1
|
Hestehave S, Florea R, Fedorec AJ, Jevic M, Mercy L, Wright A, Morgan OB, Brown LA, Peirson SN, Géranton SM. Differences in multidimensional phenotype of 2 joint pain models link early weight-bearing deficit to late depressive-like behavior in male mice. Pain Rep 2024; 9:e1213. [PMID: 39574483 PMCID: PMC11581759 DOI: 10.1097/pr9.0000000000001213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Chronic pain is a hallmark of joint diseases. Although these conditions are often accompanied by negative affective symptoms including depression and anxiety, these comorbidities are rarely studied simultaneously in preclinical models where they are poorly characterised. Moreover, how affective symptoms relate to the more obvious sensory and functional symptoms of joint diseases is not well understood. Here, we have addressed these gaps in knowledge. Methods We used 2 preclinical models of joint pain in male mice and an array of behavioural and molecular assays to fully characterise functional deficits, mechanical hypersensitivity, affective symptoms, and nociceptive signaling in joint pain, as well as investigate their relationship. Results Ankle joint inflammation and knee osteoarthritis induced mechanical hypersensitivity that lasted at least 3 months and that was not different between the 2 models on most days. However, the models presented with markedly different weight-bearing deficits, molecular profiles, and affective outcomes. Specifically, only the model of knee osteoarthritis was accompanied by an increase in negative affective behaviors, including early changes in circadian patterns, persistent cognitive impairments, and late development of depressive-like behavior. Importantly, the early weight-bearing deficit strongly correlated with the emotional profiles and the hypersensitivity at 3 months, suggesting that early objective functional measures may be used as predictors of long-term affective symptoms and pain. Conclusion The predictive value of early weight-bearing deficit could prove useful in the clinical setting for adapted therapeutic approaches for the prevention of emotional comorbidities and better pain management for patients with joint pain.
Collapse
Affiliation(s)
- Sara Hestehave
- Department of Cell & Developmental Biology, University College London, London, United Kingdom. Hestehave is now with the Department of Experimental Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Roxana Florea
- Department of Cell & Developmental Biology, University College London, London, United Kingdom. Hestehave is now with the Department of Experimental Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Alexander J.H. Fedorec
- Department of Cell & Developmental Biology, University College London, London, United Kingdom. Hestehave is now with the Department of Experimental Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Maria Jevic
- Department of Cell & Developmental Biology, University College London, London, United Kingdom. Hestehave is now with the Department of Experimental Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Lucile Mercy
- Department of Cell & Developmental Biology, University College London, London, United Kingdom. Hestehave is now with the Department of Experimental Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Annia Wright
- Department of Cell & Developmental Biology, University College London, London, United Kingdom. Hestehave is now with the Department of Experimental Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Oakley B. Morgan
- Department of Cell & Developmental Biology, University College London, London, United Kingdom. Hestehave is now with the Department of Experimental Medicine, University of Copenhagen, Copenhagen N, Denmark
| | | | - Stuart N. Peirson
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - Sandrine M. Géranton
- Department of Cell & Developmental Biology, University College London, London, United Kingdom. Hestehave is now with the Department of Experimental Medicine, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
2
|
Maiarù M, Leese C, Silva-Hucha S, Fontana-Giusti S, Tait L, Tamagnini F, Davletov B, Hunt SP. Substance P-Botulinum Mediates Long-term Silencing of Pain Pathways that can be Re-instated with a Second Injection of the Construct in Mice. THE JOURNAL OF PAIN 2024; 25:104466. [PMID: 38218509 DOI: 10.1016/j.jpain.2024.01.331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Chronic pain presents an enormous personal and economic burden and there is an urgent need for effective treatments. In a mouse model of chronic neuropathic pain, selective silencing of key neurons in spinal pain signalling networks with botulinum constructs resulted in a reduction of pain behaviours associated with the peripheral nerve. However, to establish clinical relevance it was important to know how long this silencing period lasted. Now, we show that neuronal silencing and the concomitant reduction of neuropathic mechanical and thermal hypersensitivity lasts for up to 120d following a single injection of botulinum construct. Crucially, we show that silencing and analgesia can then be reinstated with a second injection of the botulinum conjugate. Here we demonstrate that single doses of botulinum-toxin conjugates are a powerful new way of providing long-term neuronal silencing and pain relief. PERSPECTIVE: This research demonstrates that botulinum-toxin conjugates are a powerful new way of providing long-term neuronal silencing without toxicity following a single injection of the conjugate and have the potential for repeated dosing when silencing reverses.
