of these psychedelic effects. This is because not all 5-HT2AR agonists exhibit similar pharmacologic properties. OBJECTIVE This study aims to identify and discriminate the roles of 5-HT2AR and 5-HT2CR in the HTR induced by Methallylescaline (MAL) and 4-Methyl-2,5,β-trimethoxyphenethylamine (BOD) in male mice. Also, an analysis of their potential neurotoxic properties was evaluated. METHODS Male mice treated with MAL and BOD were evaluated in different behavioral paradigms targeting HTR and neurotoxicity effects. Drug affinity, pharmacological blocking, and molecular analysis were also conducted to support the behavioral findings. The HTR induced by DOI has been extensively characterized in male mice, making it a good positive control for this study, specifically for comparing the pharmacological effects of our test compounds. RESULTS The activation of 5-HT2CR, alone or in concert with 5-HT2AR, produces a comparable degree of HTRs (at a dose of 1 mg·kg-1), with divergent 5-HT2CR- and 5-HT2AR-Gqα11-mediated signaling and enhanced neurotoxic properties (at a dose of 30 mg·kg-1) coupled with activated pro-inflammatory cytokines. These findings show these compounds' potential psychedelic and neurotoxic effects in male mice. CONCLUSION These findings showed that while 5-HT2AR is the main initiator of HTR, the 5-HT2CR also has a distinct property that renders it effective in inducing HTR in male mice.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Networking Group Aging, Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors - IfADo, Ardeystrasse 67, Dortmund, 44139, Germany.
| | - Darlene Mae Ortiz
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Jae Hoon Cheong
- Institute for New Drug Development, College of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea.
| |
Collapse
|
2
|
Understanding ayahuasca effects in major depressive disorder treatment through in vitro metabolomics and bioinformatics. Anal Bioanal Chem 2023:10.1007/s00216-023-04556-3. [PMID: 36717401 DOI: 10.1007/s00216-023-04556-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
Emerging insights from metabolomic-based studies of major depression disorder (MDD) are mainly related to biochemical processes such as energy or oxidative stress, in addition to neurotransmission linked to specific metabolite intermediates. Hub metabolites represent nodes in the biochemical network playing a critical role in integrating the information flow in cells between metabolism and signaling pathways. Limited technical-scientific studies have been conducted to understand the effects of ayahuasca (Aya) administration in the metabolism considering MDD molecular context. Therefore, this work aims to investigate an in vitro primary astrocyte model by untargeted metabolomics of two cellular subfractions: secretome and intracellular content after pre-defined Aya treatments, based on DMT concentration. Mass spectrometry (MS)-based metabolomics data revealed significant hub metabolites, which were used to predict biochemical pathway alterations. Branched-chain amino acid (BCAA) metabolism, and vitamin B6 and B3 metabolism were associated to Aya treatment, as "housekeeping" pathways. Dopamine synthesis was overrepresented in the network results when considering the lowest tested DMT concentration (1 µmol L-1). Building reaction networks containing significant and differential metabolites, such as nicotinamide, L-DOPA, and L-leucine, is a useful approach to guide on dose decision and pathway selection in further analytical and molecular studies.
Collapse
|
3
|
Kareem MJ, Al‐Hamdani AAS, Jirjees VY, Khan ME, Allaf AW, Al Zoubi W. Preparation, spectroscopic study of Schiff base derived from dopamine and metal Ni(II), Pd(II), and Pt(IV) complexes, and activity determination as antioxidants. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- May J. Kareem
- Department of Chemistry, College of Science for Women University of Baghdad Baghdad Iraq
| | | | - Vian Yamin Jirjees
- Department of Chemistry, College of Science University of Dohuk Dohuk Iraq
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering and Technology, College of Applied Industrial Technology (CAIT) Jazan University Jazan Saudi Arabia
| | - Abdul Wahab Allaf
- Department of Pharmaceutical Chemistry and Quality Control, Faculty of Pharmacy Arab International University Daraa Ghabaghib Syria
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering Yeungnam University Gyeongsan Republic of Korea
| |
Collapse
|
4
|
Custodio RJP, Sayson LV, Botanas CJ, Abiero A, You KY, Kim M, Lee HJ, Yoo SY, Lee KW, Lee YS, Seo J, Ryu IS, Kim HJ, Cheong JH. 25B-NBOMe, a novel N-2-methoxybenzyl-phenethylamine (NBOMe) derivative, may induce rewarding and reinforcing effects via a dopaminergic mechanism: Evidence of abuse potential. Addict Biol 2020; 25:e12850. [PMID: 31749223 DOI: 10.1111/adb.12850] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/26/2023]
Abstract
