1
|
Tays GD, Hupfeld KE, McGregor HR, Beltran NE, Kofman IS, De Dios YE, Mulder ER, Bloomberg JJ, Mulavara AP, Wood SJ, Seidler RD. Daily artificial gravity is associated with greater neural efficiency during sensorimotor adaptation. Cereb Cortex 2023; 33:8011-8023. [PMID: 36958815 PMCID: PMC10267627 DOI: 10.1093/cercor/bhad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023] Open
Abstract
Altered vestibular signaling and body unloading in microgravity results in sensory reweighting and adaptation. Microgravity effects are well-replicated in head-down tilt bed rest (HDBR). Artificial gravity (AG) is a potential countermeasure to mitigate the effects of microgravity on human physiology and performance. We examined the effectiveness of daily AG for mitigating brain and/or behavioral changes in 60 days of HDBR. One group received AG for 30 minutes daily (AG; n = 16) and a control group spent the same time in HDBR but received no AG (CTRL; n = 8). All participants performed a sensorimotor adaptation task five times during fMRI scanning: twice prior to HDBR, twice during HDBR, and once following HDBR. The AG group showed similar behavioral adaptation effects compared with the CTRLs. We identified decreased brain activation in the AG group from pre to late HDBR in the cerebellum for the task baseline portion and in the thalamus, calcarine, cuneus, premotor cortices, and superior frontal gyrus in the AG group during the early adaptation phase. The two groups also exhibited differential brain-behavior correlations. Together, these results suggest that AG may result in a reduced recruitment of brain activity for basic motor processes and sensorimotor adaptation. These effects may stem from the somatosensory and vestibular stimulation that occur with AG.
Collapse
Affiliation(s)
- Grant D Tays
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32603, USA
| | - Kathleen E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32603, USA
| | - Heather R McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32603, USA
| | | | | | | | | | | | | | - Scott J Wood
- NASA Johnson Space Center, Houston, TX 77058, USA
| | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32603, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32603, USA
| |
Collapse
|
2
|
Onishi H, Nagasaka K, Yokota H, Kojima S, Ohno K, Sakurai N, Kodama N, Sato D, Otsuru N. Association between somatosensory sensitivity and regional gray matter volume in healthy young volunteers: a voxel-based morphometry study. Cereb Cortex 2023; 33:2001-2010. [PMID: 35580840 PMCID: PMC9977372 DOI: 10.1093/cercor/bhac188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Two-point discrimination (2PD) test reflects somatosensory spatial discrimination ability, but evidence on the relationship between 2PD and cortical gray matter (GM) volume is limited. This study aimed to analyze the relationship between cortical GM volume and 2PD threshold in young healthy individuals and to clarify the characteristics of brain structure reflecting the individual differences in somatosensory function. 2PD was measured in 42 healthy (20 females) volunteers aged 20-32 years using a custom-made test system that can be controlled by a personal computer. The 2PD of the right index finger measured with this device has been confirmed to show good reproducibility. T1-weighted images were acquired using a 3-T magnetic resonance imaging scanner for voxel-based morphometry analysis. The mean 2PD threshold was 2.58 ± 0.54 mm. Whole-brain multiple regression analysis of the relationship between 2PD and GM volume showed that a lower 2PD threshold (i.e. better somatosensory function) significantly correlated with decreased GM volume from the middle temporal gyrus to the inferior parietal lobule (IPL) in the contralateral hemisphere. In conclusion, a lower GM volume in the middle temporal gyrus and IPL correlates with better somatosensory function. Thus, cortical GM volume may be a biomarker of somatosensory function.
