1
|
Fu M, Wang Q, Gao L, Yuan X, Wang J. Antimicrobial drugs for Parkinson's disease: Existing therapeutic strategies and novel drugs exploration. Ageing Res Rev 2024; 99:102387. [PMID: 38942200 DOI: 10.1016/j.arr.2024.102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 06/30/2024]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by loss of dopaminergic neurons in the substantia nigra, as well as the abnormal accumulation of misfolded α-synuclein. Clinically, PD is featured by typical motor symptoms and some non-motor symptoms. Up to now, although considerable progress has been made in understanding the pathogenesis of PD, there is still no effective therapeutic treatment for the disease. Thus, exploring new therapeutic strategies has been a topic that needs to be addressed urgently. Noteworthy, with the proposal of the microbiota-gut-brain axis theory, antimicrobial drugs have received significant attention due to their effects on regulating the intestinal microbiota. Nowadays, there is growing evidence showing that some antimicrobial drugs may be promising drugs for the treatment of PD. Data from pre-clinical and clinical studies have shown that some antimicrobial drugs may play neuroprotective roles in PD by modulating multiple biochemical and molecular pathways, including reducing α-synuclein aggregation, inhibiting neuroinflammation, regulating mitochondrial structure and function, as well as suppressing oxidative stress. In this paper, we summarized the effects of some antimicrobial drugs on PD treatment from recent pre-clinical and clinical studies. Then, we further discussed the potential of a few antimicrobial drugs for treating PD based on molecular docking and molecular dynamics simulation. Importantly, we highlighted the potential of clorobiocin as the therapeutic strategy for PD owing to its ability to inhibit α-synuclein aggregation. These results will help us to better understand the potential of antimicrobial drugs in treating PD and how antimicrobial drugs may alleviate or reverse the pathological symptoms of PD.
Collapse
Affiliation(s)
- Mengjie Fu
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Qiuchen Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Lihui Gao
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Xin Yuan
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
2
|
Nandwana V, Nandwana NK, Das Y, Saito M, Panda T, Das S, Almaguel F, Hosmane NS, Das BC. The Role of Microbiome in Brain Development and Neurodegenerative Diseases. Molecules 2022; 27:3402. [PMID: 35684340 PMCID: PMC9182002 DOI: 10.3390/molecules27113402] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
Hundreds of billions of commensal microorganisms live in and on our bodies, most of which colonize the gut shortly after birth and stay there for the rest of our lives. In animal models, bidirectional communications between the central nervous system and gut microbiota (Gut-Brain Axis) have been extensively studied, and it is clear that changes in microbiota composition play a vital role in the pathogenesis of various neurodevelopmental and neurodegenerative disorders, such as Autism Spectrum Disorder, Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, Amyotrophic Lateral Sclerosis, anxiety, stress, and so on. The makeup of the microbiome is impacted by a variety of factors, such as genetics, health status, method of delivery, environment, nutrition, and exercise, and the present understanding of the role of gut microbiota and its metabolites in the preservation of brain functioning and the development of the aforementioned neurological illnesses is summarized in this review article. Furthermore, we discuss current breakthroughs in the use of probiotics, prebiotics, and synbiotics to address neurological illnesses. Moreover, we also discussed the role of boron-based diet in memory, boron and microbiome relation, boron as anti-inflammatory agents, and boron in neurodegenerative diseases. In addition, in the coming years, boron reagents will play a significant role to improve dysbiosis and will open new areas for researchers.
Collapse
Affiliation(s)
- Varsha Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (V.N.); (N.K.N.); (T.P.); (S.D.)
| | - Nitesh K. Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (V.N.); (N.K.N.); (T.P.); (S.D.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yogarupa Das
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (Y.D.); (M.S.)
| | - Mariko Saito
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (Y.D.); (M.S.)
| | - Tanisha Panda
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (V.N.); (N.K.N.); (T.P.); (S.D.)
| | - Sasmita Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (V.N.); (N.K.N.); (T.P.); (S.D.)
