1
|
Sasaki A, Nagae H, Furusaka Y, Yasukawa K, Shigetoh H, Kodama T, Miyazaki J. Visual Deprivation's Impact on Dynamic Posture Control of Trunk: A Comprehensive Sensing Information Analysis of Neurophysiological Mechanisms. SENSORS (BASEL, SWITZERLAND) 2024; 24:5849. [PMID: 39275760 PMCID: PMC11398238 DOI: 10.3390/s24175849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
Visual information affects static postural control, but how it affects dynamic postural control still needs to be fully understood. This study investigated the effect of proprioception weighting, influenced by the presence or absence of visual information, on dynamic posture control during voluntary trunk movements. We recorded trunk movement angle and angular velocity, center of pressure (COP), electromyographic, and electroencephalography signals from 35 healthy young adults performing a standing trunk flexion-extension task under two conditions (Vision and No-Vision). A random forest analysis identified the 10 most important variables for classifying the conditions, followed by a Wilcoxon signed-rank test. The results showed lower maximum forward COP displacement and trunk flexion angle, and faster maximum flexion angular velocity in the No-Vision condition. Additionally, the alpha/beta ratio of the POz during the switch phase was higher in the No-Vision condition. These findings suggest that visual deprivation affects cognitive- and sensory-integration-related brain regions during movement phases, indicating that sensory re-weighting due to visual deprivation impacts motor control. The effects of visual deprivation on motor control may be used for evaluation and therapeutic interventions in the future.
Collapse
Affiliation(s)
- Anna Sasaki
- Department of Physical Therapy, Faculty of Health Science, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto 607-8175, Japan
| | - Honoka Nagae
- Department of Physical Therapy, Faculty of Health Science, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto 607-8175, Japan
| | - Yukio Furusaka
- Department of Physical Therapy, Faculty of Health Science, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto 607-8175, Japan
| | - Kei Yasukawa
- Department of Physical Therapy, Faculty of Health Science, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto 607-8175, Japan
| | - Hayato Shigetoh
- Department of Physical Therapy, Faculty of Health Science, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto 607-8175, Japan
| | - Takayuki Kodama
- Department of Physical Therapy, Faculty of Health Science, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto 607-8175, Japan
| | - Junya Miyazaki
- Department of Physical Therapy, Faculty of Health Science, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto 607-8175, Japan
| |
Collapse
|
2
|
Dong R, Zhang X, Li H, Lu Z, Li C, Zhu A. Cross-domain prediction approach of human lower limb voluntary movement intention for exoskeleton robot based on EEG signals. Front Bioeng Biotechnol 2024; 12:1448903. [PMID: 39246298 PMCID: PMC11377221 DOI: 10.3389/fbioe.2024.1448903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Background and Objective Exoskeleton robot control should ideally be based on human voluntary movement intention. The readiness potential (RP) component of the motion-related cortical potential is observed before movement in the electroencephalogram and can be used for intention prediction. However, its single-trial features are weak and highly variable, and existing methods cannot achieve high cross-temporal and cross-subject accuracies in practical online applications. Therefore, this work aimed to combine a deep convolutional neural network (CNN) framework with a transfer learning (TL) strategy to predict the lower limb voluntary movement intention, thereby improving the accuracy while enhancing the model generalization capability; this would also provide sufficient processing time for the response of the exoskeleton robotic system and help realize robot control based on the intention of the human body. Methods The signal characteristics of the RP for lower limb movement were analyzed, and a parameter TL strategy based on CNN was proposed to predict the intention of voluntary lower limb movements. We recruited 10 subjects for offline and online experiments. Multivariate empirical-mode decomposition was used to remove the artifacts, and the moment of onset of voluntary movement was labeled using lower limb electromyography signals during network training. Results The RP features can be observed from multiple data overlays before the onset of voluntary lower limb movements, and these features have long latency periods. The offline experimental results showed that the average movement intention prediction accuracy was 95.23% ± 1.25% for the right leg and 91.21% ± 1.48% for the left leg, which showed good cross-temporal and cross-subject generalization while greatly reducing the training time. Online movement intention prediction can predict results about 483.9 ± 11.9 ms before movement onset with an average accuracy of 82.75%. Conclusion The proposed method has a higher prediction accuracy with a lower training time, has good generalization performance for cross-temporal and cross-subject aspects, and is well-prioritized in terms of the temporal responses; these features are expected to lay the foundation for further investigations on exoskeleton robot control.
