1
|
Cheng L, Wang L, Lin J, Chen J. Exploring the mediating role of self-hate in the relationship between adverse childhood experiences and non-suicidal self-injury among adolescents. J Affect Disord 2024; 373:60-66. [PMID: 39722332 DOI: 10.1016/j.jad.2024.12.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Non-suicidal self-injury (NSSI) has become a serious global problem among adolescents. This study aimed to explore the relationships between adverse childhood experiences, self-hate, and non-suicidal self-injury in adolescents. METHODS A total of 7009 adolescents participated in a survey from August 1 to December 31, 2023. The survey comprised the revised Adverse Childhood Experience (ACE) Questionnaire, Self-Hate Scale, and Adolescent Non-Suicidal Self-Injury Assessment Questionnaire. SPSS 22.0 was utilized for data entry and analysis. Spearman's correlation analysis was employed to examine the relationships between the variables. The bias-corrected nonparametric percentile bootstrap method was used to test the significance of the mediating effect. RESULTS Adverse childhood experiences, self-hate, and non-suicidal self-injury were positively correlated. Adverse childhood experiences directly affected self-injury without obvious tissue damage. Self-hate mediated the relationship between adverse childhood experiences and self-injury without obvious tissue damage. Adverse childhood experiences directly affected self-injury with obvious tissue damage. Self-hate mediated between adverse childhood experiences and self-injury with obvious tissue damage. LIMITATIONS The data were cross-sectional, and the effects of adverse childhood experiences were not immediate. Further, because this was a subjective study, reporting bias was inevitable. Finally, future research should expand the discussion and improve the global relevance of the study. CONCLUSION Self-hate mediates the relationship between adverse childhood experiences and NSSI in adolescents. This study explores the underlying mechanisms and influencing factors of NSSI in adolescents and provides important evidence-based support for the prevention and intervention of NSSI in adolescents with different characteristics to maintain adolescents' physical and mental health. IMPLICATIONS AND CONTRIBUTION Given the close relationships found between adverse childhood experiences, self-hate, and non-suicidal self-injury (NSSI) in adolescents, it is crucial to address adverse childhood experiences to prevent and treat NSSI. Providing necessary psychological support and interventions can help foster positive self-awareness, enhance self-esteem and self-efficacy, reduce self-disgust, and mitigate the negative effects of adverse childhood experiences.
Collapse
Affiliation(s)
- Lingfei Cheng
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Leilei Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Jingyu Lin
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China.
| | - Jingxu Chen
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China.
| |
Collapse
|
2
|
Tsimpolis A, Kalafatakis K, Charalampopoulos I. Recent advances in the crosstalk between the brain-derived neurotrophic factor and glucocorticoids. Front Endocrinol (Lausanne) 2024; 15:1362573. [PMID: 38645426 PMCID: PMC11027069 DOI: 10.3389/fendo.2024.1362573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a key neurotrophin within the brain, by selectively activating the TrkB receptor, exerts multimodal effects on neurodevelopment, synaptic plasticity, cellular integrity and neural network dynamics. In parallel, glucocorticoids (GCs), vital steroid hormones, which are secreted by adrenal glands and rapidly diffused across the mammalian body (including the brain), activate two different groups of intracellular receptors, the mineralocorticoid and the glucocorticoid receptors, modulating a wide range of genomic, epigenomic and postgenomic events, also expressed in the neural tissue and implicated in neurodevelopment, synaptic plasticity, cellular homeostasis, cognitive and emotional processing. Recent research evidences indicate that these two major regulatory systems interact at various levels: they share common intracellular downstream pathways, GCs differentially regulate BDNF expression, under certain conditions BDNF antagonises the GC-induced effects on long-term potentiation, neuritic outgrowth and cellular death, while GCs regulate the intraneuronal transportation and the lysosomal degradation of BDNF. Currently, the BDNF-GC crosstalk features have been mainly studied in neurons, although initial findings show that this crosstalk could be equally important for other brain cell types, such as astrocytes. Elucidating the precise neurobiological significance of BDNF-GC interactions in a tempospatial manner, is crucial for understanding the subtleties of brain function and dysfunction, with implications for neurodegenerative and neuroinflammatory diseases, mood disorders and cognitive enhancement strategies.