Collapse
Affiliation(s)
- Maria Maiarù
- Department of Pharmacology, School of Pharmacy, University of Reading; Room 109, Hopkins Building, Whiteknights Campus, Reading RG6 6UB, United Kingdom
| | - Charlotte Leese
- Department of Biomedical Science, Firth Court, University of Sheffield; Sheffield S10 2TN
| | - Silvia Silva-Hucha
- Department of Cell and Developmental Biology, Medawar Building, University College London; Gower Street, London, WC1E 6BT, United Kingdom
| | - Sofia Fontana-Giusti
- Department of Pharmacology, School of Pharmacy, University of Reading; Room 109, Hopkins Building, Whiteknights Campus, Reading RG6 6UB, United Kingdom
| | - Luke Tait
- Cardiff University Brain Research Imaging Centre, Cardiff University; Cardiff, United Kingdom
| | - Francesco Tamagnini
- Department of Pharmacology, School of Pharmacy, University of Reading; Room 109, Hopkins Building, Whiteknights Campus, Reading RG6 6UB, United Kingdom
| | - Bazbek Davletov
- Department of Biomedical Science, Firth Court, University of Sheffield; Sheffield S10 2TN
| | - Stephen P Hunt
- Department of Cell and Developmental Biology, Medawar Building, University College London; Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
3
|
Ferdousi MI, Calcagno P, Sanchez C, Smith KL, Kelly JP, Roche M, Finn DP. Characterization of pain-, anxiety-, and cognition-related behaviors in the complete Freund's adjuvant model of chronic inflammatory pain in Wistar-Kyoto rats. FRONTIERS IN PAIN RESEARCH 2023; 4:1131069. [PMID: 37113211 PMCID: PMC10126329 DOI: 10.3389/fpain.2023.1131069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Chronic pain is often associated with comorbid anxiety and cognitive dysfunction, negatively affecting therapeutic outcomes. The influence of genetic background on such interactions is poorly understood. The stress-hyperresponsive Wistar-Kyoto (WKY) rat strain, which models aspects of anxiety and depression, displays enhanced sensitivity to noxious stimuli and impaired cognitive function, compared with Sprague-Dawley (SD) counterparts. However, pain- and anxiety-related behaviors and cognitive impairment following induction of a persistent inflammatory state have not been investigated simultaneously in the WKY rats. Here we compared the effects of complete Freund's adjuvant (CFA)-induced persistent inflammation on pain-, negative affect- and cognition-related behaviors in WKY vs. SD rats. Methods Male WKY and SD rats received intra-plantar injection of CFA or needle insertion (control) and, over the subsequent 4 weeks, underwent behavioral tests to assess mechanical and heat hypersensitivity, the aversive component of pain, and anxiety- and cognition-related behaviors. Results The CFA-injected WKY rats exhibited greater mechanical but similar heat hypersensitivity compared to SD counterparts. Neither strain displayed CFA-induced pain avoidance or anxiety-related behavior. No CFA-induced impairment was observed in social interaction or spatial memory in WKY or SD rats in the three-chamber sociability and T-maze tests, respectively, although strain differences were apparent. Reduced novel object exploration time was observed in CFA-injected SD, but not WKY, rats. However, CFA injection did not affect object recognition memory in either strain. Conclusions These data indicate exacerbated baseline and CFA-induced mechanical hypersensitivity, and impairments in novel object exploration, and social and spatial memory in WKY vs. SD rats.
