1
|
Ku SP, Atucha E, Alavi N, Mulla-Osman H, Kayumova R, Yoshida M, Csicsvari J, Sauvage MM. Phase locking of hippocampal CA3 neurons to distal CA1 theta oscillations selectively predicts memory performance. Cell Rep 2024; 43:114276. [PMID: 38814781 DOI: 10.1016/j.celrep.2024.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/09/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
How the coordination of neuronal spiking and brain rhythms between hippocampal subregions supports memory function remains elusive. We studied the interregional coordination of CA3 neuronal spiking with CA1 theta oscillations by recording electrophysiological signals along the proximodistal axis of the hippocampus in rats that were performing a high-memory-demand recognition memory task adapted from humans. We found that CA3 population spiking occurs preferentially at the peak of distal CA1 theta oscillations when memory was tested but only when previously encountered stimuli were presented. In addition, decoding analyses revealed that only population cell firing of proximal CA3 together with that of distal CA1 can predict performance at test in the present non-spatial task. Overall, our work demonstrates an important role for the synchronization of CA3 neuronal activity with CA1 theta oscillations during memory testing.
Collapse
Affiliation(s)
- Shih-Pi Ku
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany.
| | - Erika Atucha
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
| | - Nico Alavi
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
| | - Halla Mulla-Osman
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
| | - Rukhshona Kayumova
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
| | - Motoharu Yoshida
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Jozsef Csicsvari
- Institute of Science and Technology (IST), Klosterneuburg, Austria
| | - Magdalena M Sauvage
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Functional Neuroplasticity Department, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
2
|
Hoang TH, Manahan-Vaughan D. Differentiated somatic gene expression is triggered in the dorsal hippocampus and the anterior retrosplenial cortex by hippocampal synaptic plasticity prompted by spatial content learning. Brain Struct Funct 2024; 229:639-655. [PMID: 37690045 PMCID: PMC10978647 DOI: 10.1007/s00429-023-02694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
Hippocampal afferent inputs, terminating on proximal and distal subfields of the cornus ammonis (CA), enable the functional discrimination of 'what' (item identity) and 'where' (spatial location) elements of a spatial representation. This kind of information is supported by structures such as the retrosplenial cortex (RSC). Spatial content learning promotes the expression of hippocampal synaptic plasticity, particularly long-term depression (LTD). In the CA1 region, this is specifically facilitated by the learning of item-place features of a spatial environment. Gene-tagging, by means of time-locked fluorescence in situ hybridization (FISH) to detect nuclear expression of immediate early genes, can reveal neuronal populations that engage in experience-dependent information encoding. In the current study, using FISH, we examined if learning-facilitated LTD results in subfield-specific information encoding in the hippocampus and RSC. Rats engaged in novel exploration of small items during stimulation of Schaffer collateral-CA1 synapses. This resulted in LTD (> 24 h). FISH, to detect nuclear expression of Homer1a, revealed that the distal-CA1 and proximal-CA3 subcompartments were particularly activated by this event. By contrast, all elements of the proximodistal cornus ammonis-axis showed equal nuclear Homer1a expression following LTD induction solely by means of afferent stimulation. The RSC exhibited stronger nuclear Homer1a expression in response to learning-facilitated LTD, and to novel item-place experience, compared to LTD induced by sole afferent stimulation in CA1. These results show that both the cornus ammonis and RSC engage in differentiated information encoding of item-place learning that is salient enough, in its own right, to drive the expression of hippocampal LTD. These results also reveal a novel role of the RSC in item-place learning.
Collapse
Affiliation(s)
- Thu-Huong Hoang
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany.
| |
Collapse
|
3
|
Nakamura NH, Furue H, Kobayashi K, Oku Y. Hippocampal ensemble dynamics and memory performance are modulated by respiration during encoding. Nat Commun 2023; 14:4391. [PMID: 37500646 PMCID: PMC10374532 DOI: 10.1038/s41467-023-40139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
During offline brain states, such as sleep and memory consolidation, respiration coordinates hippocampal activity. However, the role of breathing during online memory traces remains unclear. Here, we show that respiration can be recruited during online memory encoding. Optogenetic manipulation was used to control activation of the primary inspiratory rhythm generator PreBötzinger complex (PreBötC) in transgenic mice. When intermittent PreBötC-induced apnea covered the object exploration time during encoding, novel object detection was impaired. Moreover, the mice did not exhibit freezing behavior during presentation of fear-conditioned stimuli (CS+) when PreBötC-induced apnea occurred at the exact time of encoding. This apnea did not evoke changes in CA3 cell ensembles between presentations of CS+ and conditioned inhibition (CS-), whereas in normal breathing, CS+ presentations produced dynamic changes. Our findings demonstrate that components of central respiratory activity (e.g., frequency) during online encoding strongly contribute to shaping hippocampal ensemble dynamics and memory performance.
