1
|
Snytte J, Setton R, Mwilambwe-Tshilobo L, Natasha Rajah M, Sheldon S, Turner GR, Spreng RN. Structure-Function Interactions in the Hippocampus and Prefrontal Cortex Are Associated with Episodic Memory in Healthy Aging. eNeuro 2024; 11:ENEURO.0418-23.2023. [PMID: 38479810 PMCID: PMC10972739 DOI: 10.1523/eneuro.0418-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 04/01/2024] Open
Abstract
Aging comes with declines in episodic memory. Memory decline is accompanied by structural and functional alterations within key brain regions, including the hippocampus and lateral prefrontal cortex, as well as their affiliated default and frontoparietal control networks. Most studies have examined how structural or functional differences relate to memory independently. Here we implemented a multimodal, multivariate approach to investigate how interactions between individual differences in structural integrity and functional connectivity relate to episodic memory performance in healthy aging. In a sample of younger (N = 111; mean age, 22.11 years) and older (N = 78; mean age, 67.29 years) adults, we analyzed structural MRI and multiecho resting-state fMRI data. Participants completed measures of list recall (free recall of words from a list), associative memory (cued recall of paired words), and source memory (cued recall of the trial type, or the sensory modality in which a word was presented). The findings revealed that greater structural integrity of the posterior hippocampus and middle frontal gyrus were linked with a pattern of increased within-network connectivity, which together were related to better associative and source memory in older adulthood. Critically, older adults displayed better memory performance in the context of decreased hippocampal volumes when structural differences were accompanied by functional reorganization. This functional reorganization was characterized by a pruning of connections between the hippocampus and the limbic and frontoparietal control networks. Our work provides insight into the neural mechanisms that underlie age-related compensation, revealing that the functional architecture associated with better memory performance in healthy aging is tied to the structural integrity of the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Jamie Snytte
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Roni Setton
- Department of Psychology, Harvard University, Cambridge, Massachusetts 02138
| | - Laetitia Mwilambwe-Tshilobo
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Psychology, Princeton University, Princeton, New Jersey 08540
| | - M Natasha Rajah
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada
| | - R Nathan Spreng
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
2
|
Yu J, Xie M, Song S, Zhou P, Yuan F, Ouyang M, Wang C, Liu N, Zhang N. Functional Connectivity within the Frontal–Striatal Network Differentiates Checkers from Washers of Obsessive-Compulsive Disorder. Brain Sci 2022; 12:brainsci12080998. [PMID: 36009061 PMCID: PMC9406102 DOI: 10.3390/brainsci12080998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Obsessive-compulsive disorder (OCD) is a psychiatric disorder with high clinical heterogeneity manifested by the presence of obsessions and/or compulsions. The classification of the symptom dimensional subtypes is helpful for further exploration of the pathophysiological mechanisms underlying the clinical heterogeneity of OCD. Washing and checking symptoms are the two major symptom subtypes in OCD, but the neural mechanisms of the different types of symptoms are not yet clearly understood. The purpose of this study was to compare regional and network functional alterations between washing and checking OCD based on resting-state functional magnetic resonance imaging (rs-fMRI). Methods: In total, 90 subjects were included, including 15 patients in the washing group, 30 patients in the checking group, and 45 healthy controls (HCs). Regional homogeneity (ReHo) was used to compare the differences in regional spontaneous neural activity among the three groups, and local indicators were analyzed by receiver operating characteristic (ROC) curves as imaging markers for the prediction of the clinical subtypes of OCD. Furthermore, differently activated local brain areas, as regions of interest (ROIs), were used to explore differences in altered brain functioning between washing and checking OCD symptoms based on a functional connectivity (FC) analysis. Results: Extensive abnormalities in spontaneous brain activity involving frontal, temporal, and occipital regions were observed in the patients compared to the HCs. The differences in local brain functioning between checking and washing OCD were mainly concentrated in the bilateral middle frontal gyrus, right supramarginal gyrus, right angular gyrus, and right inferior occipital gyrus. The ROC curve analysis revealed that the hyperactivation right middle frontal gyrus had a better discriminatory value for checking and washing OCD. Furthermore, the seed-based FC analysis revealed higher FC between the left medial superior frontal gyrus and right caudate nucleus compared to that in the healthy controls. Conclusions: These findings suggest that extensive local differences exist in intrinsic spontaneous activity among the checking group, washing group, and HCs. The neural basis of checking OCD may be related to dysfunction in the frontal–striatal network, which distinguishes OCD from washing OCD.