Collapse
Affiliation(s)
- Mehnaz I. Ferdousi
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Patricia Calcagno
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Physiology, School of Medicine, University of Galway, Galway, Ireland
| | | | | | - John P. Kelly
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Michelle Roche
- Centre for Pain Research, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Physiology, School of Medicine, University of Galway, Galway, Ireland
| | - David P. Finn
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Correspondence: David P. Finn
| |
Collapse
|
4
|
Persistent muscle hyperalgesia after adolescent stress is exacerbated by a mild-nociceptive input in adulthood and is associated with microglia activation. Sci Rep 2022; 12:18324. [PMID: 36316425 PMCID: PMC9622712 DOI: 10.1038/s41598-022-21808-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
Non-specific low back pain (LBP) is a major global disease burden and childhood adversity predisposes to its development. The mechanisms are largely unknown. Here, we investigated if adversity in young rats augments mechanical hyperalgesia and how spinal cord microglia contribute to this. Adolescent rats underwent restraint stress, control animals were handled. In adulthood, all rats received two intramuscular injections of NGF/saline or both into the lumbar multifidus muscle. Stress induced in rats at adolescence lowered low back pressure pain threshold (PPT; p = 0.0001) and paw withdrawal threshold (PWT; p = 0.0007). The lowered muscle PPT persisted throughout adulthood (p = 0.012). A subsequent NGF in adulthood lowered only PPT (d = 0.87). Immunohistochemistry revealed changes in microglia morphology: stress followed by NGF induced a significant increase in ameboid state (p < 0.05). Repeated NGF injections without stress showed significantly increased cell size in surveilling and bushy states (p < 0.05). Thus, stress in adolescence induced persistent muscle hyperalgesia that can be enhanced by a mild-nociceptive input. The accompanying morphological changes in microglia differ between priming by adolescent stress and by nociceptive inputs. This novel rodent model shows that adolescent stress is a risk factor for the development of LBP in adulthood and that morphological changes in microglia are signs of spinal mechanisms involved.
Collapse
|
5
|
Liss A, Hellman A, Patel VJ, Maietta T, Byraju K, Trowbridge R, Acheta J, Panse D, Srikanthan A, Neubauer P, Burdette C, Ghoshal G, Williams E, Qian J, Pilitsis JG. Low Intensity Focused Ultrasound Increases Duration of Anti-Nociceptive Responses in Female Common Peroneal Nerve Injury Rats. Neuromodulation 2022; 25:504-510. [PMID: 35667768 DOI: 10.1111/ner.13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Chronic pain affects 7%-10% of Americans, occurs more frequently and severely in females, and available treatments have been shown to have less efficacy in female patients. Preclinical models addressing sex-specific treatment differences in the treatment of chronic pain have been limited. Here we examine the sex-specific effects of low intensity focused ultrasound (liFUS) in a modified sciatic nerve injury (SNI) model. MATERIALS AND METHODS A modified SNI performed by ligating the common peroneal nerve (CPN) was used to measure sensory, behavioral pain responses, and nerve conduction studies in female and male rats, following liFUS of the L5 dorsal root ganglion. RESULTS Using the same dose of liFUS in females and males of the same weight, CPN latency immediately after treatment was increased for 50 min in females compared to 25 min in males (p < 0.001). Improvements in mechanical pain thresholds after liFUS lasted significantly longer in females (seven days; p < 0.05) compared to males (three days; p < 0.05). In females, there was a significant improvement in depression-like behavior as a result of liFUS (N = 5; p < 0.01); however, because males never developed depression-like behavior there was no change after liFUS treatment. CONCLUSIONS Neuromodulation with liFUS has a greater effect in female rats on CPN latency, mechanical allodynia duration, and depression-like behavior. In order to customize neuromodulatory techniques for different patient phenotypes, it is essential to understand how they may alter sex-specific pathophysiologies.
Collapse
Affiliation(s)
- Andrea Liss
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Abigail Hellman
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Vraj J Patel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Teresa Maietta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Kanakaharini Byraju
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Rachel Trowbridge
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Jenica Acheta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Drishti Panse
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Adithya Srikanthan
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | | | | | | | | | - Jiang Qian
- Department of Pathology, Albany Medical Center, Albany, NY, USA
| | - Julie G Pilitsis
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA; Department of Neurosurgery, Albany Medical Center, Albany, NY, USA.