Collapse
Affiliation(s)
- Alexandros Tsimpolis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Konstantinos Kalafatakis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Faculty of Medicine and Dentistry (Malta Campus), Queen Mary University of London, Victoria, Malta
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
3
|
Kouba BR, de Araujo Borba L, Borges de Souza P, Gil-Mohapel J, Rodrigues ALS. Role of Inflammatory Mechanisms in Major Depressive Disorder: From Etiology to Potential Pharmacological Targets. Cells 2024; 13:423. [PMID: 38474387 PMCID: PMC10931285 DOI: 10.3390/cells13050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The involvement of central and peripheral inflammation in the pathogenesis and prognosis of major depressive disorder (MDD) has been demonstrated. The increase of pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-18, and TNF-α) in individuals with depression may elicit neuroinflammatory processes and peripheral inflammation, mechanisms that, in turn, can contribute to gut microbiota dysbiosis. Together, neuroinflammation and gut dysbiosis induce alterations in tryptophan metabolism, culminating in decreased serotonin synthesis, impairments in neuroplasticity-related mechanisms, and glutamate-mediated excitotoxicity. This review aims to highlight the inflammatory mechanisms (neuroinflammation, peripheral inflammation, and gut dysbiosis) involved in the pathophysiology of MDD and to explore novel anti-inflammatory therapeutic approaches for this psychiatric disturbance. Several lines of evidence have indicated that in addition to antidepressants, physical exercise, probiotics, and nutraceuticals (agmatine, ascorbic acid, and vitamin D) possess anti-inflammatory effects that may contribute to their antidepressant properties. Further studies are necessary to explore the therapeutic benefits of these alternative therapies for MDD.
Collapse
Affiliation(s)
- Bruna R. Kouba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Laura de Araujo Borba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Pedro Borges de Souza
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S. Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| |
Collapse
|
4
|
Cui T, Liu Z, Li Z, Han Y, Xiong W, Qu Z, Zhang X. Serum brain-derived neurotrophic factor concentration is different between autism spectrum disorders and intellectual disability children and adolescents. J Psychiatr Res 2024; 170:355-360. [PMID: 38215646 DOI: 10.1016/j.jpsychires.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
PURPOSE Recent studies showed that mature brain-derived neurotrophic factor (mBDNF) and its precursor proBDNF are associated with autism spectrum disorders (ASD). Whether their levels are different between ASD and intellectual disability (ID) subjects is not clear. The aim of this study is to compare the serum mBDNF and proBDNF concentration, and mBNDF/proBDNF ratio in ASD and ID volunteers. METHODS Children and adolescents with ASD or ID between the ages of 4 and 22 were recruited in Tianjin, China. Serum mBDNF and proBDNF level were tested and Wechsler Preschool and Primary Scale of Intelligence (WPPSI), Wechsler Intelligence Scale for Children (WISC), and Childhood Autism Rating Scale (CARS) evaluations were conducted. RESULTS Serum mBDNF concentration and the ratio of mBDNF to proBDNF was higher in ASD subjects than that in ID subjects (P = 0.035 and P < 0.001, respectively), while serum proBDNF of ASD participants was lower compared to that of ID participants (P < 0.001). CARS score was positively correlated with serum mBDNF level (r = 0.33, P = 0.004) and m/p ratio (r = 0.39, P < 0.001), and negatively correlated with serum proBDNF level (r = -0.39, <0.001) after adjusting for age and IQ. The AUC of mBDNF, proBDNF, and m/p ratio were 0.741, 0.790, and 0.854, respectively, after adjusted for age and IQ. CONCLUSION Serum mBDNF, proBDNF and m/p ratio were different between ASD and ID group. The three biomarkers displayed good diagnostic values for classification of ASD and ID subjects.
Collapse
Affiliation(s)
- Tingkai Cui
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhao Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhi Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yu Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Wenjuan Xiong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhiyi Qu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
5
|
Lin S, Chen Z, Wu Z, Fei F, Xu Z, Tong Y, Sun W, Wang P. Involvement of PI3K/AKT Pathway in the Rapid Antidepressant Effects of Crocetin in Mice with Depression-Like Phenotypes. Neurochem Res 2024; 49:477-491. [PMID: 37935859 DOI: 10.1007/s11064-023-04051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/22/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
The current first-line antidepressants have the drawback of slow onset, which greatly affects the treatment of depression. Crocetin, one of the main active ingredients in saffron (Crocus sativus L.), has been demonstrated to have antidepressant activities, but whether it has a rapid antidepressant effect remains unclear. This study aimed to investigate the onset, duration, and mechanisms of the rapid antidepressant activity of crocetin (20, 40 and 80 mg/kg, intraperitoneal injection) in male mice subjected to chronic restraint stress (CRS). The results of behavioral tests showed that crocetin exerted rapid antidepressant-like effect in mice with depression-like phenotypes, including rapid normalization of depressive-like behaviors within 3 h, and the effects could be maintained for 2 days. Hematoxylin-eosin (HE) and Nissl staining showed that crocetin ameliorated hippocampal neuroinflammation and nerve injuries in mice with depression-like phenotypes. The levels of inflammatory factors, corticosterone and pro brain-derived neurotrophic factor in crocetin-administrated mice serum were significantly reduced compared with those in the CRS group, as well as the levels of inflammatory factors in hippocampus. What's more, Western blot analyses showed that, compared to CRS-induced mice, the relative levels of mitogen-activated kinase phosphatase 1 and toll-like receptor 4 were significantly reduced after the administration of crocetin, and the relative expressions of extracellular signal-regulated kinase 1/2 (ERK1/2), cAMP-response element binding protein, phosphorylated phosphoinositide 3 kinase (p-PI3K)/PI3K, phosphorylated protein kinase B (p-AKT)/AKT, phosphorylated glycogen synthase kinase 3β (p-GSK3β)/GSK3β, phosphorylated mammalian target of rapamycin (p-mTOR)/mTOR were markedly upregulated. In conclusion, crocetin exerted rapid antidepressant effects via suppressing the expression of inflammatory cytokines and the apoptosis of neuronal cells through PI3K/AKT signaling pathways. The rapid antidepressant effect of crocetin (40 mg/kg) could be maintained for at least 2 days after single treatment.