Collapse
Affiliation(s)
- Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Kazuaki Nagasaka
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Ken Ohno
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Noriko Sakurai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Naoki Kodama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Daisuke Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| |
Collapse
|
3
|
Xie HM, Xing ZT, Chen ZY, Zhang XT, Qiu XJ, Jia ZS, Zhang LN, Yu XG. Regional brain atrophy in patients with chronic ankle instability: A voxel-based morphometry study. Front Neurosci 2022; 16:984841. [PMID: 36188473 PMCID: PMC9519998 DOI: 10.3389/fnins.2022.984841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to investigate whether brain volume changes occur in patients with chronic ankle instability (CAI) using voxel-based morphometry and assessing correlations with clinical tests. Structural magnetic resonance imaging data were prospectively acquired in 24 patients with CAI and 34 healthy controls. CAI symptoms and pain intensity were assessed using the Foot and Ankle Ability Measure (FAAM), Cumberland Ankle Instability Tool (CAIT), American Orthopedic Foot and Ankle Society (AOFAS) ankle-hindfoot score, and visual analog scale (VAS). The gray matter volume (GMV) of each voxel was compared between the two groups while controlling for age, sex, weight, and education level. Correlation analysis was performed to identify associations between abnormal GMV regions and the FAAM score, AOFAS score, VAS score, disease duration, and body mass index. Patients with CAI exhibited reduced GMV in the right precentral and postcentral areas, right parahippocampal area, left thalamus, left parahippocampal area, and left postcentral area compared to that of healthy controls. Furthermore, the right parahippocampal (r = 0.642, p = 0.001), left parahippocampal (r = 0.486, p = 0.016), and left postcentral areas (r = 0.521, p = 0.009) were positively correlated with disease duration. The left thalamus was positively correlated with the CAIT score and FAAM activities of daily living score (r = 0.463, p = 0.023 and r = 0.561, p = 0.004, respectively). A significant positive correlation was found between the local GMV of the right and left parahippocampal areas (r = 0.487, p = 0.016 and r = 0.763, p < 0.001, respectively) and the AOFAS score. Neural plasticity may occur in the precentral and postcentral areas, parahippocampal area, and thalamus in patients with CAI. The patterns of structural reorganization in patients with CAI may provide useful information on the neuropathological mechanisms of CAI.
Collapse
Affiliation(s)
- Hui-Min Xie
- Medical School of Chinese PLA, Beijing, China
- Department of Rehabilitation Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhen-Tong Xing
- Department of Rehabilitation Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Zhi-Ye Chen
- Department of Radiology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | | | - Xiao-Juan Qiu
- Department of Rehabilitation Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Zi-Shan Jia
- Medical School of Chinese PLA, Beijing, China
| | - Li-Ning Zhang
- Medical School of Chinese PLA, Beijing, China
- Li-Ning Zhang
| | - Xin-Guang Yu
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Xin-Guang Yu
| |
Collapse
|
4
|
Raviskanthan S, Ray JC, Mortensen PW, Lee AG. Neuroimaging in Visual Snow - A Review of the Literature. FRONTIERS IN OPHTHALMOLOGY 2022; 2:758963. [PMID: 38983561 PMCID: PMC11182151 DOI: 10.3389/fopht.2022.758963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/17/2022] [Indexed: 07/11/2024]
Abstract
Since the first description of visual snow syndrome (VSS) in 1995, there has been increasing interest particularly within the past 5-10 years in phenotyping the condition and differentiating it from conditions such as migraine with aura and hallucinogen persisting perception disorder. Structural and functional neuroimaging has provided valuable insights in this regard, yielding functional networks and anatomical regions of interest, of which the right lingual gyrus is of particular note. Various modalities, including functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and single photon emission computed tomography (SPECT), have all been studied in patients with visual snow. In this article, we conduct a comprehensive literature review of neuroimaging in VSS.
Collapse
Affiliation(s)
- Subahari Raviskanthan
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, United States
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
- Department of Neuro-Ophthalmology, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Jason C. Ray
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
- Department of Neuroscience, Monash University, Clayton, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
| | - Peter W. Mortensen
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Andrew G. Lee
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, United States
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY, United States
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Neurosurgery, Weill Cornell Medicine, New York, NY, United States
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Ophthalmology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Ophthalmology, Texas A and M College of Medicine, Bryan, TX, United States
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|