| |
Collapse
|
6
|
Carta G, Fornasari BE, Fregnan F, Ronchi G, De Zanet S, Muratori L, Nato G, Fogli M, Gambarotta G, Geuna S, Raimondo S. Neurodynamic Treatment Promotes Mechanical Pain Modulation in Sensory Neurons and Nerve Regeneration in Rats. Biomedicines 2022; 10:biomedicines10061296. [PMID: 35740318 PMCID: PMC9220043 DOI: 10.3390/biomedicines10061296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Somatic nerve injuries are a rising problem leading to disability associated with neuropathic pain commonly reported as mechanical allodynia (MA) and hyperalgesia. These symptoms are strongly dependent on specific processes in the dorsal root ganglia (DRG). Neurodynamic treatment (NDT), consisting of selective uniaxial nerve repeated tension protocols, effectively reduces pain and disability in neuropathic pain patients even though the biological mechanisms remain poorly characterized. We aimed to define, both in vivo and ex vivo, how NDT could promote nerve regeneration and modulate some processes in the DRG linked to MA and hyperalgesia. Methods: We examined in Wistar rats, after unilateral median and ulnar nerve crush, the therapeutic effects of NDT and the possible protective effects of NDT administered for 10 days before the injury. We adopted an ex vivo model of DRG organotypic explant subjected to NDT to explore the selective effects on DRG cells. Results: Behavioural tests, morphological and morphometrical analyses, and gene and protein expression analyses were performed, and these tests revealed that NDT promotes nerve regeneration processes, speeds up sensory motor recovery, and modulates mechanical pain by affecting, in the DRG, the expression of TACAN, a mechanosensitive receptor shared between humans and rats responsible for MA and hyperalgesia. The ex vivo experiments have shown that NDT increases neurite regrowth and confirmed the modulation of TACAN. Conclusions: The results obtained in this study on the biological and molecular mechanisms induced by NDT will allow the exploration, in future clinical trials, of its efficacy in different conditions of neuropathic pain.
Collapse
Affiliation(s)
- Giacomo Carta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
- Department of Rehabilitation, ASST (Azienda Socio Sanitaria Territoriali) Nord Milano, Sesto San Giovanni Hospital, Sesto San Giovanni, 20099 Milano, Italy
| | - Benedetta Elena Fornasari
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Correspondence: ; Tel.: +39-(0)1-1670-5433; Fax: +39-(0)1-1903-8639
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
| | - Stefano De Zanet
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
| | - Giulia Nato
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
- Department of Life Sciences and Systems Biology, University of Torino, 10124 Torino, Italy
| | - Marco Fogli
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
- Department of Life Sciences and Systems Biology, University of Torino, 10124 Torino, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
| |
Collapse
|
7
|
Molecular Changes in the Dorsal Root Ganglion during the Late Phase of Peripheral Nerve Injury-induced Pain in Rodents: A Systematic Review. Anesthesiology 2021; 136:362-388. [PMID: 34965284 DOI: 10.1097/aln.0000000000004092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The dorsal root ganglion is widely recognized as a potential target to treat chronic pain. A fundamental understanding of quantitative molecular and genomic changes during the late phase of pain is therefore indispensable. The authors performed a systematic literature review on injury-induced pain in rodent dorsal root ganglions at minimally 3 weeks after injury. So far, slightly more than 300 molecules were quantified on the protein or messenger RNA level, of which about 60 were in more than one study. Only nine individual sequencing studies were performed in which the most up- or downregulated genes varied due to heterogeneity in study design. Neuropeptide Y and galanin were found to be consistently upregulated on both the gene and protein levels. The current knowledge regarding molecular changes in the dorsal root ganglion during the late phase of pain is limited. General conclusions are difficult to draw, making it hard to select specific molecules as a focus for treatment.
Collapse
|
8
|
Liu H, Li B, Zhang M, Dai C, Xi P, Liu Y, Huang Q, He J, Lang Y, Tang R. Unexpected Terrain Induced Changes in Cortical Activity in Bipedal-Walking Rats. BIOLOGY 2021; 11:biology11010036. [PMID: 35053035 PMCID: PMC8773320 DOI: 10.3390/biology11010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary Most studies on cortical dynamics during walking require subjects to walk stably on specific terrain. In fact, humans or other animals are often disturbed by an abrupt change in terrains during walking. To study the impact of unexpected terrain on cortical activity, we analyzed the kinematics and electroencephalography (EEG) dynamics of bipedal-walking rats after encountering unexpected terrain. We found that the gait of rats after encountering the unexpected terrain were significantly different from normal walking. Furthermore, the activities of the left and right primary motor areas (M1), the left and right primary somatosensory areas (S1), and the retrosplenial area (RSP) are coupled to gait cycle phase and varied with the terrain conditions. These findings suggest that unexpected terrains induced changes in gait and cortical activity, and provide novel insights into cortical dynamics during walking. Abstract Humans and other animals can quickly respond to unexpected terrains during walking, but little is known about the cortical dynamics in this process. To study the impact of unexpected terrains on brain activity, we allowed rats with blocked vision to walk on a treadmill in a bipedal posture and then walk on an uneven area at a random position on the treadmill belt. Whole brain EEG signals and hind limb kinematics of bipedal-walking rats were recorded. After encountering unexpected terrain, the θ band power of the bilateral M1, the γ band power of the left S1, and the θ to γ band power of the RSP significantly decreased compared with normal walking. Furthermore, when the rats left uneven terrain, the β band power of the bilateral M1 and the α band power of the right M1 decreased, while the γ band power of the left M1 significantly increased compared with normal walking. Compared with the flat terrain, the θ to low β (3–20 Hz) band power of the bilateral S1 increased after the rats contacted the uneven terrain and then decreased in the single- or double- support phase. These results support the hypothesis that unexpected terrains induced changes in cortical activity.