An increasing number of N-2-methoxybenzyl-phenethylamine (NBOMe) derivatives are being misused worldwide, including the potent hallucinogen 2-(4-bromo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine (25B-NBOMe). However, the number of studies characterizing the abuse potential and psychopharmacological properties of 25B-NBOMe is limited; thus, we examined its rewarding and reinforcing effects using conditioned place preference (CPP) and self-administration (SA) tests. Pretreatment with SCH23390 (SCH), Haloperidol (HAL), and ketanserin (KS), antagonists of dopamine D1 (DRD1 ), dopamine D2 (DRD2 ), and serotonin 2A (5-HT2A receptor) receptors, respectively, was utilized during a CPP test to investigate the involvement of the dopaminergic and serotonergic systems in 25B-NBOMe-mediated effects. We also examined the effects of 25B-NBOMe on the expression of dopamine-related proteins in the nucleus accumbens (NAcc) and ventral tegmental area (VTA). Then, we measured the dopamine level, phosphorylated CREB (p-CREB), deltaFosB (ΔFosB), and brain-derived neurotrophic factor (BDNF) in the NAcc. In addition, we explored the involvement of 5-HT2A receptors in the 25B-NBOMe-induced head twitch response (HTR). We also examined the effects of 25B-NBOMe on brain wave activity using electroencephalography. 25B-NBOMe elicited CPP and SA. SCH and HAL blocked 25B-NBOMe-induced CPP, whereas KS did not. Moreover, 25B-NBOMe altered the DRD1 , DRD2 , and dopamine transporter expression and increased dopamine levels. It also induced changes in p-CREB, ΔFosB, and BDNF expression. 25B-NBOMe induced HTR and increased 5-HT2A receptor mRNA levels, effects inhibited by KS. Furthermore, 25B-NBOMe altered delta and gamma wave activity, which was normalized by SCH and HAL. These findings show that 25B-NBOMe may induce rewarding and reinforcing effects via a dopaminergic mechanism, suggesting its abuse potential.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Uimyung Research Institute for Neuroscience, College of Pharmacy Sahmyook University Seoul Republic of Korea
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, College of Pharmacy Sahmyook University Seoul Republic of Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, College of Pharmacy Sahmyook University Seoul Republic of Korea
| | - Arvie Abiero
- Uimyung Research Institute for Neuroscience, College of Pharmacy Sahmyook University Seoul Republic of Korea
| | - Kyung Yi You
- Uimyung Research Institute for Neuroscience, College of Pharmacy Sahmyook University Seoul Republic of Korea
| | - Mikyung Kim
- Uimyung Research Institute for Neuroscience, College of Pharmacy Sahmyook University Seoul Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, College of Pharmacy Sahmyook University Seoul Republic of Korea
| | - Sung Yeun Yoo
- Medicinal Chemistry Laboratory, Department of Pharmacy and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy Kyung Hee University Seoul Republic of Korea
| | - Kun Won Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy Kyung Hee University Seoul Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy Kyung Hee University Seoul Republic of Korea
| | - Joung‐Wook Seo
- Center for Safety Pharmacology Korea Institute of Toxicology Daejeon Republic of Korea
| | - In Soo Ryu
- Center for Safety Pharmacology Korea Institute of Toxicology Daejeon Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, College of Pharmacy Sahmyook University Seoul Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, College of Pharmacy Sahmyook University Seoul Republic of Korea
- School of Pharmacy Chonbuk National University Jeonju‐si Republic of Korea
| |
Collapse
|
5
|
Ryu IS, Yoon SS, Choi MJ, Lee YE, Kim JS, Kim WH, Cheong JH, Kim HJ, Jang C, Lee YS, Steffensen SC, Ka M, Woo DH, Jang EY, Seo J. The potent psychomotor, rewarding and reinforcing properties of 3-fluoromethamphetamine in rodents. Addict Biol 2020; 25:e12846. [PMID: 31797481 DOI: 10.1111/adb.12846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/11/2019] [Accepted: 10/02/2019] [Indexed: 11/28/2022]
Abstract
3-fluoromethamphetamine (3-FMA), a derivative of methamphetamine (METH), produces behavioral impairment and deficits in dopaminergic transmission in the striatum of mice. The abuse potential of 3-FMA has not been fully characterized. The aim of this study was to evaluate the effects of 3-FMA on locomotor activity as well as its rewarding and reinforcing properties in the conditioned place preference (CPP) and self-administration procedures. Intravenous (i.v.) administration of 3-FMA (0.5 and 1.0 mg/kg) significantly increased locomotor activity in a dose-dependent manner in rats. In the CPP procedure, intraperitoneal administration of 3-FMA (10 and 30 mg/kg) produced a significant alteration in place preference in mice. In the self-administration paradigms, 3-FMA showed drug-taking behavior at the dose of 0.1 mg/kg/infusion (i.v.) during 2 hr sessions under fixed ratio schedules and high breakpoints at the dose of 0.3 and 1.0 mg/kg/infusion (i.v.) during 6 hr sessions under progressive ratio schedule of reinforcement in rats. A priming injection of 3-FMA (0.4 mg/kg, i.v.), METH (0.2 mg/kg, i.v.), or cocaine (2.0 mg/kg, i.v.) reinstated 3-FMA-seeking behavior after an extinction period in 3-FMA-trained rats during 2 hr session. Taken together, these findings demonstrate robust psychomotor, rewarding and reinforcing properties of 3-FMA, which may underlie its potential for compulsive use in humans.