Collapse
Affiliation(s)
- Susu Lin
- The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, 314001, People's Republic of China
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zhaoruncheng Wu
- School of Biomedical engineering, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Fei Fei
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zijin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
- College of Pharmacy, Jiangxi Medical College, Shangrao, 334000, Jiangxi, People's Republic of China
| | - Yingpeng Tong
- Institute of Natural Medicine and Health Product, School of Advanced Study, Taizhou University, Taizhou, 318000, People's Republic of China
| | - Wenyu Sun
- The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
6
|
Zeng J, Xie Z, Chen L, Peng X, Luan F, Hu J, Xie H, Liu R, Zeng N. Rosmarinic acid alleviate CORT-induced depressive-like behavior by promoting neurogenesis and regulating BDNF/TrkB/PI3K signaling axis. Biomed Pharmacother 2024; 170:115994. [PMID: 38070249 DOI: 10.1016/j.biopha.2023.115994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Rosmarinic acid (RA), a natural phenolic acid compound with a variety of bioactive properties. However, the antidepressant activity and mechanism of RA remain unclear. The aim of this study is to investigate the effects and potential mechanisms of RA on chronic CORT injection induced depression-like behavior in mice. Male C57BL/6 J mice were intraperitoneally injected with CORT (10 mg/kg) and were orally given RA daily (10 or 20 mg/kg) for 21 consecutive days. In vitro, the HT22 cells were exposed to CORT (200 μM) with RA (12.5, 25 or 50 μM) and LY294002 (a PI3K inhibitor) or ANA-12 (a TrkB inhibitor) treatment. The depression-like behavior and various neurobiological changes in the mice and cell injury and levels of target proteins in vitro were subsequently assessed. Here, RA treatment decreased the expression of p-GR/GR, HSP90, FKBP51, SGK-1 in mice hippocampi. Besides, RA increased the average optical density of Nissl bodies and number of dendritic spines in CA3 region, and enhanced Brdu and DCX expression and synaptic transduction in DG region, as well as up-regulated both the BDNF/TrkB/CREB and PI3K/Akt/mTOR signaling. Moreover, RA reduced structural damage and apoptosis in HT22 cells, increased the differentiation and maturation of them. More importantly, LY294002, but not ANA-12, reversed the effect of RA on GR nuclear translocation. Taken together, RA exerted antidepressant activities by modulating the hippocampal glucocorticoid signaling and hippocampal neurogenesis, which related to the BDNF/TrkB/PI3K signaling axis regulating GR nuclear translocation, provide evidence for the application of RA as a candidate for depression.
Collapse
Affiliation(s)
- Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiqiang Xie
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei Luan
- School of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China
| | - Jingwen Hu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongxiao Xie
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rong Liu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
7
|
Ahmad Hariza AM, Mohd Yunus MH, Murthy JK, Wahab S. Clinical Improvement in Depression and Cognitive Deficit Following Electroconvulsive Therapy. Diagnostics (Basel) 2023; 13:diagnostics13091585. [PMID: 37174977 PMCID: PMC10178332 DOI: 10.3390/diagnostics13091585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Electroconvulsive therapy (ECT) is a long-standing treatment choice for disorders such as depression when pharmacological treatments have failed. However, a major drawback of ECT is its cognitive side effects. While numerous studies have investigated the therapeutic effects of ECT and its mechanism, much less research has been conducted regarding the mechanism behind the cognitive side effects of ECT. As both clinical remission and cognitive deficits occur after ECT, it is possible that both may share a common mechanism. This review highlights studies related to ECT as well as those investigating the mechanism of its outcomes. The process underlying these effects may lie within BDNF and NMDA signaling. Edema in the astrocytes may also be responsible for the adverse cognitive effects and is mediated by metabotropic glutamate receptor 5 and the protein Homer1a.
