1
|
Zlatkina V, Frey S, Petrides M. Monitoring of nonspatial information within working memory in the common marmoset (Callithrix jacchus). Cereb Cortex 2024; 34:bhae444. [PMID: 39564971 DOI: 10.1093/cercor/bhae444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
The mid-dorsolateral prefrontal cortical region (areas 46 and 9/46) is critical for the monitoring of information in working memory both in the macaque monkey brain and the human brain. The presence of this cytoarchitectonic region in the New World marmoset brain was in debate, but recent anatomical evidence demonstrated a limited area 46. This finding raised the question of the extent to which the marmoset brain can support the cognitive control process of monitoring information within working memory. This cognitive control process was assessed in adult marmosets and was shown to be limited to the monitoring of only two items in contrast to macaque monkeys, who can monitor as many as five items in working memory. The results are consistent with the limited development of the relevant prefrontal region in the marmoset and contribute to understanding the evolution of higher cognitive control processes in the primate brain.
Collapse
Affiliation(s)
- Veronika Zlatkina
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
- Rogue Research Inc, Montreal, Quebec H2S 3H1, Canada
| | - Stephen Frey
- Rogue Research Inc, Montreal, Quebec H2S 3H1, Canada
| | - Michael Petrides
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
- Department of Psychology, McGill University, 2001 McGill College Ave, Montreal, Quebec H3A 1G1, Canada
| |
Collapse
|
2
|
Aquino J, Moreira MA, Evangelista NCL, Maior RS, Barros M. Spontaneous object recognition in capuchin monkeys: assessing the effects of sex, familiarization phase and retention delay. Anim Cogn 2023; 26:551-561. [PMID: 36181571 DOI: 10.1007/s10071-022-01697-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/27/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022]
Abstract
The spontaneous object recognition (SOR) task is a versatile and widely used memory test that was only recently established in nonhuman primates (marmosets). Here, we extended these initial findings by assessing the performance of adult capuchin monkeys on the SOR task and three potentially intervening task parameters-object familiarization phase, retention delay and sex. In Experiment 1, after an initial 10-min familiarization period with two identical objects and a pre-established retention delay (0.5, 6 or 24 h), the capuchins preferentially explored a new rather than the familiar object during a 10-min test trial, regardless of delay length. In Experiment 2, the capuchins were again exposed to two identical objects (but now for 10 or 20 min), then a 30-min retention delay and a 10-min test trial. An exploratory preference for the new over the familiar item was not affected by the length of the familiarization interval, possibly because overall exploration remained the same. However, the amount of initial object exploration was not related to task performance, and both males and females performed similarly on the SOR task with a 10-min familiarization, 30-min delay and 10-min test trial. Therefore, male and female capuchins recognize objects on the SOR task after both short and long delays, whereas a twofold increase in the familiarization phase does not affect task performance. The results also provide further support for the use of incidental learning paradigms to assess recognition memory in nonhuman primates.
Collapse
Affiliation(s)
- Jéssica Aquino
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Matheus A Moreira
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Nathália C L Evangelista
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Rafael S Maior
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia, Brazil.,Primate Center, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Marilia Barros
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, 70910-900, Brazil. .,Primate Center, Institute of Biology, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
3
|
Lucon-Xiccato T. The contribution of executive functions to sex differences in animal cognition. Neurosci Biobehav Rev 2022; 138:104705. [PMID: 35605792 DOI: 10.1016/j.neubiorev.2022.104705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 01/17/2023]
Abstract
Cognitive sex differences have been reported in several vertebrate species, mostly in spatial abilities. Here, I review evidence of sex differences in a family of general cognitive functions that control behaviour and cognition, i.e., executive functions such as cognitive flexibility and inhibitory control. Most of this evidence derives from studies in teleost fish. However, analysis of literature from other fields (e.g., biomedicine, genetic, ecology) concerning mammals and birds reveals that more than 40% of species investigated exhibit sex differences in executive functions. Among species, the direction and magnitude of these sex differences vary greatly, even within the same family, suggesting sex-specific selection due to species' reproductive systems and reproductive roles of males and females. Evidence also suggests that sex differences in executive functions might provide males and females highly differentiated cognitive phenotypes. To understand the evolution of cognitive sex differences in vertebrates, future research should consider executive functions.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