Collapse
Affiliation(s)
- Nozomu H Nakamura
- Division of Physiome, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Hidemasa Furue
- Division of Neurophysiology, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Yoshitaka Oku
- Division of Physiome, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo, 663-8501, Japan
| |
Collapse
|
4
|
Jacobsen B, Kleven H, Gatome W, Las L, Ulanovsky N, Witter MP. Organization of projections from the entorhinal cortex to the hippocampal formation of the Egyptian fruit bat Rousettus aegyptiacus. Hippocampus 2023. [PMID: 36869437 DOI: 10.1002/hipo.23517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 03/05/2023]
Abstract
The hippocampal formation and entorhinal cortex are crucially involved in learning and memory as well as in spatial navigation. The conservation of these structures across the entire mammalian lineage demonstrates their importance. Information on a diverse set of spatially tuned neurons has become available, but we only have a rudimentary understanding of how anatomical network structure affects functional tuning. Bats are the only order of mammals that have evolved true flight, and with this specialization comes the need to navigate and behave in a three dimensional (3D) environment. Spatial tuning of cells in the entorhinal-hippocampal network of bats has been studied for some time, but whether the reported tuning in 3D is associated with changes in the entorhinal-hippocampal network is not known. Here we investigated the entorhinal-hippocampal projections in the Egyptian fruit bat (Rousettus aegyptiacus), by injecting chemical anterograde tracers in the entorhinal cortex. Detailed analyses of the terminations of these projections in the hippocampus showed that both the medial and lateral entorhinal cortex sent projections to the molecular layer of all subfields of the hippocampal formation. Our analyses showed that the terminal distributions of entorhinal fibers in the hippocampal formation of Egyptian fruit bats-including the proximo-distal and longitudinal topography and the layer-specificity-are similar to what has been described in other mammalian species such as rodents and primates. The major difference in entorhinal-hippocampal projections that was described to date between rodents and primates is in the terminal distribution of the DG projection. We found that bats have entorhinal-DG projections that seem more like those in primates than in rodents. It is likely that the latter projection in bats is specialized to the behavioral needs of this species, including 3D flight and long-distance navigation.
Collapse
Affiliation(s)
- Bente Jacobsen
- Faculty of Medicine and Health Science, Kavli Institute for Systems Neuroscience, NTNU Norwegian University for Science and Technology, Trondheim, Norway.,Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Heidi Kleven
- Faculty of Medicine and Health Science, Kavli Institute for Systems Neuroscience, NTNU Norwegian University for Science and Technology, Trondheim, Norway.,Neural Systems, Institute of Basic Medical Sciences, UiO University of Oslo, Oslo, Norway
| | - Wairimu Gatome
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Liora Las
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nachum Ulanovsky
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Menno P Witter
- Faculty of Medicine and Health Science, Kavli Institute for Systems Neuroscience, NTNU Norwegian University for Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Gros A, Lim AWH, Hohendorf V, White N, Eckert M, McHugh TJ, Wang SH. Behavioral and Cellular Tagging in Young and in Early Cognitive Aging. Front Aging Neurosci 2022; 14:809879. [PMID: 35283750 PMCID: PMC8907879 DOI: 10.3389/fnagi.2022.809879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022] Open
Abstract
The ability to maintain relevant information on a daily basis is negatively impacted by aging. However, the neuronal mechanism manifesting memory persistence in young animals and memory decline in early aging is not fully understood. A novel event, when introduced around encoding of an everyday memory task, can facilitate memory persistence in young age but not in early aging. Here, we investigated in male rats how sub-regions of the hippocampus are involved in memory representation in behavioral tagging and how early aging affects such representation by combining behavioral training in appetitive delayed-matching-to-place tasks with the “cellular compartment analysis of temporal activity by fluorescence in situ hybridization” technique. We show that neuronal assemblies activated by memory encoding were also partially activated by novelty, particularly in the distal CA1 and proximal CA3 subregions in young male rats. In early aging, both encoding- and novelty-triggered neuronal populations were significantly reduced with a more profound effect in encoding neurons. Thus, memory persistence through novelty facilitation engages overlapping hippocampal assemblies as a key cellular signature, and cognitive aging is associated with underlying reduction in neuronal activation.
