1
|
Chaves T, Török B, Fazekas CL, Correia P, Sipos E, Várkonyi D, Tóth ZE, Dóra F, Dobolyi Á, Zelena D. The Dopaminergic Cells in the Median Raphe Region Regulate Social Behavior in Male Mice. Int J Mol Sci 2024; 25:4315. [PMID: 38673899 PMCID: PMC11050709 DOI: 10.3390/ijms25084315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
According to previous studies, the median raphe region (MRR) is known to contribute significantly to social behavior. Besides serotonin, there have also been reports of a small population of dopaminergic neurons in this region. Dopamine is linked to reward and locomotion, but very little is known about its role in the MRR. To address that, we first confirmed the presence of dopaminergic cells in the MRR of mice (immunohistochemistry, RT-PCR), and then also in humans (RT-PCR) using healthy donor samples to prove translational relevance. Next, we used chemogenetic technology in mice containing the Cre enzyme under the promoter of the dopamine transporter. With the help of an adeno-associated virus, designer receptors exclusively activated by designer drugs (DREADDs) were expressed in the dopaminergic cells of the MRR to manipulate their activity. Four weeks later, we performed an extensive behavioral characterization 30 min after the injection of the artificial ligand (Clozapine-N-Oxide). Stimulation of the dopaminergic cells in the MRR decreased social interest without influencing aggression and with an increase in social discrimination. Additionally, inhibition of the same cells increased the friendly social behavior during social interaction test. No behavioral changes were detected in anxiety, memory or locomotion. All in all, dopaminergic cells were present in both the mouse and human samples from the MRR, and the manipulation of the dopaminergic neurons in the MRR elicited a specific social response.
Collapse
Affiliation(s)
- Tiago Chaves
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
- János Szentágothai School of Neurosciences, Semmelweis University, H1085 Budapest, Hungary
| | - Bibiána Török
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
- János Szentágothai School of Neurosciences, Semmelweis University, H1085 Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
- János Szentágothai School of Neurosciences, Semmelweis University, H1085 Budapest, Hungary
| | - Pedro Correia
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
- János Szentágothai School of Neurosciences, Semmelweis University, H1085 Budapest, Hungary
| | - Eszter Sipos
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
| | - Dorottya Várkonyi
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
| | - Zsuzsanna E. Tóth
- Laboratory of Neuroendocrinology and in Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary;
| | - Fanni Dóra
- Human Brain Tissue Bank, Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary;
| | - Árpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, H1117 Budapest, Hungary;
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
| |
Collapse
|
2
|
Enhancer Regulation of Dopaminergic Neurochemical Transmission in the Striatum. Int J Mol Sci 2022; 23:ijms23158543. [PMID: 35955676 PMCID: PMC9369307 DOI: 10.3390/ijms23158543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
The trace amine-associated receptor 1 (TAAR1) is a Gs protein-coupled, intracellularly located metabotropic receptor. Trace and classic amines, amphetamines, act as agonists on TAAR1; they activate downstream signal transduction influencing neurotransmitter release via intracellular phosphorylation. Our aim was to check the effect of the catecholaminergic activity enhancer compound ((−)BPAP, (R)-(−)-1-(benzofuran-2-yl)-2-propylaminopentane) on neurotransmitter release via the TAAR1 signaling. Rat striatal slices were prepared and the resting and electrical stimulation-evoked [3H]dopamine release was measured. The releaser (±)methamphetamine evoked non-vesicular [3H]dopamine release in a TAAR1-dependent manner, whereas (−)BPAP potentiated [3H]dopamine release with vesicular origin via TAAR1 mediation. (−)BPAP did not induce non-vesicular [3H]dopamine release. N-Ethylmaleimide, which inhibits SNARE core complex disassembly, potentiated the stimulatory effect of (−)BPAP on vesicular [3H]dopamine release. Subsequent analyses indicated that the dopamine-release stimulatory effect of (−)BPAP was due to an increase in PKC-mediated phosphorylation. We have hypothesized that there are two binding sites present on TAAR1, one for the releaser and one for the enhancer compounds, and they activate different PKC-mediated phosphorylation leading to the evoking of non-vesicular and vesicular dopamine release. (−)BPAP also increased VMAT2 operation enforcing vesicular [3H]dopamine accumulation and release. Vesicular dopamine release promoted by TAAR1 evokes activation of D2 dopamine autoreceptor-mediated presynaptic feedback inhibition. In conclusion, TAAR1 possesses a triggering role in both non-vesicular and vesicular dopamine release, and the mechanism of action of (−)BPAP is linked to the activation of TAAR1 and the signal transduction attached.
Collapse
|
3
|
Hrivikova K, Zelena D, Graban J, Puhova A, Miklya I, Balazsfi D, Jezova D. Chronic treatment with enhancer drugs modifies the gene expression of selected parameters related to brain plasticity in rats under stress conditions. Neurochem Int 2022; 159:105404. [PMID: 35853552 DOI: 10.1016/j.neuint.2022.105404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
Selegiline, also known as L-deprenyl, and (2R)-1-(1-benzofuran-2-yl)-N-propylpentane-2-amine (BPAP) were found to induce enhancement of monoamine neurotransmission in low and very low doses. In addition, these enhancers may modify glutamatergic neurotransmission. The aim of the present study was to test the hypothesis that under stress conditions, chronic treatment with enhancer drugs has a positive impact on the glutamatergic system and other parameters related to brain plasticity, stress-related systems, and anxiety behavior. We exposed male Wistar rats to a chronic mild stress procedure combined with chronic treatment with two synthetic enhancer drugs. The gene expression of GluR1, an AMPA receptor subunit was reduced by repeated treatment with deprenyl in the hippocampus and with both BPAP and deprenyl in the prefrontal cortex. A significant reduction of NMDA receptor subunit GluN2B expression was observed in the hippocampus but not in the prefrontal cortex. Deprenyl treatment led to an enhancement of hippocampal BDNFmRNA concentrations in stress-exposed rats. Treatment with enhancer drugs failed to induce significant changes in stress hormone concentrations or anxiety behavior. In conclusion, the present study in chronically stressed rats showed that concomitant treatment with enhancer drugs did not provoke substantial neuroendocrine changes, but modified gene expression of selected parameters associated with brain plasticity. Observed changes may indicate a positive influence of enhancer drugs on brain plasticity, which is important for preventing negative consequences of chronic stress and enhancement of stress resilience. It may be suggested that the changes in glutamate receptor subunits induced by enhancer drugs are brain region-specific and not dose-related.
Collapse
Affiliation(s)
- K Hrivikova
- Laboratory of Pharmacological Neuroendocrinology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - D Zelena
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Centre, 7624, Pécs, Hungary; Department of Behavioral Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083, Budapest, Szigony 43, Hungary
| | - J Graban
- Laboratory of Pharmacological Neuroendocrinology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - A Puhova
- Laboratory of Pharmacological Neuroendocrinology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - I Miklya
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089, Budapest, Nagyvarad Ter 4, Hungary
| | - D Balazsfi
- Department of Behavioral Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083, Budapest, Szigony 43, Hungary
| | - D Jezova
- Laboratory of Pharmacological Neuroendocrinology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|