Collapse
Affiliation(s)
- Runlin Dong
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaodong Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hanzhe Li
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhufeng Lu
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cunxin Li
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Aibin Zhu
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Takla TN, Chargo AN, Daugherty AM, Fritz NE. Cognitive Contributors of Backward Walking in Persons with Multiple Sclerosis. Mult Scler Int 2023; 2023:5582242. [PMID: 37600498 PMCID: PMC10438976 DOI: 10.1155/2023/5582242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/22/2023] Open
Abstract
Purpose Individuals with multiple sclerosis (MS) are at an increased fall risk due to motor and cognitive dysfunction. Our past studies suggest that backward walking (BW) velocity predicts fall risk; however, specific cognitive domains associated with BW velocity remain understudied. The goal of this study was to determine the specific contributions of cognitive functioning to BW velocity in persons with MS. We hypothesized that better visuospatial memory, verbal immediate recall, and faster information processing speed would contribute to faster BW velocity, and deficits in these domains would partially account for disease severity-related impairment in BW velocity. Methods Participants completed demographic questionnaires, walking tests, and cognitive assessments. Applied structural equation modeling was used to test our hypothesized model of competing cognitive mediators. Within the model, disease severity was a predictor of BW via three intercorrelated cognitive mediators. Results Participants included 39 individuals with relapsing-remitting MS. Results indicated that 35.3% of the significant total effect of disease severity on BW was accounted for by specific cognitive deficits. Verbal immediate recall had the largest contribution, followed by visuospatial memory and information processing speed. Conclusions When examining the unique effects of cognitive domains on disease severity-related deficits in BW, a meaningful source of impairment related to visuospatial memory and verbal immediate recall was demonstrated. Considering the utility of BW velocity as a predictor of falls, these results highlight the importance of assessing cognition when evaluating fall risk in MS. Cognitive-based intervention studies investigating fall prevention may find BW as a more specific and sensitive predictor of fall risk than forward walking.
Collapse
Affiliation(s)
- Taylor N. Takla
- Neuroimaging and Neurorehabilitation Laboratory, Wayne State University, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI, USA
| | - Alexis N. Chargo
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Ana M. Daugherty
- Translational Neuroscience Program, Wayne State University, Detroit, MI, USA
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Nora E. Fritz
- Neuroimaging and Neurorehabilitation Laboratory, Wayne State University, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI, USA
- Department of Health Care Sciences, Wayne State University, Detroit, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
4
|
Kannan L, Bhatt T, Zhang A, Ajilore O. Association of balance control mechanisms with brain structural integrity in older adults with mild cognitive impairment. Neurosci Lett 2022; 783:136699. [DOI: 10.1016/j.neulet.2022.136699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
5
|
Lucia S, Bianco V, Boccacci L, Di Russo F. Effects of a Cognitive-Motor Training on Anticipatory Brain Functions and Sport Performance in Semi-Elite Basketball Players. Brain Sci 2021; 12:brainsci12010068. [PMID: 35053809 PMCID: PMC8773627 DOI: 10.3390/brainsci12010068] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this research was to test the possible effects of cognitive–motor training (CMT) on athletes’ sport performance and cognitive functions. Namely, specific athletic tests, brain processes associated with anticipatory event-related potential (ERP) components and behavioral performance during a cognitive discrimination response task were evaluated pre- and post-training. Twenty-four young semi-professional basketball players were recruited for the study and randomly divided into an experimental (Exp) group executing the CMT training and a control (Con) group performing standard motor training. The CMT training protocol included exercises in which participants performed cognitive tasks during dribbling exercises using interactive devices which emitted visual and auditory stimuli, in which athletes’ responses were recorded. Results showed that following training, only the Exp group improved in all sport-specific tests (17%) and more than the Con group (88% vs. 60%) in response accuracy during the cognitive test. At brain level, post-training anticipatory cognitive processes associated with proactive inhibition and top-down attention in the prefrontal cortex were earlier and heightened in the Exp group. Our findings confirm previous studies on clear improved efficacy of CMT training protocols on sport performance and cognition compared to training based on motor exercises only, but extend the literature in showing that these effects might be explained by enhanced anticipatory brain processing in the prefrontal cortex. The present study also suggests that in order to achieve specific athletic goals, the brain adapts cognitive functions by means of neuroplasticity processes.