Collapse
Affiliation(s)
- Alexandra Gros
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Amos W. H. Lim
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Victoria Hohendorf
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Nicole White
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Eckert
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Thomas John McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Szu-Han Wang
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Szu-Han Wang,
| |
Collapse
|
6
|
Dai ZH, Xu X, Chen WQ, Nie LN, Liu Y, Sui N, Liang J. The role of hippocampus in memory reactivation: an implication for a therapeutic target against opioid use disorder. CURRENT ADDICTION REPORTS 2022; 9:67-79. [PMID: 35223369 PMCID: PMC8857535 DOI: 10.1007/s40429-022-00407-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2022] [Indexed: 12/29/2022]
Abstract
Purpose of the review The abuse of opioids induces many terrible problems in human health and social stability. For opioid-dependent individuals, withdrawal memory can be reactivated by context, which is then associated with extremely unpleasant physical and emotional feelings during opioid withdrawal. The reactivation of withdrawal memory is considered one of the most important reasons for opioid relapse, and it also allows for memory modulation based on the reconsolidation phenomenon. However, studies exploring withdrawal memory modulation during the reconsolidation window are lacking. By summarizing the previous findings about the reactivation of negative emotional memories, we are going to suggest potential neural regions and systems for modulating opioid withdrawal memory. Recent findings Here, we first present the role of memory reactivation in its modification, discuss how the hippocampus participates in memory reactivation, and discuss the importance of noradrenergic signaling in the hippocampus for memory reactivation. Then, we review the engagement of other limbic regions receiving noradrenergic signaling in memory reactivation. We suggest that noradrenergic signaling targeting hippocampus neurons might play a potential role in strengthening the disruptive effect of withdrawal memory extinction by facilitating the degree of memory reactivation. Summary This review will contribute to a better understanding of the mechanisms underlying reactivation-dependent memory malleability and will provide new therapeutic avenues for treating opioid use disorders.
Collapse
Affiliation(s)
- Zhong-hua Dai
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xing Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wei-qi Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Li-na Nie
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Grande X, Berron D, Maass A, Bainbridge WA, Düzel E. Content-specific vulnerability of recent episodic memories in Alzheimer's disease. Neuropsychologia 2021; 160:107976. [PMID: 34314781 PMCID: PMC8434425 DOI: 10.1016/j.neuropsychologia.2021.107976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/21/2022]
Abstract
Endel Tulving's episodic memory framework emphasizes the multifaceted re-experiencing of personal events. Indeed, decades of research focused on the experiential nature of episodic memories, usually treating recent episodic memory as a coherent experiential quality. However, recent insights into the functional architecture of the medial temporal lobe show that different types of mnemonic information are segregated into distinct neural pathways in brain circuits empirically associated with episodic memory. Moreover, recent memories do not fade as a whole under conditions of progressive neurodegeneration in these brain circuits, notably in Alzheimer's disease. Instead, certain memory content seem particularly vulnerable from the moment of their encoding while other content can remain memorable consistently across individuals and contexts. We propose that these observations are related to the content-specific functional architecture of the medial temporal lobe and consequently to a content-specific impairment of memory at different stages of the neurodegeneration. To develop Endel Tulving's inspirational legacy further and to advance our understanding of how memory function is affected by neurodegenerative conditions such as Alzheimer's disease, we postulate that it is compelling to focus on the representational content of recent episodic memories. The functional anatomy of episodic memory segregates different memory content. Alzheimer's disease may cause content-specific loss of recent memories Content-specific memorability across individuals changes with Alzheimer's disease. Content-specific assessment could provide new insights into episodic memory in health and disease
Collapse
Affiliation(s)
- Xenia Grande
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Germany.
| | - David Berron
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | | | - Emrah Düzel
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, United Kingdom.