Collapse
Affiliation(s)
- Jianping Yu
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China; (J.Y.); (M.X.); (S.S.); (M.O.); (C.W.); (N.Z.)
| | - Minyao Xie
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China; (J.Y.); (M.X.); (S.S.); (M.O.); (C.W.); (N.Z.)
| | - Shasha Song
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China; (J.Y.); (M.X.); (S.S.); (M.O.); (C.W.); (N.Z.)
| | - Ping Zhou
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China;
| | - Fangzheng Yuan
- School of Psychology, Nanjing Normal University, 122 Ninghai Road, Nanjing 210024, China;
| | - Mengyuan Ouyang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China; (J.Y.); (M.X.); (S.S.); (M.O.); (C.W.); (N.Z.)
| | - Chun Wang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China; (J.Y.); (M.X.); (S.S.); (M.O.); (C.W.); (N.Z.)
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China;
- Correspondence:
| | - Ning Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China; (J.Y.); (M.X.); (S.S.); (M.O.); (C.W.); (N.Z.)
| |
Collapse
|
3
|
Li H, Ding F, Chen C, Huang P, Xu J, Chen Z, Wang S, Zhang M. Dynamic functional connectivity in modular organization of the hippocampal network marks memory phenotypes in temporal lobe epilepsy. Hum Brain Mapp 2022; 43:1917-1929. [PMID: 34967488 PMCID: PMC8933317 DOI: 10.1002/hbm.25763] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/22/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a network disorder with a high incidence of memory impairment. Memory processing ability highly depends on the dynamic coordination between distinct modules within the hippocampal network. Here, we investigate the relationship between memory phenotypes and modular alterations of dynamic functional connectivity (FC) in the hippocampal network in TLE patients. Then, 31 healthy controls and 66 TLE patients with hippocampal sclerosis were recruited. The patients were classified into memory-intact (MI, 35 cases) group and memory-deficit (MD, 31 cases) group, each based on individual's Wechsler Memory Scale-Revised score. The sliding-windows approach and graph theory analysis were used to analyze the hippocampal network based on resting state functional magnetic resonance imaging. Temporal properties and modular metrics were calculated. Two discrete and switchable states were revealed: a high modularized state (State I) and a low modularized state (State II), which corresponded to either anterior or posterior hippocampal network dominated pattern. TLE was prone to drive less State I but more State II, and the tendency was more obvious in TLE-MD. Additionally, TLE-MD showed more widespread alterations of modular properties compared with TLE-MI across two states. Furthermore, the dynamic modularity features had unique superiority in discriminating TLE-MD from TLE-MI. These findings demonstrated that state transitions and modular function of dissociable hippocampal networks were altered in TLE and more importantly, they could reflect different memory phenotypes. The trend revealed potential values of dynamic FC in elucidating the mechanism underlying memory impairments in TLE.
Collapse
Affiliation(s)
- Hong Li
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Fang Ding
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Cong Chen
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Peiyu Huang
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Jingjing Xu
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Zhong Chen
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China and Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Shuang Wang
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Minming Zhang
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
4
|
Xu J, Guan X, Li H, Zhang M, Xu X. The Effect of Early Life Stress on Memory is Mediated by Anterior Hippocampal Network. Neuroscience 2020; 451:137-148. [PMID: 33141033 DOI: 10.1016/j.neuroscience.2020.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
The experience of early life stress (ELS) is a risk factor for memory dysfunction, but the impact at the neural level is less clear. The aim of this study is to investigate whether healthy people with a higher ELS display more structural and functional changes of hippocampus than people with a lower ELS, and to investigate whether hippocampus changes in turn affects memory. The Childhood Trauma Questionnaire (CTQ) was used to assess ELS in 100 young health participants. They were divided into two groups: "low" CTQ group (limitation of none/minimal ELS) and "high" CTQ group (low to moderate ELS). Verbal memory was assessed by California Verbal Learning Test II and visual memory by Rey-Osterrieth Complex Figure. Resting state fMRI data were acquired and voxel-wise correlation analysis was performed to functionally divide the hippocampus. Gray matter volumes and memory circuits of the anterior and posterior hippocampus were analyzed. We also tested whether changes in hippocampus mediated the relationship between ELS and memory. Compared with participants with a lower ELS, healthy participants with a relatively higher ELS had reduced anterior hippocampal functional connectivity, which positively correlated with visual memory. Among all participants, anterior hippocampal functional connectivity mediated the relationship of ELS on visual memory. These findings suggest that ELS decreased anterior hippocampal-cortical functional connectivity, which, in turn, drives memory decline and highlight a potential pathway in which ELS affects memory by degrading anterior hippocampal functional connectivity changes directly.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31000, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31000, China
| | - Hong Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31000, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31000, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31000, China.