Collapse
Affiliation(s)
- Ahmad Mus'ab Ahmad Hariza
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Jaya Kumar Murthy
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Suzaily Wahab
- Department of Psychiatry, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
8
|
Higashijima T, Shirozu H, Saitsu H, Sonoda M, Fujita A, Masuda H, Yamamoto T, Matsumoto N, Kameyama S. Incomplete hippocampal inversion in patients with mutations in genes involved in sonic hedgehog signaling. Heliyon 2023; 9:e14712. [PMID: 37012904 PMCID: PMC10066535 DOI: 10.1016/j.heliyon.2023.e14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Sonic hedgehog (Shh) signaling pathways are known to play an important role in the morphological development of the hippocampus in vivo, but their actual roles in humans have not been clarified. Hypothalamic hamartoma (HH) is known to be associated with germline or somatic gene mutations of Shh signaling. We hypothesized that patients with HH and mutations of Shh-related genes also show hippocampal maldevelopment and an abnormal hippocampal infolding angle (HIA). We analyzed 45 patients (age: 1-37 years) with HH who underwent stereotactic radiofrequency thermocoagulation and found Shh-related gene mutations in 20 patients. In addition, 44 pediatric patients without HH (age: 2-25 years) who underwent magnetic resonance imaging (MRI) examinations under the same conditions during the same period were included in this study as a control group. HIA evaluated on MRI was compared between patients with gene mutations and the control group. The median HIA at the cerebral peduncle slice in patients with the gene mutation was 74.36° on the left and 76.11° on the right, and these values were significantly smaller than the corresponding values in the control group (80.46° and 80.56°, respectively, p < 0.01). Thus, mutations of Shh-related genes were correlated to incomplete hippocampal inversion. The HIA, particularly at the cerebral peduncle slice, is a potential indicator of abnormalities of the Shh-signaling pathway.
Collapse
|
9
|
Forys WJ, Tokuhama-Espinosa T. The Athlete's Paradox: Adaptable Depression. Sports (Basel) 2022; 10:105. [PMID: 35878116 PMCID: PMC9320389 DOI: 10.3390/sports10070105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
We proposed that an athlete's depressive symptoms may be different from the general population in etiology if considered from the context of a depressive disorder. By shifting focus from a limited notion of symptoms onto a comprehensive model of depression, the full scope of the phenomenon becomes clearer. This paper investigated the relationship between neurotransmitters and allostatic load to explain the incidence of depression among elite athletes. This literature review extensively analyzed exercise-induced neurohormonal imbalance resulting in depressive states among athletes. The research revealed that 5-HTTLPR polymorphism, brain-derived neurotrophic factor (BDNF), extensive psychological demands, social stigma, and overtraining syndrome (OTS) may all contribute to a unique version of depression. The research revealed that the biological standards of athletes differ from those of non-athletes, to the point that the new model may be useful, thereby introducing the new term "Adaptable Depression (AD)" to the literature. This framework suggests a new direction for future research to precisely measure the neurotransmitter-related brain changes that result in "Adaptable Depression" in athletes and to establish a better understanding of the depressive tipping point.
Collapse
Affiliation(s)
- Weronika Jasmina Forys
- Division of Continuing Education, Harvard University, 51 Brattle Street, Cambridge, MA 01238, USA
| | - Tracey Tokuhama-Espinosa
- Faculty of Arts and Sciences, Extension School, Harvard University, 51 Brattle Street, Cambridge, MA 01238, USA;
| |
Collapse
|
10
|
Dou SH, Cui Y, Huang SM, Zhang B. The Role of Brain-Derived Neurotrophic Factor Signaling in Central Nervous System Disease Pathogenesis. Front Hum Neurosci 2022; 16:924155. [PMID: 35814950 PMCID: PMC9263365 DOI: 10.3389/fnhum.2022.924155] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have found abnormal levels of brain-derived neurotrophic factor (BDNF) in a variety of central nervous system (CNS) diseases (e.g., stroke, depression, anxiety, Alzheimer's disease, and Parkinson's disease). This suggests that BDNF may be involved in the pathogenesis of these diseases. Moreover, regulating BDNF signaling may represent a potential treatment for such diseases. With reference to recent research papers in related fields, this article reviews the production and regulation of BDNF in CNS and the role of BDNF signaling disorders in these diseases. A brief introduction of the clinical application status of BDNF is also provided.
Collapse
Affiliation(s)
- Shu-Hui Dou
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Cui
- Department of Veterinary Medicine, College of Agriculture, Hainan University, Haikou, China
| | - Shu-Ming Huang
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bo Zhang
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
11
|
Jin T, Zhang Y, Botchway BOA, Zhang J, Fan R, Zhang Y, Liu X. Curcumin can improve Parkinson's disease via activating BDNF/PI3k/Akt signaling pathways. Food Chem Toxicol 2022; 164:113091. [PMID: 35526734 DOI: 10.1016/j.fct.2022.113091] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023]
Abstract
Parkinson's disease is a common progressive neurodegenerative disease, and presently has no curative agent. Curcumin, as one of the natural polyphenols, has great potential in neurodegenerative diseases and other different pathological settings. The brain-derived neurotrophic factor (BDNF) and phosphatidylinositol 3 kinase (PI3k)/protein kinase B (Akt) signaling pathways are significantly involved nerve regeneration and anti-apoptotic activities. Currently, relevant studies have confirmed that curcumin has an optimistic impact on neuroprotection via regulating BDNF and PI3k/Akt signaling pathways in neurodegenerative disease. Here, we summarized the relationship between BDNF and PI3k/Akt signaling pathway, the main biological functions and neuroprotective effects of curcumin via activating BDNF and PI3k/Akt signaling pathways in Parkinson's disease. This paper illustrates that curcumin, as a neuroprotective agent, can delay the progression of Parkinson's disease by protecting nerve cells.
