1
|
Batistela MF, Hernandes PM, Frias AT, Lovick TA, Zangrossi H. Anti-panic effect of fluoxetine during late diestrus in female rats is mediated through GABAergic mechanisms in the dorsal periaqueductal gray. Neurosci Lett 2025; 845:138078. [PMID: 39645071 DOI: 10.1016/j.neulet.2024.138078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Panic disorder is more frequent in women than in men. In women, vulnerability to panic is enhanced during the late luteal phase of the menstrual cycle. At this time secretion of progesterone and its neuroactive metabolite allopregnanolone (ALLO), which acts as a positive allosteric modulator of the actions of GABA at GABAA receptors, decline sharply. In female rats, responsiveness to a hypoxic panicogenic challenge increases during the late diestrus (LD) phase as ALLO concentration in the brain falls. During LD, short-term treatment with fluoxetine at a low dose (1.75 mg/kg i.p.) blocked panic-related escape behavior in response to hypoxia. At this dose fluoxetine increases brain concentration of ALLO without affecting 5-HT levels, thereby stabilizing brain ALLO concentration. We here report that the panicolytic-like effect of fluoxetine during LD is prevented by microinjection of the GABAA receptor antagonist bicuculline (5 pmol) into the dorsal periaqueductal gray (dPAG), a key panic-related area. This result suggests that fluoxetine's effect is indirectly mediated via a GABAergic mechanism in the dPAG and highlights the important role of changes in GABAergic tone in regulating neuronal excitability in the panic circuitry during the estrous cycle. It also points to the potential for using short-term, low dose fluoxetine as an anti-panic medication in women.
Collapse
Affiliation(s)
- Matheus F Batistela
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Brazil
| | - Paloma M Hernandes
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Brazil
| | - Alana T Frias
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Brazil
| | - Thelma A Lovick
- Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.
| | - Helio Zangrossi
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Brazil.
| |
Collapse
|
2
|
Cardona-Acosta AM, Meisser N, Vardeleon NI, Steiner H, Bolaños-Guzmán CA. Mother's little helper turned a foe: Alprazolam use, misuse, and abuse. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111137. [PMID: 39260815 DOI: 10.1016/j.pnpbp.2024.111137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Benzodiazepines are effective in managing anxiety and related disorders when used properly (short-term). Their inappropriate use, however, carries significant risks, involving amnesia, rebound insomnia, rebound anxiety, depression, dependence, abuse, addiction, and an intense and exceedingly prolonged withdrawal, among other complications. Benzodiazepines also amplify the effects of opioids and, consequently, have been implicated in approximately 30 % of opioid overdose deaths. Despite their unfavorable profile, sharp increases in medical and non-medical use of benzodiazepines have been steadily reported worldwide. Alprazolam (Xanax®), a potent, short-acting benzodiazepine, is among the most prescribed and abused anxiolytics in the United States. This medication is commonly co-abused with opioids, increasing the likelihood for oversedation, overdose, and death. Notwithstanding these risks, it is surprising that research investigating how benzodiazepines, such as alprazolam, interact with opioids is severely lacking in clinical and preclinical settings. This review therefore aims to present our current knowledge of benzodiazepine use and misuse, with an emphasis on alprazolam when data is available, and particularly in populations at higher risk for developing substance use disorders. Additionally, the potential mechanism(s) surrounding tolerance, dependence and abuse liability are discussed. Despite their popularity, our understanding of how benzodiazepines and opioids interact is less than adequate. Therefore, it is now more important than ever to understand the short- and long-term consequences of benzodiazepine/alprazolam use.