Collapse
Affiliation(s)
- In Soo Ryu
- Research Center for Convergence Toxicology Korea Institute of Toxicology Daejeon South Korea
| | - Seong Shoon Yoon
- Research Center for Convergence Toxicology Korea Institute of Toxicology Daejeon South Korea
| | - Mee Jung Choi
- Research Center for Convergence Toxicology Korea Institute of Toxicology Daejeon South Korea
| | - Young Eun Lee
- Research Center for Convergence Toxicology Korea Institute of Toxicology Daejeon South Korea
| | - Ji Sun Kim
- Research Center for Convergence Toxicology Korea Institute of Toxicology Daejeon South Korea
| | - Woo Hyun Kim
- Research Center for Convergence Toxicology Korea Institute of Toxicology Daejeon South Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, School of Pharmacy Sahmyook University Seoul South Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, School of Pharmacy Sahmyook University Seoul South Korea
| | - Choon‐Gon Jang
- Department of Pharmacology, School of Pharmacy Sungkyunkwan University Suwon South Korea
| | - Yong Sup Lee
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy Kyung Hee University Seoul South Korea
| | - Scott C. Steffensen
- Department of Psychology and Neuroscience Brigham Young University Provo UT USA
| | - Minhan Ka
- Research Center for Convergence Toxicology Korea Institute of Toxicology Daejeon South Korea
| | - Dong Ho Woo
- Research Center for Convergence Toxicology Korea Institute of Toxicology Daejeon South Korea
| | - Eun Young Jang
- Research Center for Convergence Toxicology Korea Institute of Toxicology Daejeon South Korea
| | - Joung‐Wook Seo
- Research Center for Convergence Toxicology Korea Institute of Toxicology Daejeon South Korea
| |
Collapse
|
6
|
Custodio RJP, Sayson LV, Botanas CJ, Abiero A, Kim M, Lee HJ, Ryu HW, Lee YS, Kim HJ, Cheong JH. Two newly-emerging substituted phenethylamines MAL and BOD induce differential psychopharmacological effects in rodents. J Psychopharmacol 2020; 34:1056-1067. [PMID: 32648801 DOI: 10.1177/0269881120936458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recently, the recreational use of substituted phenethylamines has grown rapidly. Among these are 2-(3,5-dimethoxy-4-((2-methylallyl)oxy)phenyl)ethanamine (MAL) and 2-(2,5-dimethoxy-4-methylphenyl)-2-methoxyethan-1-amine (BOD). However, studies characterizing their abuse potential are still lacking. AIM The purpose of this study was to investigate the abuse potential of MAL and BOD. METHODS The psychostimulant, reinforcing, and rewarding properties of MAL and BOD were analyzed using locomotor sensitization, self-administration, and conditioned place preference tests. Dopamine antagonists (i.e. SCH23390, haloperidol) were administered during conditioned place preference to evaluate the involvement of the mesolimbic dopamine system. Furthermore, dopamine-related protein expression in the nucleus accumbens and the ventral tegmental area was measured along with dopamine concentrations in the nucleus accumbens. Electroencephalography was conducted to determine effects of MAL and BOD on brain wave activity. RESULTS MAL induced psychostimulant effects and sensitization, while BOD induced locomotor depression in mice. Only MAL was self-administered by rats. Both drugs induced conditioned place preference in mice at different doses; dopamine receptor antagonists blocked MAL- and BOD-induced conditioned place preference. Both the compounds altered the expression of dopamine receptor D1 and D2 proteins in the nucleus accumbens and tyrosine hydroxylase (TH) and dopamine transporter in the ventral tegmental area, enhanced dopamine levels in the nucleus accumbens, and increased delta and gamma wave activities in the brain. CONCLUSIONS MAL may induce abuse potential via the mesolimbic dopaminergic system and possibly accompanied by alterations in brain wave activity. Moreover, the lack of rewarding and reinforcing effects in BOD suggest that this drug may have little to no capability to engender compulsive behavior, though having found to induce alterations in dopaminergic system and brain wave activities.
