1
|
Kolesnikova IA, Lalkovičova M, Severyukhin YS, Golikova KN, Utina DM, Pronskikh EV, Despotović SZ, Gaevsky VN, Pirić D, Masnikosa R, Budennaya NN. The Effects of Whole Body Gamma Irradiation on Mice, Age-Related Behavioral, and Pathophysiological Changes. Cell Mol Neurobiol 2023; 43:3723-3741. [PMID: 37402948 DOI: 10.1007/s10571-023-01381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
We designed a study with the objective to determine the long-term radiation effects of gamma rays, originating from a single shot of Co60 at a dose of 2 Gy on the 7-month-old male mice of the ICR line in 30 days after the irradiation. The aim of this study was to characterize the behavior of animals using the Open Field test, immuno-hematological status, and morpho-functional changes in the central nervous system of mice. Irradiated animals displayed significantly different behavior in the OF in comparison with the control group. The radiation damage was confirmed by assessing the ratio of leukocytes in the peripheral blood of mice at a later date after exposure to Co60. After irradiation, a decrease in the glioneuronal complex was observed in the irritated group as well as histological changes of brain cells. To sum up, not only was the hematological status of mice altered upon the total gamma irradiation, but also their behavior, which was most probably due to significant alterations in the CNS. Study of influence of ionizing radiation on female mice, comparison between different age groups. Open Field test on the 30 days after 2 Gy of γ-rays and histological analysis indicated changes in behavioral patterns, leucocytes, and brain tissue.
Collapse
Affiliation(s)
- I A Kolesnikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - M Lalkovičova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198.
- Department of Physical Chemistry, Pavol Jozef Safarik University in Košice, Šrobárova 2, 04154, Košice, Slovakia.
| | - Yu S Severyukhin
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| | - K N Golikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - D M Utina
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - E V Pronskikh
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| | - Sanja Z Despotović
- Institute of Histology and Embryology, University of Belgrade, Belgrade, Serbia
| | - V N Gaevsky
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - D Pirić
- Department of Physical Chemistry, Institute of Nuclear Sciences Vinča, National Institute of Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11001, Belgrade, Serbia
| | - R Masnikosa
- Department of Physical Chemistry, Institute of Nuclear Sciences Vinča, National Institute of Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11001, Belgrade, Serbia
| | - N N Budennaya
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| |
Collapse
|
2
|
Simmons P, Trujillo M, McElroy T, Binz R, Pathak R, Allen AR. Evaluating the effects of low-dose simulated galactic cosmic rays on murine hippocampal-dependent cognitive performance. Front Neurosci 2022; 16:908632. [PMID: 36561122 PMCID: PMC9765097 DOI: 10.3389/fnins.2022.908632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/12/2022] [Indexed: 12/12/2022] Open
Abstract
Space exploration has advanced substantially over recent decades and plans to increase the duration of deep space missions are in preparation. One of the primary health concerns is potential damage to the central nervous system (CNS), resulting in loss of cognitive abilities and function. The majority of ground-based research on space radiation-induced health risks has been conducted using single particle simulations, which do not effectively model real-world scenarios. Thus, to improve the safety of space missions, we must expand our understanding of the effects of simulated galactic cosmic rays (GCRs) on the CNS. To assess the effects of low-dose GCR, we subjected 6-month-old male BALB/c mice to 50 cGy 5-beam simplified GCR spectrum (1H, 28Si, 4He, 16O, and 56Fe) whole-body irradiation at the NASA Space Radiation Laboratory. Animals were tested for cognitive performance with Y-maze and Morris water maze tests 3 months after irradiation. Irradiated animals had impaired short-term memory and lacked spatial memory retention on day 5 of the probe trial. Glial cell analysis by flow cytometry showed no significant changes in oligodendrocytes, astrocytes, microglia or neural precursor cells (NPC's) between the sham group and GCR group. Bone marrow cytogenetic data showed a significant increase in the frequency of chromosomal aberrations after GCR exposure. Finally, tandem mass tag proteomics identified 3,639 proteins, 113 of which were differentially expressed when comparing sham versus GCR exposure (fold change > 1.5; p < 0.05). Our data suggest exposure to low-dose GCR induces cognitive deficits by impairing short-term memory and spatial memory retention.
Collapse
Affiliation(s)
- Pilar Simmons
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Madison Trujillo
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Taylor McElroy
- Department of Aging, University of Florida, Gainesville, FL, United States
| | - Regina Binz
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Rupak Pathak
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States,*Correspondence: Antiño R. Allen,
| |
Collapse
|
3
|
Nemec-Bakk AS, Sridharan V, Landes RD, Singh P, Cao M, Dominic P, Seawright JW, Chancellor JC, Boerma M. Effects of low-dose oxygen ions on cardiac function and structure in female C57BL/6J mice. LIFE SCIENCES IN SPACE RESEARCH 2022; 32:105-112. [PMID: 35065756 PMCID: PMC8803400 DOI: 10.1016/j.lssr.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 05/07/2023]
Abstract
PURPOSE Astronauts in space vehicles beyond low-Earth orbit will be exposed to high charge and energy (HZE) ions, and there is concern about potential adverse effects on the cardiovascular system. Thus far, most animal studies that assess cardiac effects of HZE particles have included only males. This study assessed the effects of oxygen ions (16O) as a representative ion of the intravehicular radiation environment on the heart of female mice. MATERIALS AND METHODS Female C57BL/6 J mice at 6 months of age were exposed to 16O (600 MeV/n) at 0.25-0.26 Gy/min to a total dose of 0, 0.1, or 0.25 Gy. Cardiac function and abdominal aorta blood velocity were measured with ultrasonography at 3, 5, 7, and 9 months after irradiation. At 2 weeks, 3 months, and 9 months, cardiac tissue was collected to assess collagen deposition and markers of immune cells. RESULTS Ultrasonography revealed increased left ventricle mass, diastolic volume and diameter but there was no change in the abdominal aorta. There was no indication of cardiac fibrosis however, a 75 kDa peptide of left ventricular collagen type III and α-smooth muscle cell actin were increased suggesting some remodeling had occurred. Left ventricular protein levels of the T-cell marker CD2 was significantly increased at all time points, while the neutrophil marker myeloperoxidase was decreased at 2 weeks and 9 months. CONCLUSIONS These results taken together suggest 16O ion exposure did not result in cardiac fibrosis or cardiac dysfunction in female mice. However, it does appear mild cardiac remodeling occurs in response to HZE radiation.
Collapse
Affiliation(s)
- Ashley S Nemec-Bakk
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Preeti Singh
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maohua Cao
- College of Dentistry, Texas A&M University, Dallas TX, USA
| | - Paari Dominic
- Department of Medicine and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | - Jeffery C Chancellor
- Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA, USA; Department of Preventative Medicine & Population Health, University of Texas Medical Branch, Galveston, TX, USA; Outer Space Institute, University of British Columbia, Vancouver, CA, Canada
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|