Collapse
Affiliation(s)
- Astrid M Cardona-Acosta
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Noelle Meisser
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Nathan I Vardeleon
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Heinz Steiner
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
3
|
Al-Kuraishy HM, Al-Gareeb AI, Alsayegh AA, Abusudah WF, Almohmadi NH, Eldahshan OA, Ahmed EA, Batiha GES. Insights on benzodiazepines' potential in Alzheimer's disease. Life Sci 2023; 320:121532. [PMID: 36858314 DOI: 10.1016/j.lfs.2023.121532] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
Alzheimer's disease (AD) is the most frequent type of dementia characterized by the deposition of amyloid beta (Aβ) plaque and tau-neurofibrillary tangles (TNTs) in the brain. AD is associated with the disturbances of various neurotransmitters including gamma-aminobutyric acid (GABA). Of note, GABA is reduced in AD, and restoration of GABA effect by benzodiazepines (BDZs) may improve AD outcomes. However, BDZs may adversely affect cognitive functions chiefly in elderly AD patients with sleep disorders. Besides, there is a controversy regarding the use of BDZs in AD. Consequently, the objective of the present review was to disclose the possible role of BDZs on the pathogenesis of AD that might be beneficial, neutral, or detrimental effects on AD. Prolonged use of intermediate-acting BDZ lorazepam exerts amnesic effects due to attenuation of synaptic plasticity and impairment of recognition memory. However, BDZs may have a protective effect against the development of AD by reducing tau phosphorylation, neuroinflammation, and progression of AD neuropathology. On the other side, other findings highlighted that extended use of BDZs was not associated with the development of AD. In conclusion, there are controversial points concerning the use of BDZs and the risk for the progression of AD. Thus, preclinical, and clinical studies are essential in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Bagdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Bagdad, Iraq
| | - Abdulrahman A Alsayegh
- Clinical Nutrition Department Applied Medical Sciences, College Jazan University, Jazan 82817, Saudi Arabia.
| | - Wafaa Fouzi Abusudah
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia.
| | - Najlaa Hamed Almohmadi
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia.
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Al Beheira, Egypt.
| |
Collapse
|
4
|
Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. Benzodiazepines in Alzheimer's disease: beneficial or detrimental effects. Inflammopharmacology 2023; 31:221-230. [PMID: 36418599 DOI: 10.1007/s10787-022-01099-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022]
Abstract
Dementia is considered a clinical syndrome characterized by cognitive dysfunction and memory loss. Alzheimer's disease (AD) is the most common type of dementia. AD is linked with the turbulence of diverse neurotransmitters including gamma-aminobutyric acid (GABA). Notably, GABA in the brain and cerebrospinal fluid was reduced in AD. Thus, allosteric modulation of the GABA effect by benzodiazepines (BDZs) may improve the clinical outcomes of AD patients. Therefore, the objective of the present review was to reveal the possible role of BDZs on the pathogenesis and clinical outcomes in AD patients. Though BDZs may adversely affect cognitive functions mainly in elderly patients, herein it was postulated that BDZs may have beneficial, neutral, or detrimental effects in AD. Taken together, there is strong controversy regarding the use of BDZs and the risk for the development of AD. Therefore, experimental, preclinical and clinical studies are critical to determine the potential protective or detrimental effects of BDZs on AD neuropathology.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Professor in Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Professor in Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
5
|
Vázquez-León P, Miranda-Páez A, Calvillo-Robledo A, Marichal-Cancino BA. Blockade of GPR55 in dorsal periaqueductal gray produces anxiety-like behaviors and evocates defensive aggressive responses in alcohol-pre-exposed rats. Neurosci Lett 2021; 764:136218. [PMID: 34487839 DOI: 10.1016/j.neulet.2021.136218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022]