4
|
Costa CS, Oliveira AWC, Easton A, Barros M. A single brief stressful event time-dependently affects object recognition memory and promotes familiarity preference in marmoset monkeys. Behav Processes 2022; 199:104645. [PMID: 35489542 DOI: 10.1016/j.beproc.2022.104645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/17/2022]
Abstract
A stressful experience can enhance information storage and impair memory retrieval in the rodent novel object recognition (NOR) task. However, recent conflicting results underscore the need for further investigation. Nonhuman primates may provide a unique, underexplored and more translational means to investigate stress-mediated changes in memory. Therefore, we assessed whether a single brief extrinsic stress event affects information encoding, storage and/or retrieval in adult marmoset monkeys submitted to the NOR task. This consisted of an initial 10 min familiarization period with two identical neutral objects. After a 6 h delay, a 10 min test trial was held where a new and familiar object could be explored. Stress was induced by a 15 min restraint event held before or after the encoding phase, or prior to retrieval. Pre-encoding stress had no effect on task performance, as this group displayed above-chance novelty preference similar to non-stressed controls. Post-encoding stress induced memory deficits, with both objects being explored equally. Interestingly, pre-retrieval stress induced an above-chance familiarity preference. A single brief stressful event thus affects recognition memory in a time-dependent manner. Also, negative discrimination ratios can be used as a measure of memory in the NOR task and a change in strategy may not mean memory failure in spontaneous learning paradigms.
Collapse
Affiliation(s)
- Clara S Costa
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - André W C Oliveira
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Alexander Easton
- Department of Psychology, Durham University, Durham, United Kingdom; Centre for Learning and Memory Processes, Durham University, Durham, United Kingdom
| | - Marilia Barros
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, Brazil; Primate Center, Institute of Biology, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
5
|
Scopolamine and MK-801 impair recognition memory in a new spontaneous object exploration task in monkeys. Pharmacol Biochem Behav 2021; 211:173300. [PMID: 34798097 DOI: 10.1016/j.pbb.2021.173300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/21/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022]
Abstract
The spontaneous object recognition (SOR) task is one of the most widely used behavioral protocols to assess visual memory in animals. However, only recently was it shown that nonhuman primates also perform well on this task. Here we further characterized this new monkey recognition memory test by assessing the performance of adult marmosets after an acute systemic administration of two putative amnesic agents: the competitive muscarinic acetylcholine receptor antagonist scopolamine (SCP; 0.05 mg/kg) and the noncompetitive N-methyl-d-aspartate glutamate receptor antagonist MK-801 (0.015 mg/kg). We also determined whether the acetylcholinesterase inhibitor donepezil (DNP; 0.50 mg/kg), a clinically-used cognitive enhancer, reverses memory deficits caused by either drug. The subjects had an initial 10 min sample trial where two identical neutral objects could be explored. After a 6 h retention interval, recognition was based on an exploratory preference for a new rather than familiar object during a 10 min test trial. Both SCP and MK-801 impaired the marmosets' performance on the SOR task, as both objects were explored equivalently. Co-administration of 0.50 mg/kg of DNP reversed the SCP- but not the MK-801-induced memory deficit. These results indicate that cholinergic and glutamatergic pathways mediate object recognition memory in the monkey SOR task.
Collapse
|
6
|
De Castro V, Girard P. Location and temporal memory of objects declines in aged marmosets (Callithrix jacchus). Sci Rep 2021; 11:9138. [PMID: 33911122 PMCID: PMC8080792 DOI: 10.1038/s41598-021-88357-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Episodic memory decline is an early marker of cognitive aging in human. Although controversial in animals and called “episodic-like memory”, several models have been successfully developed, however they rarely focused on ageing. While marmoset is an emerging primate model in aging science, episodic-like memory has never been tested in this species and importantly in aged marmosets. Here, we examined if the recall of the what-when and what-where building blocks of episodic-like memory declines in ageing marmosets. We developed a naturalistic approach using spontaneous exploration of real objects by young and old marmosets in the home cage. We implemented a three-trial task with 1 week inter-trial interval. Two different sets of identical objects were presented in sample trials 1 and 2, respectively. For the test trial, two objects from each set were presented in a former position and two in a new one. We quantified the exploratory behaviour and calculated discrimination indices in a cohort of 20 marmosets. Young animals presented a preserved memory for combined what-where, and what-when components of the experiment, which declined with aging. These findings lead one to expect episodic-like memory deficits in aged marmosets.