| |
Collapse
|
8
|
Hoang TH, Böge J, Manahan-Vaughan D. Hippocampal subfield-specific Homer1a expression is triggered by learning-facilitated long-term potentiation and long-term depression at medial perforant path synapses. Hippocampus 2021; 31:897-915. [PMID: 33964041 DOI: 10.1002/hipo.23333] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/22/2021] [Accepted: 04/11/2021] [Indexed: 12/23/2022]
Abstract
Learning about general aspects, or content details, of space results in differentiated neuronal information encoding within the proximodistal axis of the hippocampus. These processes are tightly linked to long-term potentiation (LTP) and long-term depression (LTD). Here, we explored the precise sites of encoding of synaptic plasticity in the hippocampus that are mediated by information throughput from the perforant path. We assessed nuclear Homer1a-expression that was triggered by electrophysiological induction of short and long forms of hippocampal synaptic plasticity, and compared it to Homer1a-expression that was triggered by LTP and LTD enabled by different forms of spatial learning. Plasticity responses were induced by patterned stimulation of the perforant path and were recorded in the dentate gyrus (DG) of freely behaving rats. We used fluorescence in situ hybridization to detect experience-dependent nuclear encoding of Homer1a in proximodistal hippocampal subfields. Induction of neither STP nor STD resulted in immediate early gene (IEG) encoding. Electrophysiological induction of robust LTP, or LTD, resulted in highly significant and widespread induction of nuclear Homer1a in all hippocampal subfields. LTP that was facilitated by novel spatial exploration triggered similar widespread Homer1a-expression. The coupling of synaptic depression with the exploration of a novel configuration of landmarks resulted in localized IEG expression in the proximal CA3 region and the lower (infrapyramidal) blade of the DG. Our findings support that synaptic plasticity induction via perforant path inputs promotes widespread hippocampal information encoding. Furthermore, novel spatial exploration promotes the selection of a hippocampal neuronal network by means of LTP that is distributed in an experience-dependent manner across all hippocampus subfields. This network may be modified during spatial content learning by LTD in specific hippocampal subfields. Thus, long-term plasticity-inducing events result in IEG expression that supports establishment and/or restructuring of neuronal networks that are necessary for long-term information storage.
Collapse
Affiliation(s)
- Thu-Huong Hoang
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Juliane Böge
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
9
|
Ruby NF. Suppression of Circadian Timing and Its Impact on the Hippocampus. Front Neurosci 2021; 15:642376. [PMID: 33897354 PMCID: PMC8060574 DOI: 10.3389/fnins.2021.642376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
In this article, I describe the development of the disruptive phase shift (DPS) protocol and its utility for studying how circadian dysfunction impacts memory processing in the hippocampus. The suprachiasmatic nucleus (SCN) of the Siberian hamster is a labile circadian pacemaker that is easily rendered arrhythmic (ARR) by a simple manipulation of ambient lighting. The DPS protocol uses room lighting to administer a phase-advancing signal followed by a phase-delaying signal within one circadian cycle to suppress clock gene rhythms in the SCN. The main advantage of this model for inducing arrhythmia is that the DPS protocol is non-invasive; circadian rhythms are eliminated while leaving the animals neurologically and genetically intact. In the area of learning and memory, DPS arrhythmia produces much different results than arrhythmia by surgical ablation of the SCN. As I show, SCN ablation has little to no effect on memory. By contrast, DPS hamsters have an intact, but arrhythmic, SCN which produces severe deficits in memory tasks that are accompanied by fragmentation of electroencephalographic theta oscillations, increased synaptic inhibition in hippocampal circuits, and diminished responsiveness to cholinergic signaling in the dentate gyrus of the hippocampus. The studies reviewed here show that DPS hamsters are a promising model for translational studies of adult onset circadian dysfunction in humans.
Collapse
Affiliation(s)
- Norman F. Ruby
- Biology Department, Stanford University, Stanford, CA, United States
| |
Collapse
|
10
|
McMartin L, Kiraly M, Heller HC, Madison DV, Ruby NF. Disruption of circadian timing increases synaptic inhibition and reduces cholinergic responsiveness in the dentate gyrus. Hippocampus 2021; 31:422-434. [PMID: 33439521 PMCID: PMC8048473 DOI: 10.1002/hipo.23301] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/28/2020] [Accepted: 01/02/2021] [Indexed: 12/11/2022]
Abstract
We investigated synaptic mechanisms in the hippocampus that could explain how loss of circadian timing leads to impairments in spatial and recognition memory. Experiments were performed in hippocampal slices from Siberian hamsters (Phodopus sungorus) because, unlike mice and rats, their circadian rhythms are easily eliminated without modifications to their genome and without surgical manipulations, thereby leaving neuronal circuits intact. Recordings of excitatory postsynaptic field potentials and population spikes in area CA1 and dentate gyrus granule cells revealed no effect of circadian arrhythmia on basic functions of synaptic circuitry, including long-term potentiation. However, dentate granule cells from circadian-arrhythmic animals maintained a more depolarized resting membrane potential than cells from circadian-intact animals; a significantly greater proportion of these cells depolarized in response to the cholinergic agonist carbachol (10 μM), and did so by increasing their membrane potential three-fold greater than cells from the control (entrained) group. Dentate granule cells from arrhythmic animals also exhibited higher levels of tonic inhibition, as measured by the frequency of spontaneous inhibitory postsynaptic potentials. Carbachol also decreased stimulus-evoked synaptic excitation in dentate granule cells from both intact and arrhythmic animals as expected, but reduced stimulus-evoked synaptic inhibition only in cells from control hamsters. These findings show that loss of circadian timing is accompanied by greater tonic inhibition, and increased synaptic inhibition in response to muscarinic receptor activation in dentate granule cells. Increased inhibition would likely attenuate excitation in dentate-CA3 microcircuits, which in turn might explain the spatial memory deficits previously observed in circadian-arrhythmic hamsters.