Collapse
Affiliation(s)
- Tian Jin
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Zhang
- Department of Pharmacology, Medical College, Shaoxing University, Zhejiang, China
| | - Ruihua Fan
- School of Life Science, Shaoxing University, Zhejiang, China
| | - Yufeng Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
12
|
Lin L, Herselman MF, Zhou XF, Bobrovskaya L. Effects of corticosterone on BDNF expression and mood behaviours in mice. Physiol Behav 2022; 247:113721. [DOI: 10.1016/j.physbeh.2022.113721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/01/2022] [Accepted: 01/20/2022] [Indexed: 01/15/2023]
|
13
|
Lin S, Li Q, Jiang S, Xu Z, Jiang Y, Liu L, Jiang J, Tong Y, Wang P. Crocetin ameliorates chronic restraint stress-induced depression-like behaviors in mice by regulating MEK/ERK pathways and gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113608. [PMID: 33242618 DOI: 10.1016/j.jep.2020.113608] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This study aimed at determining the effects of saffron on depression as well as its neuroprotective and pharmacological effects on the intestinal function of crocetin in mice exposed to chronic restraint stress. MATERIALS AND METHODS Chronic stress was induced in two-week-old ICR mice by immobilizing them for 6 h per day for 28 days. The mice were orally administered with crocetin (20, 40, 80 mg/kg), fluoxetine (20 mg/kg) or distilled water. The treatments were administered daily and open field and tail suspension tests were performed. Immunofluorescent and Western-bolt (WB) assays were conducted to determine the expression of mitogen-activated protein kinase phosphatase-1 (MKP-1), the precursor of brain-derived neurotrophic factor (proBDNF), extracellular signal-regulated kinase 1/2 (ERK1/2), phosphorylated cAMP response element-binding (CREB) protein in the hippocampus. Serum levels of dopamine (DA), proBDNF, MKP-1 and CREB were measured by Elisa kits. High-throughput sequencing was carried out to analyze the composition of intestinal microbiota. RESULTS Crocetin ameliorated depressive-like behaviors caused by chronic restraint stress-induced depressive mice. It significantly attenuated the elevated levels of MKP-1, proBDNF, alanine transaminase, aspartate transaminase and increased the serum levels of DA as well as CREB. Histopathological analysis showed that crocetin suppressed hippocampus injury in restraint stress mice by protecting neuronal cells. Immunofluorescent and WB analysis showed elevated expression levels of ERK1/2, CREB and inhibited expression levels of MKP-1, proBDNF in the hippocampus. The intestinal ecosystem of the crocetin group partially recovered and was close to the control group. CONCLUSIONS Crocetin has neuroprotective properties and ameliorates the effects of stress-associated brain damage by regulating the MKP-1-ERK1/2-CREB signaling and intestinal ecosystem.
Collapse
Affiliation(s)
- Susu Lin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qiaoqiao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Shanshan Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zijin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yu Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ling Liu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jinyan Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yingpeng Tong
- Institute of Natural Medicine and Health Products, School of Advanced Study, Taizhou University, Taizhou, 318000, People's Republic of China
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
14
|
Corticosteroid-binding-globulin (CBG)-deficient mice show high pY216-GSK3β and phosphorylated-Tau levels in the hippocampus. PLoS One 2021; 16:e0246930. [PMID: 33592009 PMCID: PMC7886218 DOI: 10.1371/journal.pone.0246930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
Corticosteroid-binding globulin (CBG) is the specific carrier of circulating glucocorticoids, but evidence suggests that it also plays an active role in modulating tissue glucocorticoid activity. CBG polymorphisms affecting its expression or affinity for glucocorticoids are associated with chronic pain, chronic fatigue, headaches, depression, hypotension, and obesity with an altered hypothalamic pituitary adrenal axis. CBG has been localized in hippocampus of humans and rodents, a brain area where glucocorticoids have an important regulatory role. However, the specific CBG function in the hippocampus is yet to be established. The aim of this study was to investigate the effect of the absence of CBG on hippocampal glucocorticoid levels and determine whether pathways regulated by glucocorticoids would be altered. We used cbg-/- mice, which display low total-corticosterone and high free-corticosterone blood levels at the nadir of corticosterone secretion (morning) and at rest to evaluate the hippocampus for total- and free-corticosterone levels; 11β-hydroxysteroid dehydrogenase expression and activity; the expression of key proteins involved in glucocorticoid activity and insulin signaling; microtubule-associated protein tau phosphorylation, and neuronal and synaptic function markers. Our results revealed that at the nadir of corticosterone secretion in the resting state the cbg-/- mouse hippocampus exhibited slightly elevated levels of free-corticosterone, diminished FK506 binding protein 5 expression, increased corticosterone downstream effectors and altered MAPK and PI3K pathway with increased pY216-GSK3β and phosphorylated tau. Taken together, these results indicate that CBG deficiency triggers metabolic imbalance which could lead to damage and long-term neurological pathologies.