Collapse
Affiliation(s)
- Vanessa De Castro
- Centre de Recherche Cerveau et Cognition (CerCo), Toulouse, France. .,Centre National de la Recherche Scientifique (CNRS) - UMR 5549, Toulouse, France.
| | - Pascal Girard
- Centre de Recherche Cerveau et Cognition (CerCo), Toulouse, France. .,Institut national de la santé et de la recherche médicale (INSERM), Toulouse, France.
| |
Collapse
|
7
|
Kalinichenko LS, Abdel-Hafiz L, Wang AL, Mühle C, Rösel N, Schumacher F, Kleuser B, Smaga I, Frankowska M, Filip M, Schaller G, Richter-Schmidinger T, Lenz B, Gulbins E, Kornhuber J, Oliveira AWC, Barros M, Huston JP, Müller CP. Neutral Sphingomyelinase is an Affective Valence-Dependent Regulator of Learning and Memory. Cereb Cortex 2021; 31:1316-1333. [PMID: 33043975 DOI: 10.1093/cercor/bhaa298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids and enzymes of the sphingolipid rheostat determine synaptic appearance and signaling in the brain, but sphingolipid contribution to normal behavioral plasticity is little understood. Here we asked how the sphingolipid rheostat contributes to learning and memory of various dimensions. We investigated the role of these lipids in the mechanisms of two different types of memory, such as appetitively and aversively motivated memory, which are considered to be mediated by different neural mechanisms. We found an association between superior performance in short- and long-term appetitively motivated learning and regionally enhanced neutral sphingomyelinase (NSM) activity. An opposite interaction was observed in an aversively motivated task. A valence-dissociating role of NSM in learning was confirmed in mice with genetically reduced NSM activity. This role may be mediated by the NSM control of N-methyl-d-aspartate receptor subunit expression. In a translational approach, we confirmed a positive association of serum NSM activity with long-term appetitively motivated memory in nonhuman primates and in healthy humans. Altogether, these data suggest a new sphingolipid mechanism of de-novo learning and memory, which is based on NSM activity.
Collapse
Affiliation(s)
- Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Laila Abdel-Hafiz
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Nadine Rösel
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Fabian Schumacher
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Potsdam 14558, Germany.,Department of Molecular Biology, University of Duisburg-Essen, Essen 45147, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Potsdam 14558, Germany
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Malgorzata Frankowska
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Gerd Schaller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Tanja Richter-Schmidinger
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany.,Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen 45147, Germany.,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267-0558, USA
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - André W C Oliveira
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Marilia Barros
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil.,Primate Center, Institute of Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| |
Collapse
|
8
|
Abreu F, Garber PA, Souto A, Presotto A, Schiel N. Navigating in a challenging semiarid environment: the use of a route-based mental map by a small-bodied neotropical primate. Anim Cogn 2021; 24:629-643. [PMID: 33394185 DOI: 10.1007/s10071-020-01465-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 11/27/2022]
Abstract
To increase efficiency in the search for resources, many animals rely on their spatial abilities. Specifically, primates have been reported to use mostly topological and rarely Euclidean maps when navigating in large-scale space. Here, we aimed to investigate if the navigation of wild common marmosets inhabiting a semiarid environment is consistent with a topological representation and how environmental factors affect navigation. We collected 497 h of direct behavioral and GPS information on a group of marmosets using a 2-min instantaneous focal animal sampling technique. We found that our study group reused not only long-route segments (mean of 1007 m) but entire daily routes, a pattern that is not commonly seen in primates. The most frequently reused route segments were the ones closer to feeding sites, distant to resting sites, and in areas sparse in tree vegetation. We also identified a total of 56 clustered direction change points indicating that the group modified their direction of travel. These changes in direction were influenced by their close proximity to resting and feeding sites. Despite our small sample size, the obtained results are important and consistent with the contention that common marmosets navigate using a topological map that seems to benefit these animals in response to the exploitation of clustered exudate trees. Based on our findings, we hypothesize that the Caatinga landscape imposes physical restrictions in our group's navigation such as gaps in vegetation, small trees and xerophytic plants. This study, based on preliminary evidence, raises the question of whether navigation patterns are an intrinsic characteristic of a species or are ecologically dependent and change according to the environment.