Collapse
Affiliation(s)
- Laura McMartin
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
| | - Marianna Kiraly
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
| | - H Craig Heller
- Biology Department, Stanford University, Stanford, California, USA
| | - Daniel V Madison
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
| | - Norman F Ruby
- Biology Department, Stanford University, Stanford, California, USA
| |
Collapse
|
11
|
The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev 2020; 113:373-407. [PMID: 32298711 DOI: 10.1016/j.neubiorev.2020.04.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Rats and mice have been demonstrated to show episodic-like memory, a prototype of episodic memory, as defined by an integrated memory of the experience of an object or event, in a particular place and time. Such memory can be assessed via the use of spontaneous object exploration paradigms, variably designed to measure memory for object, place, temporal order and object-location inter-relationships. We review the methodological properties of these tests, the neurobiology about time and discuss the evidence for the involvement of the medial prefrontal cortex (mPFC), entorhinal cortex (EC) and hippocampus, with respect to their anatomy, neurotransmitter systems and functional circuits. The systematic analysis suggests that a specific circuit between the mPFC, lateral EC and hippocampus encodes the information for event, place and time of occurrence into the complex episodic-like memory, as a top-down regulation from the mPFC onto the hippocampus. This circuit can be distinguished from the neuronal component memory systems for processing the individual information of object, time and place.
Collapse
|
12
|
Lee J, Bae C, Lee D, Jung MW. Transient effect of mossy fiber stimulation on spatial firing of CA3 neurons in familiar and novel environments. Hippocampus 2020; 30:693-702. [PMID: 31999030 DOI: 10.1002/hipo.23190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Accepted: 01/05/2020] [Indexed: 11/11/2022]
Abstract
Hippocampal mossy fibers have long been proposed to impose new patterns to learn onto CA3 neurons during new memory formation. However, inconsistent with this theory, we found in our previous study that mossy fiber stimulation induces only transient changes in CA3 spatial firing in a familiar environment. Here, we tested whether mossy fiber stimulation affects CA3 spatial firing differently between familiar and novel environments. We compared spatial firing of CA3 neurons before and after optogenetic stimulation of mossy fibers in freely behaving mice in a familiar and three sets of novel environments. We found that CA3 neurons are more responsive to mossy fiber stimulation in the novel than familiar environments. However, we failed to obtain evidence for long-lasting effect of mossy fiber stimulation on spatial firing of CA3 neurons in both the familiar and novel environments. Our results provide further evidence against the view that mossy fibers carry teaching signals.
Collapse
Affiliation(s)
- Joonyeup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
| | - Chanmee Bae
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
| | - Doyun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Min Whan Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
| |
Collapse
|
13
|
Sauvage M, Kitsukawa T, Atucha E. Single-cell memory trace imaging with immediate-early genes. J Neurosci Methods 2019; 326:108368. [DOI: 10.1016/j.jneumeth.2019.108368] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022]
|
14
|
Li Q, Che H, Wang C, Zhang L, Ding L, Xue C, Zhang T, Wang Y. Cerebrosides from Sea Cucumber Improved Aβ1–42‐Induced Cognitive Deficiency in a Rat Model of Alzheimer's Disease. Mol Nutr Food Res 2018; 63:e1800707. [DOI: 10.1002/mnfr.201800707] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/23/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Qian Li
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Hong‐Xia Che
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
- College of Marine Science and Biological EngineeringQingdao University of Science and Technology Qingdao 266042 Shandong China
| | - Cheng‐Cheng Wang
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Ling‐Yu Zhang
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Lin Ding
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Chang‐Hu Xue
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
- Qingdao National Laboratory for Marine Science and TechnologyLaboratory of Marine Drugs and Biological Products Qingdao 266237 Shandong China
| | - Tian‐Tian Zhang
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Yu‐Ming Wang
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
- Qingdao National Laboratory for Marine Science and TechnologyLaboratory of Marine Drugs and Biological Products Qingdao 266237 Shandong China
| |
Collapse
|