Collapse
Affiliation(s)
- Honghao Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.L.); (B.L.); (M.Z.); (C.D.); (P.X.); (Y.L.); (Q.H.); (J.H.)
| | - Bo Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.L.); (B.L.); (M.Z.); (C.D.); (P.X.); (Y.L.); (Q.H.); (J.H.)
| | - Minjian Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.L.); (B.L.); (M.Z.); (C.D.); (P.X.); (Y.L.); (Q.H.); (J.H.)
| | - Chuankai Dai
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.L.); (B.L.); (M.Z.); (C.D.); (P.X.); (Y.L.); (Q.H.); (J.H.)
| | - Pengcheng Xi
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.L.); (B.L.); (M.Z.); (C.D.); (P.X.); (Y.L.); (Q.H.); (J.H.)
| | - Yafei Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.L.); (B.L.); (M.Z.); (C.D.); (P.X.); (Y.L.); (Q.H.); (J.H.)
| | - Qiang Huang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.L.); (B.L.); (M.Z.); (C.D.); (P.X.); (Y.L.); (Q.H.); (J.H.)
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Jiping He
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.L.); (B.L.); (M.Z.); (C.D.); (P.X.); (Y.L.); (Q.H.); (J.H.)
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Yiran Lang
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
- Correspondence: (Y.L.); (R.T.)
| | - Rongyu Tang
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
- Correspondence: (Y.L.); (R.T.)
| |
Collapse
|
9
|
Clement A, Pedersen MM, Stensballe A, Wiborg O, Asuni AA. Chronic stress induces NPD-like behavior in APPPS1 and WT mice with subtle differences in gene expression. GENES BRAIN AND BEHAVIOR 2021; 20:e12766. [PMID: 34382343 PMCID: PMC9285501 DOI: 10.1111/gbb.12766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022]
Abstract
Neuropsychiatric disturbances (NPDs) are considered hallmarks of Alzheimer's disease (AD). Nevertheless, treatment of these symptoms has proven difficult and development of safe and effective treatment options is hampered by the limited understanding of the underlying pathophysiology. Thus, robust preclinical models are needed to increase knowledge of NPDs in AD and develop testable hypotheses and novel treatment options. Abnormal activity of the hypothalamic-pituitary-adrenal (HPA) axis is implicated in many psychiatric symptoms and might contribute to both AD and NPDs development and progression. We aimed to establish a mechanistic preclinical model of NPD-like behavior in the APPPS1 mouse model of AD and wildtype (WT) littermates. In APPPS1 and WT mice, we found that chronic stress increased anxiety-like behavior and altered diurnal locomotor activity suggestive of sleep disturbances. Also, chronic stress activated the HPA axis, which, in WT mice, remained heightened for additional 3 weeks. Chronic stress caused irregular expression of circadian regulatory clock genes (BMAL1, PER2, CRY1 and CRY2) in both APPPS1 and WT mice. Interestingly, APPPS1 and WT mice responded differently to chronic stress in terms of expression of serotonergic markers (5-HT1A receptor and MAOA) and inflammatory genes (IL-6, STAT3 and ADMA17). These findings indicate that, although the behavioral response to chronic stress might be similar, the neurobiochemical response was different in APPPS1 mice, which is an important insight in the efforts to develop safe and effective treatments options for NPDs in AD patients. Further work is needed to substantiate these findings.