Collapse
Affiliation(s)
- Filipa Abreu
- Department of Biology, Federal Rural University of Pernambuco, R. Dom Manuel de Medeiros, s/n, Dois Irmãos, Recife, PE, 52171-900, Brazil.
| | - Paul A Garber
- Department of Anthropology, Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Antonio Souto
- Department of Zoology, Federal University of Pernambuco, Av. Professor Moraes Rego, 1235, Recife, PE, 50670-901, Brazil
| | - Andrea Presotto
- Department of Geography and Geosciences, Salisbury University, Salisbury, USA
| | - Nicola Schiel
- Department of Biology, Federal Rural University of Pernambuco, R. Dom Manuel de Medeiros, s/n, Dois Irmãos, Recife, PE, 52171-900, Brazil
| |
Collapse
|
9
|
Neutral ceramidase is a marker for cognitive performance in rats and monkeys. Pharmacol Rep 2020; 73:73-84. [PMID: 32936422 PMCID: PMC7862079 DOI: 10.1007/s43440-020-00159-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Background Ceramides are lipid molecules determining cell integrity and intercellular signaling, and thus, involved in the pathogenesis of several psychiatric and neurodegenerative disorders. However, little is known about the role of particular enzymes of the ceramide metabolism in the mechanisms of normal behavioral plasticity. Here, we studied the contribution of neutral ceramidase (NC), one of the main enzymes mediating ceramide degradation, in the mechanisms of learning and memory in rats and non-human primates. Methods Naïve Wistar rats and black tufted-ear marmosets (Callithrix penicillata) were tested in several tests for short- and long-term memory and then divided into groups with various memory performance. The activities of NC and acid ceramidase (AC) were measured in these animals. Additionally, anxiety and depression-like behavior and brain levels of monoamines were assessed in the rats. Results We observed a predictive role of NC activity in the blood serum for superior performance of long-term object memory tasks in both species. A brain area analysis suggested that high NC activity in the ventral mesencephalon (VM) predicts better short-term memory performance in rats. High NC activity in the VM was also associated with worse long-term object memory, which might be mediated by an enhanced depression-like state and a monoaminergic imbalance. Conclusions Altogether, these data suggest a role for NC in short- and long-term memory of various mammalian species. Serum activity of NC may possess a predictive role in the assessing the performance of certain types of memory. Electronic supplementary material The online version of this article (10.1007/s43440-020-00159-2) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Abreu F, Souto A, Schiel N. Wild common marmosets (Callithrix jacchus) employ spatial cognitive abilities to improve their food search and consumption: an experimental approach in small-scale space. Primates 2020; 61:807-816. [PMID: 32383127 DOI: 10.1007/s10329-020-00826-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/24/2020] [Indexed: 12/16/2022]
Abstract
The ability of an animal to integrate and retain spatial information of resources often depends on the spatial memory and the speed at which this memory crystallizes. These become especially important once foragers reach their target area. However, very little is known about how wild common marmosets encode spatial information when feeding rewards are near to each other in a small-scale space. With this in mind, we performed field experiments to test foraging decisions related to a small-scale space setting. Specifically, we tested the (i) short- and (ii) long-term spatial memory, as well as (iii) the ability to remember the spatial location of resources after a single visit (one-trial spatial learning). The study was conducted with four groups of wild common marmosets (Callithrix jacchus) living in a semiarid Caatinga environment. We observed that individuals were able to retain spatial information of food sources on both a short- and long-term basis and to learn the spatial location of these resources after a single visit. We suggest that such abilities during foraging can improve the search for scattered resources with fluctuations of food availability. Presumably, this would be particularly advantageous in Caatinga, with its vegetation exhibiting asynchronous phenological patterns. Altogether, our results demonstrate that common marmosets employ all three studied spatial cognitive abilities to improve their food search and consumption.
Collapse
Affiliation(s)
- Filipa Abreu
- Department of Biology, Federal Rural University of Pernambuco, R. Dom Manuel de Medeiros, s/n, Recife, PE, 52171-900, Brazil.
| | - Antonio Souto
- Department of Zoology, Federal University of Pernambuco, Av. Professor Moraes Rego, 1235, Recife, PE, 50670-901, Brazil
| | - Nicola Schiel
- Department of Biology, Federal Rural University of Pernambuco, R. Dom Manuel de Medeiros, s/n, Recife, PE, 52171-900, Brazil
| |
Collapse
|