Collapse
|
15
|
Wang M, Xie Y, Qin D. Proteolytic cleavage of proBDNF to mBDNF in neuropsychiatric and neurodegenerative diseases. Brain Res Bull 2020; 166:172-184. [PMID: 33202257 DOI: 10.1016/j.brainresbull.2020.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in pathophysiological mechanisms in neuropsychiatric diseases, including depression, anxiety, and schizophrenia (SZ), as well as neurodegenerative diseases like Parkinson's disease (PD) and Alzheimer's disease (AD). An imbalance or insufficient pro-brain-derived neurotrophic factor (proBDNF) transformation into mature BDNF (mBDNF) is potentially critical to the disease pathogenesis by impairing neuronal plasticity as suggested by results from many studies. Thus, promoting proBDNF transformation into mBDNF is therefore hypothesized as beneficial for the treatment of neuropsychiatric and neurodegenerative diseases. ProBDNF is proteolytically cleaved into the mBDNF by intracellular furin/proprotein convertases and extracellular proteases (plasmin/matrix metallopeptidases). This article reviews the mechanisms of the conversion of proBDNF to mBDNF and the research status of intracellular/extracellular proteolytic proteases for neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mingyue Wang
- School of Traditional Chinese Pharmacy, Yunnan University of Chinese Medicine, Yunnan 650500, China
| | - Yuhuan Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Yunnan 650500, China.
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Yunnan 650500, China.
| |
Collapse
|
16
|
Ushakova VM, Morozova AY, Reznik AM, Kostyuk GP, Chekhonin VP. Molecular Biological Aspects of Depressive Disorders: A Modern View. Mol Biol 2020. [DOI: 10.1134/s0026893320050118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Hagar M, Roman G, Eitan O, Noam BY, Abrham Z, Benjamin S. A Tellurium-Based Small Immunomodulatory Molecule Ameliorates Depression-Like Behavior in Two Distinct Rat Models. Neuromolecular Med 2020; 22:437-446. [PMID: 32638207 DOI: 10.1007/s12017-020-08603-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/22/2020] [Indexed: 01/29/2023]
Abstract
Major depressive disorder (MDD) is a leading cause of morbidity, and the fourth leading cause of disease burden worldwide. While MDD is a treatable condition for many individuals, others suffer from treatment-resistant depression (TRD). Here, we suggest the immunomodulatory compound AS101 as novel therapeutic alternative. We previously showed in animal models that AS101 reduces anxiety-like behavior and elevates levels of the brain-derived neurotrophic factor (BDNF), a protein that has a key role in the pathophysiology of depression. To explore the potential antidepressant properties of AS101, we used the extensively characterized chronic mild stress (CMS) model, and the depressive rat line (DRL Finally, in Exp. 3 to attain insight into the mechanism we knocked down BDNF in the hippocampus, and demonstrated that the beneficial effect of AS101 was abrogated. Together with the previously established safety profile of AS101 in humans, these results may represent the first step towards the development of a novel treatment option for MDD and TRD.
Collapse
Affiliation(s)
- Moshe Hagar
- The Mina & Everard Goodman Faculty of Life Sciences, The Safdiè AIDS and Immunology Research Center, C.A.I.R. Institute, Bar-Ilan University, Ramat Gan, Israel.,Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Gersner Roman
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Okun Eitan
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Barnea-Ygael Noam
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Zangen Abrham
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Sredni Benjamin
- The Mina & Everard Goodman Faculty of Life Sciences, The Safdiè AIDS and Immunology Research Center, C.A.I.R. Institute, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
18
|
Wu Y, Deng F, Wang J, Liu Y, Zhou W, Qu L, Cheng M. Intensity-dependent effects of consecutive treadmill exercise on spatial learning and memory through the p-CREB/BDNF/NMDAR signaling in hippocampus. Behav Brain Res 2020; 386:112599. [PMID: 32184158 DOI: 10.1016/j.bbr.2020.112599] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022]
Abstract
Exercise is the most recommended non-pharmacological intervention to improve neurocognitive functions under physiological and pathological conditions. However, it remains to be elucidated concerning the influence and the underlying neurological molecular mechanism of different exercise intensity on cognitive function. In this study, we aimed to explore the effects of exercise intensity on spatial learning and memory, as well as the regulation of brain-derived neurotrophic factor (BDNF)/p-CREB/NMDAR signal. In the research, low-intensity consecutive treadmill (LICT) and high-intensity consecutive treadmill (HICT) were implied to rats for 8 weeks. We found that the performances in the Morris water maze were improved in the LICT group, while reduced in the HICT group as compared with the sedentary rats. Moreover, the expression of BDNF mRNA, phosphorylation cAMP-response-element binding protein (p-CREB), mature BDNF (mBDNF), tropomyosin receptor kinase B (TrkB), tissue plasminogen activator (t-PA), and NR2B proteins was increased, whereas the expression of precursor BDNF (proBDNF) and pan-neurotrophin receptor 75 (p75NTR) proteins was decreased in the hippocampus of LICT group compared with the sedentary rats. On the contrary, the expression of proteins and mRNA aforementioned in the LICT group showed a reversed tendency in the hippocampus of HICT rats. These findings suggest that the consecutive low-intensity exercise and high-intensity exercise exert different effects on spatial learning and memory by oppositely regulating the mutual stimulation of p-CREB and BDNF mRNA feedback loop, as well as the t-PA/BDNF/NMDAR which is the post-translation cascades of BDNF signaling.