| |
Collapse
|
5
|
Kraft JN, O'Shea A, Albizu A, Evangelista ND, Hausman HK, Boutzoukas E, Nissim NR, Van Etten EJ, Bharadwaj PK, Song H, Smith SG, Porges E, DeKosky S, Hishaw GA, Wu S, Marsiske M, Cohen R, Alexander GE, Woods AJ. Structural Neural Correlates of Double Decision Performance in Older Adults. Front Aging Neurosci 2020; 12:278. [PMID: 33117145 PMCID: PMC7493680 DOI: 10.3389/fnagi.2020.00278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 08/11/2020] [Indexed: 11/13/2022] Open
Abstract
Speed of processing is a cognitive domain that encompasses the speed at which an individual can perceive a given stimulus, interpret the information, and produce a correct response. Speed of processing has been shown to decline more rapidly than other cognitive domains in an aging population, suggesting that this domain is particularly vulnerable to cognitive aging (Chee et al., 2009). However, given the heterogeneity of neuropsychological measures used to assess the domains underpinning speed of processing, a diffuse pattern of brain regions has been implicated. The current study aims to investigate the structural neural correlates of speed of processing by assessing cortical volume and speed of processing scores on the POSIT Double Decision task within a healthy older adult population (N = 186; mean age = 71.70 ± 5.32 years). T1-weighted structural images were collected via a 3T Siemens scanner. The current study shows that less cortical thickness in right temporal, posterior frontal, parietal and occipital lobe structures were significantly associated with poorer Double Decision scores. Notably, these include the lateral orbitofrontal gyrus, precentral gyrus, superior, transverse, and inferior temporal gyrus, temporal pole, insula, parahippocampal gyrus, fusiform gyrus, lingual gyrus, superior and inferior parietal gyrus and lateral occipital gyrus. Such findings suggest that speed of processing performance is associated with a wide array of cortical regions that provide unique contributions to performance on the Double Decision task.
Collapse
Affiliation(s)
- Jessica N Kraft
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Nicole D Evangelista
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Hanna K Hausman
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Emanuel Boutzoukas
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Nicole R Nissim
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily J Van Etten
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Pradyumna K Bharadwaj
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Hyun Song
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Samantha G Smith
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Eric Porges
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Steven DeKosky
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Georg A Hishaw
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Consortium, Tucson, AZ, United States
| | - Samuel Wu
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Michael Marsiske
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Ronald Cohen
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Gene E Alexander
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States.,Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Consortium, Tucson, AZ, United States
| | - Adam J Woods
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Coughlin DG, Phillips JS, Roll E, Peterson C, Lobrovich R, Rascovsky K, Ungrady M, Wolk DA, Das S, Weintraub D, Lee EB, Trojanowski JQ, Shaw LM, Vaishnavi S, Siderowf A, Nasrallah IM, Irwin DJ, McMillan CT. Multimodal in vivo and postmortem assessments of tau in Lewy body disorders. Neurobiol Aging 2020; 96:137-147. [PMID: 33002767 DOI: 10.1016/j.neurobiolaging.2020.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
We compared regional retention of 18F-flortaucipir between 20 patients with Lewy body disorders (LBD), 12 Alzheimer's disease patients with positive amyloid positron emission tomography (PET) scans (AD+Aβ) and 15 healthy controls with negative amyloid PET scans (HC-Aβ). In LBD subjects, we compared the relationship between 18F-flortaucipir retention and cerebrospinal fluid (CSF) tau, cognitive performance, and neuropathological tau at autopsy. The LBD cohort was stratified using an Aβ42 cut-off of 192 pg/mL to enrich for groups likely harboring tau pathology (LBD+Aβ = 11, LBD-Aβ = 9). 18F-flortaucipir retention was higher in LBD+AB than HC-Aβ in five, largely temporal-parietal regions with sparing of medial temporal regions. Higher retention was associated with higher CSF total-tau levels (p = 0.04), poorer domain-specific cognitive performance (p = 0.02-0.04), and greater severity of neuropathological tau in corresponding regions. While 18F-flortaucipir retention in LBD is intermediate between healthy controls and AD, retention relates to cognitive impairment, CSF total-tau, and neuropathological tau. Future work in larger autopsy-validated cohorts is needed to define LBD-specific tau biomarker profiles.
Collapse
Affiliation(s)
- David G Coughlin
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Digital Neuropathology Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Lewy Body Disease Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey S Phillips
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Roll
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Claire Peterson
- Digital Neuropathology Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Lobrovich
- Digital Neuropathology Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Katya Rascovsky
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Molly Ungrady
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sandhitsu Das
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Weintraub
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Michael J. Crescenz VA Medical Center, Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA, USA
| | - Edward B Lee
- Alzheimer's Disease Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Center for Neurodegenerative Disease Research, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie M Shaw
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sanjeev Vaishnavi
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Lewy Body Disease Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Siderowf
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Lewy Body Disease Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ilya M Nasrallah
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Digital Neuropathology Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Lewy Body Disease Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Corey T McMillan
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|