Collapse
Affiliation(s)
- Stefania Lucia
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy;
- Correspondence:
| | - Valentina Bianco
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100 Udine, Italy;
| | - Luca Boccacci
- Department of Psychology, University of Rome “La Sapienza”, 00185 Rome, Italy;
| | - Francesco Di Russo
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy;
- Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| |
Collapse
|
6
|
Obstacle avoidance movement-related motor cortical activity with cognitive task. Exp Brain Res 2021; 240:421-428. [PMID: 34775531 DOI: 10.1007/s00221-021-06268-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Lack of attention to obstacles on the floor or walking path may cause trip and fall accidents. The preparatory activity in the motor cortex to the perturbation associated with obstacle avoidance movements with cognitive task is still unclear. The purpose of this study was to investigate the motor cortical activity involved in the preparation and execution of concurrent obstacle avoidance movement and cognitive task. Twenty young adults were required to step over obstacles that were projected on the floor while performing a cognitive task. The electroencephalogram was recorded, and the movement-related cortical potentials (MRCP) aligned by foot dorsiflexion were evaluated. There was no significant difference in the number of contacts between the toe and the obstacle between the obstacle avoidance task and obstacle avoidance with cognitive task; however, the distance between the toe and the obstacle just before obstacle avoidance movement was significantly extended in the latter task. The amplitude and the onset of MRCP during the dual task were decreased and delayed, respectively, compared with the simple obstacle avoidance movement task. These results suggest that the young participants changed their clearance strategy to stepping over the obstacle during the concurrent motor and cognitive dual task to reduce motor cortical activity.
Collapse
|
7
|
Olsen S, Alder G, Williams M, Chambers S, Jochumsen M, Signal N, Rashid U, Niazi IK, Taylor D. Electroencephalographic Recording of the Movement-Related Cortical Potential in Ecologically Valid Movements: A Scoping Review. Front Neurosci 2021; 15:721387. [PMID: 34650399 PMCID: PMC8505671 DOI: 10.3389/fnins.2021.721387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/27/2021] [Indexed: 12/05/2022] Open
Abstract
The movement-related cortical potential (MRCP) is a brain signal that can be recorded using surface electroencephalography (EEG) and represents the cortical processes involved in movement preparation. The MRCP has been widely researched in simple, single-joint movements, however, these movements often lack ecological validity. Ecological validity refers to the generalizability of the findings to real-world situations, such as neurological rehabilitation. This scoping review aimed to synthesize the research evidence investigating the MRCP in ecologically valid movement tasks. A search of six electronic databases identified 102 studies that investigated the MRCP during multi-joint movements; 59 of these studies investigated ecologically valid movement tasks and were included in the review. The included studies investigated 15 different movement tasks that were applicable to everyday situations, but these were largely carried out in healthy populations. The synthesized findings suggest that the recording and analysis of MRCP signals is possible in ecologically valid movements, however the characteristics of the signal appear to vary across different movement tasks (i.e., those with greater complexity, increased cognitive load, or a secondary motor task) and different populations (i.e., expert performers, people with Parkinson’s Disease, and older adults). The scarcity of research in clinical populations highlights the need for further research in people with neurological and age-related conditions to progress our understanding of the MRCPs characteristics and to determine its potential as a measure of neurological recovery and intervention efficacy. MRCP-based neuromodulatory interventions applied during ecologically valid movements were only represented in one study in this review as these have been largely delivered during simple joint movements. No studies were identified that used ecologically valid movements to control BCI-driven external devices; this may reflect the technical challenges associated with accurately classifying functional movements from MRCPs. Future research investigating MRCP-based interventions should use movement tasks that are functionally relevant to everyday situations. This will facilitate the application of this knowledge into the rehabilitation setting.