Abstract
GPR55 is a receptor expressed in several central nervous system areas, including the periaqueductal gray (PAG). Current knowledge of GPR55 physiology in PAG only covers pain integration, but it is involved in other actions such as anxiety, panic, motivated behaviors, and alcohol intake. In the present study, juvenile male Wistar rats were unexposed (alcohol-naïve group; A-naïve) or exposed to alcohol for 5 weeks (alcohol-pre-exposed group; A-pre-exposed). Posteriorly, animals received intra dorsal-PAG (D-PAG) injections of vehicle (10% DMSO), LPI (1 nmol/0.5 µl) and ML-193 (1 nmol/0.5 µl, a selective GPR55 antagonist). Finally, defensive burying behavior (DBB) paradigm and alcohol preference were evaluated. Compared to the A-naïve group, the A-pre-exposed vehicle group had higher (p < 0.05): (i) time of immobility; (ii) latency to and duration of burying; and (iii) alcohol consumption. In both groups (i.e., A-naïve and A-pre-exposed) treatment with LPI: (i) decreased duration of burying (p < 0.05); (ii) suppressed time of immobility; and (iii) increased alcohol intake (p < 0.05). On the other hand, treatment with ML-193: (i) decreased duration of immobility in A-pre-exposed (but not in A-naïve rats); (ii) promoted an aggressive response against the shock-probe in A-pre-exposed rats (p < 0.05); and (iii) increased alcohol intake (p < 0.05). Our results suggest that blockade of GPR55 in D-PAG is associated with anxiety-like behaviors, defensive aggressive behaviors, and higher alcohol intake, whereas LPI in D-PAG produced anxiolytic-like effects (probably GPR55-mediated), but not prevention of alcohol intake.
Collapse
Affiliation(s)
- Priscila Vázquez-León
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags., Mexico
| | - Abraham Miranda-Páez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo CP: 07738 Alc. Gustavo A. Madero, Mexico City, Mexico
| | - Argelia Calvillo-Robledo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags., Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags., Mexico.
| |
Collapse
|
6
|
Maraschin JC, Frias AT, Hernandes PM, Batistela MF, Martinez LM, Joca SRL, Graeff FG, Audi EA, Spera de Andrade TGC, Zangrossi H. Antipanic-like effect of esketamine and buprenorphine in rats exposed to acute hypoxia. Behav Brain Res 2021; 418:113651. [PMID: 34732354 DOI: 10.1016/j.bbr.2021.113651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
The antidepressant effect of ketamine has been widely acknowledged and the use of one of its enantiomers, S-ketamine (esketamine), has recently been approved for the clinical management of treatment-resistant depression. As with ketamine, the non-selective opioid receptor-interacting drug buprenorphine is reported to have antidepressant and anxiolytic properties in humans and rodents. Given the fact that antidepressant drugs are also first line treatment for panic disorder, it is surprising that the potential panicolytic effect of these compounds has been scarcely (ketamine), or not yet (buprenorphine) investigated. We here evaluated the effects of ketamine (the racemic mixture), esketamine, and buprenorphine in male Wistar rats submitted to a panicogenic challenge: acute exposure to hypoxia (7% O2). We observed that esketamine (20 mg/kg), but not ketamine, decreased the number of escape attempts made during hypoxia, and this effect could be observed even 7 days after the drug administration. A panicolytic-like effect was also observed with MK801, which like esketamine, antagonizes NMDA glutamate receptors. Buprenorphine (0.3 mg/kg) also impaired hypoxia-induced escape, an effect blocked by the non-selective opioid receptor antagonist naloxone, indicating an interaction with classical ligand sites, such as µ and kappa receptors, but not with nociception/orphanin FQ receptors. Altogether, the results suggest that esketamine and buprenorphine cause rapid-onset panicolytic-like effects, and may be alternatives for treating panic disorder, particularly in patients who are refractory to standard pharmacological treatment.