| | - Frankis Almaguel
- School of Medicine, Loma Linda University Health, Loma Linda, CA 92350, USA;
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA;
| | - Bhaskar C. Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (V.N.); (N.K.N.); (T.P.); (S.D.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
3
|
Vellingiri B, Aishwarya SY, Benita Jancy S, Sriram Abhishek G, Winster Suresh Babu H, Vijayakumar P, Narayanasamy A, Mariappan S, Sangeetha R, Valsala Gopalakrishnan A, Parthasarathi R, Iyer M. An anxious relationship between Autism Spectrum Disorder and Gut Microbiota: A tangled chemistry? J Clin Neurosci 2022; 99:169-189. [PMID: 35286970 DOI: 10.1016/j.jocn.2022.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a serious multifactorial neurodevelopmental disorder often accompanied by strained social communication, repetitive behaviour, immune dysregulation, and gastrointestinal (GI) issues. Recent studies have recorded a link between dysbiosis in the gut microbiota (gm) and the primary stages of ASD. A bidirectional connection (also called microbiota-gut-brain-axis) exchanges information between the gut bacteria and central nervous system. When the homeostasis of the microenvironment of the gut is dysregulated, it causes oxidative stress, affecting neuronal cells and neurotransmitters, thereby causing neurodevelopmental disorders. Studies have confirmed a difference in the constitution of gut bacteria among ASD cases and their controls. Numerous studies on animal models of ASD have shown altered gm and its association with abnormal metabolite profile and altered behaviour phenotype. This process happens due to an abnormal metabolite production in gm, leading to changes in the immune system, especially in ASD. Hence, this review aims to question the current knowledge on gm dysbiosis and its related GI discomforts and ASD behavioural symptoms and shed light on the possible therapeutic approaches available to deal with this situation. Thereby, though it is understood that more research might be needed to prove an association or causal relationship between gm and ASD, therapy with the microbiome may also be considered as an effective strategy to combat this issue.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| | - S Y Aishwarya
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - S Benita Jancy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - G Sriram Abhishek
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - Harysh Winster Suresh Babu
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India; Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Padmavathi Vijayakumar
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sujitha Mariappan
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - R Sangeetha
- Department of Zoology and Wild Life Biology, Government Arts College, Udhagamandalam 643002, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, Centre for Innovation and Translational Research, Environmental Monitoring and Intervention Hub (DSIR-CRTDH), CSIR-Indian Institute of Toxicology Research, Lucknow 226001 Uttar Pradesh, India
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Tamil Nadu, India.
| |
Collapse
|
4
|
Novel Pharmacotherapies in Parkinson's Disease. Neurotox Res 2021; 39:1381-1390. [PMID: 34003454 PMCID: PMC8129607 DOI: 10.1007/s12640-021-00375-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
Parkinson’s disease (PD), an age-related progressive neurodegenerative condition, is associated with loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), which results in motor deficits characterized by the following: akinesia, rigidity, resting tremor, and postural instability, as well as nonmotor symptoms such as emotional changes, particularly depression, cognitive impairment, gastrointestinal, and autonomic dysfunction. The most common treatment for PD is focused on dopamine (DA) replacement (e.g., levodopa = L-Dopa), which unfortunately losses its efficacy over months or years and can induce severe dyskinesia. Hence, more efficacious interventions without such adverse effects are urgently needed. In this review, following a general description of PD, potential novel therapeutic interventions for this devastating disease are examined. Specifically, the focus is on nicotine and nicotinic cholinergic system, as well as butyrate, a short chain fatty acid (SCFA), and fatty acid receptors.
Collapse
|
5
|
Sabit H, Tombuloglu H, Rehman S, Almandil NB, Cevik E, Abdel-Ghany S, Rashwan S, Abasiyanik MF, Yee Waye MM. Gut microbiota metabolites in autistic children: An epigenetic perspective. Heliyon 2021; 7:e06105. [PMID: 33553761 PMCID: PMC7848646 DOI: 10.1016/j.heliyon.2021.e06105] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Gut microbiota has become an issue of great importance recently due to its major role in autism spectrum disorder (ASD). Over the past three decades, there has been a sustained research activity focused to explain the actual mechanism by which gut microbiota triggers/develops autism. Several genetic and epigenetic factors are involved in this disorder, with epigenetics being the most active area of research. Although the constant investigation and advancements, epigenetic implications in ASD still need a deeper functional/causal analysis. In this review, we describe the major gut microbiota metabolites and how they induce epigenetic changes in ASD along with interactions through the gut-brain axis.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Genetics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Suriya Rehman
- Department of Epidemic Diseases, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Noor B Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Emre Cevik
- Department of Genetics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Sanaa Rashwan
- Pediatrics Department, Madinat Zayed Hospital, SEHA, Abu Dhabi, United Arab Emirates
| | - Mustafa Fatih Abasiyanik
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Mary Miu Yee Waye
- The Nethersole School of Nursing, The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong
| |
Collapse
|