Collapse
Affiliation(s)
- Yulong Wu
- College of Basic Medicine, Binzhou Medical University, Guanhai Road 346, 264003 Yantai, China
| | - Fangfang Deng
- Institute of Health and Disease Management, Binzhou Medical University, Guanhai Road 346, 264003 Yantai, China
| | - Jian Wang
- Affiliated Hospital of Binzhou Medical University, Huanghe Road 661, 256603 Binzhou, China
| | - Yaping Liu
- Institute of Health and Disease Management, Binzhou Medical University, Guanhai Road 346, 264003 Yantai, China
| | - Wei Zhou
- Institute of Health and Disease Management, Binzhou Medical University, Guanhai Road 346, 264003 Yantai, China
| | - Lei Qu
- College of Basic Medicine, Binzhou Medical University, Guanhai Road 346, 264003 Yantai, China
| | - Mei Cheng
- Institute of Health and Disease Management, Binzhou Medical University, Guanhai Road 346, 264003 Yantai, China.
| |
Collapse
|
19
|
Liu Y, Zou GJ, Tu BX, Hu ZL, Luo C, Cui YH, Xu Y, Li F, Dai RP, Bi FF, Li CQ. Corticosterone Induced the Increase of proBDNF in Primary Hippocampal Neurons Via Endoplasmic Reticulum Stress. Neurotox Res 2020; 38:370-384. [PMID: 32378057 DOI: 10.1007/s12640-020-00201-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
Major depression disorder is one of the most common psychiatric disorders that greatly threaten the mental health of a large population worldwide. Previous studies have shown that endoplasmic reticulum (ER) stress plays an important role in the pathophysiology of depression, and current research suggests that brain-derived neurotrophic factor precursor (proBDNF) is involved in the development of depression. However, the relationship between ER and proBDNF in the pathophysiology of depression is not well elucidated. Here, we treated primary hippocampal neurons of mice with corticosterone (CORT) and evaluated the relationship between proBDNF and ERS. Our results showed that CORT induced ERS and upregulated the expression of proBDNF and its receptor, Follistatin-like protein 4 (FSTL4), which contributed to significantly decreased neuronal viability and expression of synaptic-related proteins including NR2A, PSD95, and SYN. Anti-proBDNF neutralization and ISRIB (an inhibitor of the ERS) treatment, respective ly, protected neuronal viabilities and increased the expression of synaptic-related proteins in corticosterone-exposed neurons. ISRIB treatment reduced the expression of proBDNF and FSTL4, whereas anti-proBDNF treatment did not affect ERS markers (Grp78, p-PERK, ATF4) expression. Our study presented evidence that CORT-induced ERS negatively regulated the neuronal viability and the level of synaptic-related protein of primary neurons via the proBDNF/FSTL4 pathway.
Collapse
Affiliation(s)
- Yu Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China
| | - Guang-Jing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China
| | - Bo-Xuan Tu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Cong Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Fang-Fang Bi
- Department of Neurology, Xiang Ya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China.
| |
Collapse
|
20
|
Shin YK, Hsieh YS, Han AY, Kwon S, Seol GH. Sex differences in cardio-metabolic and cognitive parameters in rats with high-fat diet-induced metabolic dysfunction. Exp Biol Med (Maywood) 2020; 245:977-982. [PMID: 32299227 DOI: 10.1177/1535370220920552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
IMPACT STATEMENT Excessive dietary fat intake plays important roles in the process of metabolic dysfunction and increases susceptibilities to chronic diseases such as hypertension. Few previous studies, however, have accurately reflected real-world medical conditions. In addition, studies performed to date have not examined detailed sex-differences in cardio-metabolic and cognitive parameters, precluding the development of sex-tailored interventions for patients with metabolic dysfunction who are susceptible to hypertension and cognitive impairment. In this study, using rats with HFD-induced metabolic dysfunction that made them susceptible to hypertension and cognitive impairment, we demonstrate that male rats show greater impairment of acetylcholine-induced vasorelaxation of the carotid artery and systolic blood pressure compared to female rats. These findings may provide a basis for the early detection of carotid artery dysfunction and systolic blood pressure increase, especially in males.