Collapse
Affiliation(s)
- Jhonatan Christian Maraschin
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alana Tercino Frias
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paloma Molina Hernandes
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Matheus Fitipaldi Batistela
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas Motta Martinez
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sâmia Regiane Lourenço Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | | | - Elisabeth Aparecida Audi
- Department of Pharmacology and Therapeutics, State University of Maringá (UEM), Maringá, PR, Brazil
| | | | - Hélio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Behavioural Neurosciences Institute (INeC), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
7
|
Vázquez-León P, Miranda-Páez A, Chávez-Reyes J, Allende G, Barragán-Iglesias P, Marichal-Cancino BA. The Periaqueductal Gray and Its Extended Participation in Drug Addiction Phenomena. Neurosci Bull 2021; 37:1493-1509. [PMID: 34302618 DOI: 10.1007/s12264-021-00756-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
The periaqueductal gray (PAG) is a complex mesencephalic structure involved in the integration and execution of active and passive self-protective behaviors against imminent threats, such as immobility or flight from a predator. PAG activity is also associated with the integration of responses against physical discomfort (e.g., anxiety, fear, pain, and disgust) which occurs prior an imminent attack, but also during withdrawal from drugs such as morphine and cocaine. The PAG sends and receives projections to and from other well-documented nuclei linked to the phenomenon of drug addiction including: (i) the ventral tegmental area; (ii) extended amygdala; (iii) medial prefrontal cortex; (iv) pontine nucleus; (v) bed nucleus of the stria terminalis; and (vi) hypothalamus. Preclinical models have suggested that the PAG contributes to the modulation of anxiety, fear, and nociception (all of which may produce physical discomfort) linked with chronic exposure to drugs of abuse. Withdrawal produced by the major pharmacological classes of drugs of abuse is mediated through actions that include participation of the PAG. In support of this, there is evidence of functional, pharmacological, molecular. And/or genetic alterations in the PAG during the impulsive/compulsive intake or withdrawal from a drug. Due to its small size, it is difficult to assess the anatomical participation of the PAG when using classical neuroimaging techniques, so its physiopathology in drug addiction has been underestimated and poorly documented. In this theoretical review, we discuss the involvement of the PAG in drug addiction mainly via its role as an integrator of responses to the physical discomfort associated with drug withdrawal.
Collapse
Affiliation(s)
- Priscila Vázquez-León
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131, Aguascalientes, Ags., Mexico
| | - Abraham Miranda-Páez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, 07738, Gustavo A. Madero, Mexico City, Mexico
| | - Jesús Chávez-Reyes
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131, Aguascalientes, Ags., Mexico
| | - Gonzalo Allende
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131, Aguascalientes, Ags., Mexico
| | - Paulino Barragán-Iglesias
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131, Aguascalientes, Ags., Mexico.
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131, Aguascalientes, Ags., Mexico.
| |
Collapse
|
8
|
Sanabria E, Cuenca RE, Esteso MÁ, Maldonado M. Benzodiazepines: Their Use either as Essential Medicines or as Toxics Substances. TOXICS 2021; 9:25. [PMID: 33535485 PMCID: PMC7912725 DOI: 10.3390/toxics9020025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022]
Abstract
This review highlights the nature, characteristics, properties, pharmacological differences between different types of benzodiazepines, the mechanism of action in the central nervous system, and the degradation of benzodiazepines. In the end, the efforts to reduce the benzodiazepines' adverse effects are shown and a reflection is made on the responsible uses of these medications.
Collapse
Affiliation(s)
- Edilma Sanabria
- Grupo GICRIM, Programa de Investigación Criminal, Universidad Manuela Beltrán, Avenida Circunvalar No. 60-00, 111321 Bogotá, Colombia; (E.S.); (R.E.C.)
| | - Ronald Edgardo Cuenca
- Grupo GICRIM, Programa de Investigación Criminal, Universidad Manuela Beltrán, Avenida Circunvalar No. 60-00, 111321 Bogotá, Colombia; (E.S.); (R.E.C.)
| | - Miguel Ángel Esteso
- Universidad Católica Santa Teresa de Jesús de Ávila, Calle los Canteros s/n, 05005 Ávila, Spain;
- U.D. Química Física, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Mauricio Maldonado
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Cr. 30 No. 45-03, 111321 Bogotá, Colombia
| |
Collapse
|