Collapse
Affiliation(s)
- Amalie Clement
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Department of Pathology and Fluid Biomarkers, H. Lundbeck A/S, Copenhagen, Denmark
| | - Mads M Pedersen
- Department of Biostatistics, H. Lundbeck A/S, Copenhagen, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ove Wiborg
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ayodeji A Asuni
- Department of Pathology and Fluid Biomarkers, H. Lundbeck A/S, Copenhagen, Denmark
| |
Collapse
|
10
|
Boullon L, Finn DP, Llorente-Berzal Á. Sex Differences in a Rat Model of Peripheral Neuropathic Pain and Associated Levels of Endogenous Cannabinoid Ligands. FRONTIERS IN PAIN RESEARCH 2021; 2:673638. [PMID: 35295501 PMCID: PMC8915733 DOI: 10.3389/fpain.2021.673638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic neuropathic pain is a major unmet clinical need affecting 10% of the world population, the majority of whom suffer from co-morbid mood disorders. Sex differences have been reported in pain prevalence, perception and response to analgesics. However, sexual dimorphism in chronic neuropathic pain and the associated neurobiology, are still poorly understood. The lack of efficacy and the adverse effects associated with current pharmacological treatments, further underline the need for new therapeutic targets. The endocannabinoid system (ECS) is a lipid signalling system which regulates a large number of physiological processes, including pain. The aim of this study was to investigate sexual dimorphism in pain-, anxiety- and depression-related behaviours, and concomitant alterations in supraspinal and spinal endocannabinoid levels in the spared nerve injury (SNI) animal model of peripheral neuropathic pain. Sham or SNI surgery was performed in adult male and female Sprague-Dawley rats. Mechanical and cold allodynia was tested weekly using von Frey and acetone drop tests, respectively. Development of depression-related behaviours was analysed using sucrose splash and sucrose preference tests. Locomotor activity and anxiety-related behaviours were assessed with open field and elevated plus maze tests. Levels of endocannabinoid ligands and related N-acylethanolamines in supraspinal regions of the descending inhibitory pain pathway, and spinal cord, were analysed 42 days post-surgery. SNI surgery induced allodynia in rats of both sexes. Female-SNI rats exhibited earlier onset and greater sensitivity to cold and mechanical allodynia than their male counterparts. In male rats, SNI induced a significant reduction of rearing, compared to sham controls. Trends for depressive-like behaviours in females and for anxiety-like behaviours in males were observed after SNI surgery but did not reach statistical significance. No concomitant alterations in levels of endogenous cannabinoid ligands and related N-acylethanolamines were observed in the regions analysed. Our results demonstrate differential development of SNI-induced nociceptive behaviour between male and female rats suggesting important sexually dimorphic modifications in pain pathways. SNI had no effect on depression- or anxiety-related behaviours in animals of either sex, or on levels of endocannabinoid ligands and related N-acylethanolamines across the regions involved in the descending modulation of nociception at the time points investigated.
Collapse
|
11
|
The influence of rat strain on the development of neuropathic pain and comorbid anxio-depressive behaviour after nerve injury. Sci Rep 2020; 10:20981. [PMID: 33262364 PMCID: PMC7708988 DOI: 10.1038/s41598-020-77640-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Back-translating the clinical manifestations of human disease burden into animal models is increasingly recognized as an important facet of preclinical drug discovery. We hypothesized that inbred rat strains possessing stress hyper-reactive-, depressive- or anxiety-like phenotypes may possess more translational value than common outbred strains for modeling neuropathic pain. Rats (inbred: LEW, WKY, F344/ICO and F344/DU, outbred: Crl:SD) were exposed to Spared Nerve Injury (SNI) and evaluated routinely for 6 months on behaviours related to pain (von Frey stimulation and CatWalk-gait analysis), anxiety (elevated plus maze, EPM) and depression (sucrose preference test, SPT). Markers of stress reactivity together with spinal/brain opioid receptor expression were also measured. All strains variously developed mechanical allodynia after SNI with the exception of stress-hyporesponsive LEW rats, despite all strains displaying similar functional gait-deficits after injury. However, affective changes reflective of anxiety- and depressive-like behaviour were only observed for F344/DU in the EPM, and for Crl:SD in SPT. Although differences in stress reactivity and opioid receptor expression occurred, overall they were relatively unaffected by SNI. Thus, anxio-depressive behaviours did not develop in all strains after nerve injury, and correlated only modestly with degree of pain sensitivity or with genetic predisposition to stress and/or affective disturbances.