Collapse
Affiliation(s)
- You Kyoung Shin
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Yu Shan Hsieh
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - A Young Han
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Soonho Kwon
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
21
|
Yu Z, Wang J, Wang H, Wang J, Cui J, Junzhang P. Effects of Sevoflurane Exposure During Late Pregnancy on Brain Development and Beneficial Effects of Enriched Environment on Offspring Cognition. Cell Mol Neurobiol 2020; 40:1339-1352. [DOI: 10.1007/s10571-020-00821-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
|
22
|
The cellular and molecular basis of major depressive disorder: towards a unified model for understanding clinical depression. Mol Biol Rep 2019; 47:753-770. [PMID: 31612411 DOI: 10.1007/s11033-019-05129-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
Major depressive disorder (MDD) is considered a serious public health issue that adversely impacts an individual's quality of life and contributes significantly to the global burden of disease. The clinical heterogeneity that exists among patients limits the ability of MDD to be accurately diagnosed and currently, a symptom-based approach is utilized in many cases. Due to the complex nature of this disorder, and lack of precise knowledge regarding the pathophysiology, effective management is challenging. The aetiology and pathophysiology of MDD remain largely unknown given the complex genetic and environmental interactions that are involved. Nonetheless, the aetiology and pathophysiology of MDD have been the subject of extensive research, and there is a vast body of literature that exists. Here we overview the key hypotheses that have been proposed for the neurobiology of MDD and highlight the need for a unified model, as many of these pathways are integrated. Key pathways discussed include neurotransmission, neuroinflammation, clock gene machinery pathways, oxidative stress, role of neurotrophins, stress response pathways, the endocannabinoid and endovanilloid systems, and the endogenous opioid system. We also describe the current management of MDD, and emerging novel therapies, with particular focus on patients with treatment-resistant depression (TRD).
Collapse
|
23
|
Zong MM, Zhou ZQ, Ji MH, Jia M, Tang H, Yang JJ. Activation of β2-Adrenoceptor Attenuates Sepsis-Induced Hippocampus-Dependent Cognitive Impairments by Reversing Neuroinflammation and Synaptic Abnormalities. Front Cell Neurosci 2019; 13:293. [PMID: 31354429 PMCID: PMC6636546 DOI: 10.3389/fncel.2019.00293] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/17/2019] [Indexed: 12/26/2022] Open
Abstract
Sepsis-associated encephalopathy induces cognitive dysfunction via mechanisms that commonly involve neuroinflammation and synaptic plasticity impairment of the hippocampus. The β2-adrenoceptor (β2-AR) is a G-protein coupled receptor that regulates immune response and synaptic plasticity, whereas its dysfunction has been implicated in various neurodegenerative diseases. Thus, we hypothesized abnormal β2-AR signaling is involved in sepsis-induced cognitive impairment. In the present study, C57BL/6 mice were subjected to cecal ligation and puncture (CLP) to mimic the clinical human sepsis-associated encephalopathy. The levels of hippocampal β2-AR, proinflammatory cytokines tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), IL-6, cAMP-response element binding protein (CREB), brain derived neurotrophic factor (BDNF), post-synaptic density protein 95 (PSD95), and NMDA receptor 2 B subtypes (GluN2B) were determined at 6, 12, 24 h and 7 and 16 days after CLP. For the interventional study, mice were treated with β2-AR agonist clenbuterol in two ways: early treatment (immediately following CLP) and delayed treatment (on the 8th day following CLP). Neurobehavioral performances were assessed by open field and fear conditioning tests. Here, we found that hippocampal β2-AR expression was significantly decreased starting from 12 h and persisted until 16 days following CLP. Besides, sepsis mice also exhibited increasing neuroinflammation, down-regulated CREB/BDNF, decreasing PSD95 and GluN2B expression, and displayed hippocampus-dependent cognitive impairments. Notably, early clenbuterol treatment alleviated sepsis-induced cognitive deficits by polarizing microglia toward an anti-inflammatory phenotype, reducing proinflammatory cytokines including IL-1β, TNF-α, and up-regulating CREB/BDNF, PSD95, and GluN2B. Intriguingly, delayed clenbuterol treatment also improved cognitive impairments by normalization of hippocampal CREB/BDNF, PSD95, and GluN2B. In summary, our results support the beneficial effects of both early and delayed clenbuterol treatment, which suggests that activation of β2-AR has a translational value in sepsis-associated organ dysfunction including cognitive impairments.
Collapse
Affiliation(s)
- Man-Man Zong
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Zhi-Qiang Zhou
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Mu-Huo Ji
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Min Jia
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hui Tang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|