Collapse
Affiliation(s)
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Arvie Abiero
- Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Mikyung Kim
- Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea.,Department of Chemistry and Life Science, Sahmyook University, Seoul, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Hye Won Ryu
- Medicinal Chemistry Laboratory, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Kyung Hee University, Seoul, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea.,School of Pharmacy, Jeonbuk National University, Jeollabuk-do, Republic of Korea
| |
Collapse
|
7
|
Zawilska JB, Kacela M, Adamowicz P. NBOMes-Highly Potent and Toxic Alternatives of LSD. Front Neurosci 2020; 14:78. [PMID: 32174803 PMCID: PMC7054380 DOI: 10.3389/fnins.2020.00078] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/20/2020] [Indexed: 12/29/2022] Open
Abstract
Recently, a new class of psychedelic compounds named NBOMe (or 25X-NBOMe) has appeared on the illegal drug market. NBOMes are analogs of the 2C family of phenethylamine drugs, originally synthesized by Alexander Shulgin, that contain a N-(2-methoxy)benzyl substituent. The most frequently reported drugs from this group are 25I-NBOMe, 25B-NBOMe, and 25C-NBOMe. NBOMe compounds are ultrapotent and highly efficacious agonists of serotonin 5-HT2A and 5-HT2C receptors (Ki values in low nanomolar range) with more than 1000-fold selectivity for 5-HT2A compared with 5-HT1A. They display higher affinity for 5-HT2A receptors than their 2C counterparts and have markedly lower affinity, potency, and efficacy at the 5-HT2B receptor compared to 5-HT2A or 5-HT2C. The drugs are sold as blotter papers, or in powder, liquid, or tablet form, and they are administered sublingually/buccally, intravenously, via nasal insufflations, or by smoking. Since their introduction in the early 2010s, numerous reports have been published on clinical intoxications and fatalities resulting from the consumption of NBOMe compounds. Commonly observed adverse effects include visual and auditory hallucinations, confusion, anxiety, panic and fear, agitation, uncontrollable violent behavior, seizures, excited delirium, and sympathomimetic signs such mydriasis, tachycardia, hypertension, hyperthermia, and diaphoresis. Rhabdomyolysis, disseminated intravascular coagulation, hypoglycemia, metabolic acidosis, and multiorgan failure were also reported. This survey provides an updated overview of the pharmacological properties, pattern of use, metabolism, and desired effects associated with NBOMe use. Special emphasis is given to cases of non-fatal and lethal intoxication involving these compounds. As the analysis of NBOMes in biological materials can be challenging even for laboratories applying modern sensitive techniques, this paper also presents the analytical methods most commonly used for detection and identification of NBOMes and their metabolites.
Collapse
Affiliation(s)
- Jolanta B Zawilska
- Department of Pharmacodynamics, Medical University of Łódź, Łódź, Poland
| | - Monika Kacela
- Department of Pharmacodynamics, Medical University of Łódź, Łódź, Poland
| | - Piotr Adamowicz
- Department of Forensic Toxicology, Institute of Forensic Research, Kraków, Poland
| |
Collapse
|
8
|
Halberstadt AL, Chatha M, Klein AK, Wallach J, Brandt SD. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology 2020; 167:107933. [PMID: 31917152 DOI: 10.1016/j.neuropharm.2019.107933] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
Serotonergic hallucinogens such as lysergic acid diethylamide (LSD) induce head twitches in rodents via 5-HT2A receptor activation. The goal of the present investigation was to determine whether a correlation exists between the potency of hallucinogens in the mouse head-twitch response (HTR) paradigm and their reported potencies in other species, specifically rats and humans. Dose-response experiments were conducted with phenylalkylamine and tryptamine hallucinogens in C57BL/6J mice, enlarging the available pool of HTR potency data to 41 total compounds. For agents where human data are available (n = 36), a strong positive correlation (r = 0.9448) was found between HTR potencies in mice and reported hallucinogenic potencies in humans. HTR potencies were also found to be correlated with published drug discrimination ED50 values for substitution in rats trained with either LSD (r = 0.9484, n = 16) or 2,5-dimethoxy-4-methylamphetamine (r = 0.9564, n = 21). All three of these behavioral effects (HTR in mice, hallucinogen discriminative stimulus effects in rats, and psychedelic effects in humans) have been linked to 5-HT2A receptor activation. We present evidence that hallucinogens induce these three effects with remarkably consistent potencies. In addition to having high construct validity, the HTR assay also appears to show significant predictive validity, confirming its translational relevance for predicting subjective potency of hallucinogens in humans. These findings support the use of the HTR paradigm as a preclinical model of hallucinogen psychopharmacology and in structure-activity relationship studies of hallucinogens. Future investigations with a larger number of test agents will evaluate whether the HTR assay can be used to predict the hallucinogenic potency of 5-HT2A agonists in humans. "This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Muhammad Chatha