Collapse
|
12
|
Baeza-Flores GDC, Guzmán-Priego CG, Parra-Flores LI, Murbartián J, Torres-López JE, Granados-Soto V. Metformin: A Prospective Alternative for the Treatment of Chronic Pain. Front Pharmacol 2020; 11:558474. [PMID: 33178015 PMCID: PMC7538784 DOI: 10.3389/fphar.2020.558474] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Metformin (biguanide) is a drug widely used for the treatment of type 2 diabetes. This drug has been used for 60 years as a highly effective antihyperglycemic agent. The search for the mechanism of action of metformin has produced an enormous amount of research to explain its effects on gluconeogenesis, protein metabolism, fatty acid oxidation, oxidative stress, glucose uptake, autophagy and pain, among others. It was only up the end of the 1990s and beginning of this century that some of its mechanisms were revealed. Metformin induces its beneficial effects in diabetes through the activation of a master switch kinase named AMP-activated protein kinase (AMPK). Two upstream kinases account for the physiological activation of AMPK: liver kinase B1 and calcium/calmodulin-dependent protein kinase kinase 2. Once activated, AMPK inhibits the mechanistic target of rapamycin complex 1 (mTORC1), which in turn avoids the phosphorylation of p70 ribosomal protein S6 kinase 1 and phosphatidylinositol 3-kinase/protein kinase B signaling pathways and reduces cap-dependent translation initiation. Since metformin is a disease-modifying drug in type 2 diabetes, which reduces the mTORC1 signaling to induce its effects on neuronal plasticity, it was proposed that these mechanisms could also explain the antinociceptive effect of this drug in several models of chronic pain. These studies have highlighted the efficacy of this drug in chronic pain, such as that from neuropathy, insulin resistance, diabetic neuropathy, and fibromyalgia-type pain. Mounting evidence indicates that chronic pain may induce anxiety, depression and cognitive impairment in rodents and humans. Interestingly, metformin is able to reverse some of these consequences of pathological pain in rodents. The purpose of this review was to analyze the current evidence about the effects of metformin in chronic pain and three of its comorbidities (anxiety, depression and cognitive impairment).
Collapse
Affiliation(s)
- Guadalupe Del Carmen Baeza-Flores
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Crystell Guadalupe Guzmán-Priego
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Leonor Ivonne Parra-Flores
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Jorge Elías Torres-López
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico.,Departamento de Anestesiología, Hospital Regional de Alta Especialidad "Dr. Juan Graham Casasús", Villahermosa, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| |
Collapse
|
13
|
Dodonova S, Bobyntsev I, Belykh A, Andreeva L, Myasoedov N. Changes in the nociceptive response to thermal stimulation in rats following administration of N-terminal analogs of the adrenocorticotropic hormone. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanocortins (MCs) are an increasingly studied class of regulatory peptides exerting a wide range of biological effects. All naturally occurring MCs share a His-Phe-Arg-Trp fragment (HFRW) corresponding to the sequence of amino acid residues 6–9 of the adrenocorticotropic hormone (ACTH6-9), which is also a central active component of ACTH. Attaching the Pro-Gly-Pro (PGP) sequence to the C-end of the peptide extends the duration of the peptide’s effect. The aim of this study was to investigate the effects of ACTH6-9-PGP (HFRWPGP) on the spinal and supraspinal mechanisms involved in the nociceptive response in rats and to compare them to those of its structural analog ACTH4-7-PGP (MEHFPGP). ACTH6-9-PGP effects were studied following the intraperitoneal administration of the peptide at doses 0.5, 1.5, 5, 15, 50, 150, or 450 μg/kg 15 minutes before the hot plate and tail flick tests. ACTH4-7-PGP effects were studied under the same conditions at the following doses: 50, 150 and 450 μg/kg. We found that ACTH6-9-PGP administered intraperitoneally at 5 or 150 μg/kg induced a pronounced reduction in pain sensitivity 15 and 45 minutes after the injection (p = 0.04); this effect was implemented via supraspinal mechanisms. In the tail flick test, 150 μg/kg ACTH6-9-PGP increased pain sensitivity, with the participation of segmental spinal mechanisms (p = 0.04). ACTH4-7-PGP did not have any effect on the studied mechanisms of pain sensitivity. Thus, unlike ACTH4-7-PGP, ACTH6-9-PGP can both increase pain sensitivity and exert an analgesic effect.
Collapse
Affiliation(s)
| | | | - A.E. Belykh
- Kursk State Medical University, Kursk, Russia
| | | | | |
Collapse
|