Collapse
Affiliation(s)
- Sharon Olsen
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Gemma Alder
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Mitra Williams
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Seth Chambers
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Mads Jochumsen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Nada Signal
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Usman Rashid
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand.,Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
| | - Imran Khan Niazi
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand.,Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
| | - Denise Taylor
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
8
|
Bianco V, Berchicci M, Mussini E, Perri RL, Quinzi F, Di Russo F. Electrophysiological Evidence of Anticipatory Cognitive Control in the Stroop Task. Brain Sci 2021; 11:brainsci11060783. [PMID: 34199201 PMCID: PMC8231961 DOI: 10.3390/brainsci11060783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
The Stroop task has been largely used to explore the ability to inhibit the automatic process of reading when reporting the ink color of incongruent color-words. Given the extensive literature regarding the processes involved in task performance, here we aimed at exploring the anticipatory brain activities during the Stroop task using the event-related potential (ERP) method. To accomplish this, eighteen participants performed two different blocks where neutral words were intermixed with congruent and incongruent words, respectively. Results revealed consistent pre-stimulus activity over the frontal, premotor and parietal brain areas. The premotor and the parietal activities were also modulated by the Stroop effect, being more enhanced in the incongruent than in the congruent blocks. Present findings add on the current literature pointing at an unexplored locus of anticipatory cognitive control during task preparation, thus offering a new way to investigate top-down preparatory processes of performance control in the Stroop task.
Collapse
Affiliation(s)
- Valentina Bianco
- Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100 Udine, Italy
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
- Correspondence:
| | - Marika Berchicci
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (M.B.); (E.M.); (R.L.P.); (F.Q.)
| | - Elena Mussini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (M.B.); (E.M.); (R.L.P.); (F.Q.)
| | - Rinaldo Livio Perri
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (M.B.); (E.M.); (R.L.P.); (F.Q.)
- Department of Psychology, University “Niccolò Cusano”, 00166 Rome, Italy
| | - Federico Quinzi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (M.B.); (E.M.); (R.L.P.); (F.Q.)
| | - Francesco Di Russo
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (M.B.); (E.M.); (R.L.P.); (F.Q.)
| |
Collapse
|
9
|
Di Marco S, Fattori P, Galati G, Galletti C, Lappe M, Maltempo T, Serra C, Sulpizio V, Pitzalis S. Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas. Cortex 2021; 137:74-92. [PMID: 33607346 DOI: 10.1016/j.cortex.2020.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022]
Abstract
During locomotion, leg movements define the direction of walking (forward or backward) and the path one is taking (straight or curved). These aspects of locomotion produce characteristic visual motion patterns during movement. Here, we tested whether cortical regions responding to either egomotion-compatible visual motion, or leg movements, or both, are sensitive to these locomotion-relevant aspects of visual motion. We compared a curved path (typically the visual feedback of a changing direction of movement in the environment) to a linear path for simulated forward and backward motion in an event-related fMRI experiment. We used an individual surface-based approach and two functional localizers to define (1) six egomotion-related areas (V6+, V3A, intraparietal motion area [IPSmot], cingulate sulcus visual area [CSv], posterior cingulate area [pCi], posterior insular cortex [PIC]) using the flow field stimulus and (2) three leg-related cortical regions (human PEc [hPEc], human PE [hPE] and primary somatosensory cortex [S-I]) using a somatomotor task. Then, we extracted the response from all these regions with respect to the main event-related fMRI experiment, consisting of passive viewing of an optic flow stimulus, simulating a forward or backward direction of self-motion in either linear or curved path. Results showed that some regions have a significant preference for the curved path motion (hPEc, hPE, S-I, IPSmot) or a preference for the forward motion (V3A), while other regions have both a significant preference for the curved path motion and for the forward compared to backward motion (V6+, CSv, pCi). We did not find any significant effects of the present stimuli in PIC. Since controlling locomotion mainly means controlling changes of walking direction in the environment during forward self-motion, such a differential functional profile among these cortical regions suggests that they play a differentiated role in the visual guidance of locomotion.
Collapse
Affiliation(s)
- Sara Di Marco
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Markus Lappe
- Institute for Psychology, University of Muenster, Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Teresa Maltempo
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Chiara Serra
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Valentina Sulpizio
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| |
Collapse
|