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Adam K Klein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jason Wallach
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA, USA; Substance Use Disorders Institute, University of the Sciences, Philadelphia, PA, USA
| | - Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
9
|
Costa G, De Luca MA, Piras G, Marongiu J, Fattore L, Simola N. Neuronal and peripheral damages induced by synthetic psychoactive substances: an update of recent findings from human and animal studies. Neural Regen Res 2020; 15:802-816. [PMID: 31719240 PMCID: PMC6990793 DOI: 10.4103/1673-5374.268895] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Preclinical and clinical studies indicate that synthetic psychoactive substances, in addition to having abuse potential, may elicit toxic effects of varying severity at the peripheral and central levels. Nowadays, toxicity induced by synthetic psychoactive substances poses a serious harm for health, since recreational use of these substances is on the rise among young and adult people. The present review summarizes recent findings on the peripheral and central toxicity elicited by “old” and “new” synthetic psychoactive substances in humans and experimental animals, focusing on amphetamine derivatives, hallucinogen and dissociative drugs and synthetic cannabinoids.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| | - Gessica Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Liana Fattore
- National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| |
Collapse
|
10
|
Abiero A, Ryu IS, Botanas CJ, Custodio RJP, Sayson LV, Kim M, Lee HJ, Kim HJ, Seo JW, Cho MC, Lee KW, Yoo SY, Jang CG, Lee YS, Cheong JH. Four Novel Synthetic Tryptamine Analogs Induce Head-Twitch Responses and Increase 5-HTR2a in the Prefrontal Cortex in Mice. Biomol Ther (Seoul) 2019; 28:83-91. [PMID: 31230432 PMCID: PMC6939696 DOI: 10.4062/biomolther.2019.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
Tryptamines are monoamine alkaloids with hallucinogenic properties and are widely abused worldwide. To hasten the regulations of novel substances and predict their abuse potential, we designed and synthesized four novel synthetic tryptamine analogs: Pyrrolidino tryptamine hydrochloride (PYT HCl), Piperidino tryptamine hydrochloride (PIT HCl), N,N-dibutyl tryptamine hydrochloride (DBT HCl), and 2-Methyl tryptamine hydrochloride (2-MT HCl). Then, we evaluated their rewarding and reinforcing effects using the conditioned place preference (CPP) and self-administration (SA) paradigms. We conducted an open field test (OFT) to determine the effects of the novel compounds on locomotor activity. A head-twitch response (HTR) was also performed to characterize their hallucinogenic properties. Lastly, we examined the effects of the compounds on 5-HTR1a and 5-HTR2a in the prefrontal cortex using a quantitative real-time polymerase chain reaction (qRT-PCR) assay. None of the compounds induced CPP in mice or initiated SA in rats. PYT HCl and PIT HCl reduced the locomotor activity and elevated the 5-HTR1a mRNA levels in mice. Acute and repeated treatment with the novel tryptamines elicited HTR in mice. Furthermore, a drug challenge involving a 7-day abstinence from drug use produced higher HTR than acute and repeated treatments. Both the acute treatment and drug challenge increased the 5-HTR2a mRNA levels. Ketanserin blocked the induced HTR. Taken together, the findings suggest that PYT HCl, PIT HCl, DBT HCl, and 2-MT HCl produce hallucinogenic effects via 5-HTR2a stimulation, but may have low abuse potential.
Collapse
Affiliation(s)
- Arvie Abiero
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - In Soo Ryu
- Center for Safety Pharmacology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Raly James Perez Custodio
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Mikyung Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Joung-Wook Seo
- Center for Safety Pharmacology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Min Chang Cho
- Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kun Won Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Yeun Yoo
- Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
11
|
The renaissance in psychedelic research: What do preclinical models have to offer. PROGRESS IN BRAIN RESEARCH 2018; 242:25-67. [DOI: 10.1016/bs.pbr.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|