1
|
Li Y, Zhang B, Xu J, Jiang X, Jing L, Tian Y, Wang K, Zhang J. Inhibiting the JNK Signaling Pathway Attenuates Hypersensitivity and Anxiety-Like Behavior in a Rat Model of Non-specific Chronic Low Back Pain. J Mol Neurosci 2024; 74:73. [PMID: 39046556 DOI: 10.1007/s12031-024-02252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Low back pain (LBP) has become a leading cause of disability worldwide. Astrocyte activation in the spinal cord plays an important role in the maintenance of latent sensitization of dorsal horn neurons in LBP. However, the role of spinal c-Jun N-terminal kinase (JNK) in astrocytes in modulating pain behavior of LBP model rats and its neurobiological mechanism have not been elucidated. Here, we investigate the role of the JNK signaling pathway on hypersensitivity and anxiety-like behavior caused by repetitive nerve growth factor (NGF) injections in male non-specific LBP model rats. LBP was produced by two injections (day 0, day 5) of NGF into multifidus muscle of the low backs of rats. We observed prolonged mechanical and thermal hypersensitivity in the low backs or hindpaws. Persistent anxiety-like behavior was observed, together with astrocyte, p-JNK, and neuronal activation and upregulated expression of monocyte chemoattractant protein-1 (MCP-1), and chemokine (C-X-C motif) ligand 1 (CXCL1) proteins in the spinal L2 segment. Second, the JNK inhibitor SP600125 was intrathecally administrated in rats from day 10 to day 12. It attenuated mechanical and thermal hypersensitivity of the low back or hindpaws and anxiety-like behavior. Meanwhile, SP600125 decreased astrocyte and neuronal activation and the expression of MCP-1 and CXCL1 proteins. These results showed that hypersensitivity and anxiety-like behavior induced by NGF in LBP rats could be attenuated by the JNK inhibitor, together with downregulation of spinal astrocyte activation, neuron activation, and inflammatory cytokines. Our results indicate that intervening with the spinal JNK signaling pathway presents an effective therapeutic approach to alleviating LBP.
Collapse
Affiliation(s)
- Yifan Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Bingyu Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Jie Xu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Xiao Jiang
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
| | - Liang Jing
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
- The Second Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230000, China
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Hefei, 230000, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230000, China
| | - Juanjuan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China.
| |
Collapse
|
2
|
Barbe MF, Chen FL, Loomis RH, Harris MY, Kim BM, Xie K, Hilliard BA, McGonagle ER, Bailey TD, Gares RP, Van Der Bas M, Kalicharan BA, Holt-Bright L, Stone LS, Hodges PW, Klyne DM. Characterization of pain-related behaviors in a rat model of acute-to-chronic low back pain: single vs. multi-level disc injury. FRONTIERS IN PAIN RESEARCH 2024; 5:1394017. [PMID: 38770243 PMCID: PMC11102983 DOI: 10.3389/fpain.2024.1394017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Low back pain is the most common type of chronic pain. We examined pain-related behaviors across 18 weeks in rats that received injury to one or two lumbar intervertebral discs (IVD) to determine if multi-level disc injuries enhance/prolong pain. Methods Twenty-three Sprague-Dawley adult female rats were used: 8 received disc puncture (DP) of one lumbar IVD (L5/6, DP-1); 8 received DP of two lumbar IVDs (L4/5 & L5/6, DP-2); 8 underwent sham surgery. Results DP-2 rats showed local (low back) sensitivity to pressure at 6- and 12-weeks post-injury, and remote sensitivity to pressure (upper thighs) at 12- and 18-weeks and touch (hind paws) at 6, 12 and 18-weeks. DP-1 rats showed local and remote pressure sensitivity at 12-weeks only (and no tactile sensitivity), relative to Sham DP rats. Both DP groups showed reduced distance traveled during gait testing over multiple weeks, compared to pre-injury; only DP-2 rats showed reduced distance relative to Sham DP rats at 12-weeks. DP-2 rats displayed reduced positive interactions with a novel adult female rat at 3-weeks and hesitation and freezing during gait assays from 6-weeks onwards. At study end (18-weeks), radiological and histological analyses revealed reduced disc height and degeneration of punctured IVDs. Serum BDNF and TNFα levels were higher at 18-weeks in DP-2 rats, relative to Sham DP rats, and levels correlated positively with remote sensitivity in hind paws (tactile) and thighs (pressure). Discussion Thus, multi-level disc injuries resulted in earlier, prolonged and greater discomfort locally and remotely, than single-level disc injury. BDNF and TNFα may have contributing roles.
Collapse
Affiliation(s)
- Mary F. Barbe
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Frank Liu Chen
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Regina H. Loomis
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michele Y. Harris
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Brandon M. Kim
- Medical Doctor Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Kevin Xie
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Brendan A. Hilliard
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Elizabeth R. McGonagle
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Taylor D. Bailey
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Ryan P. Gares
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Megan Van Der Bas
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Betsy A. Kalicharan
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lewis Holt-Bright
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Laura S. Stone
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN, United States
| | - Paul W. Hodges
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - David M. Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Yang W, Li K, Pan Q, Huang W, Xiao Y, Lin H, Liu S, Chen X, Lv X, Feng S, Shao Z, Qing X, Peng Y. An Engineered Bionic Nanoparticle Sponge as a Cytokine Trap and Reactive Oxygen Species Scavenger to Relieve Disc Degeneration and Discogenic Pain. ACS NANO 2024; 18:3053-3072. [PMID: 38237054 PMCID: PMC10832058 DOI: 10.1021/acsnano.3c08097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
The progressive worsening of disc degeneration and related nonspecific back pain are prominent clinical issues that cause a tremendous economic burden. Activation of reactive oxygen species (ROS) related inflammation is a primary pathophysiologic change in degenerative disc lesions. This pathological state is associated with M1 macrophages, apoptosis of nucleus pulposus cells (NPC), and the ingrowth of pain-related sensory nerves. To address the pathological issues of disc degeneration and discogenic pain, we developed MnO2@TMNP, a nanomaterial that encapsulated MnO2 nanoparticles with a TrkA-overexpressed macrophage cell membrane (TMNP). Consequently, this engineered nanomaterial showed high efficiency in binding various inflammatory factors and nerve growth factors, which inhibited inflammation-induced NPC apoptosis, matrix degradation, and nerve ingrowth. Furthermore, the macrophage cell membrane provided specific targeting to macrophages for the delivery of MnO2 nanoparticles. MnO2 nanoparticles in macrophages effectively scavenged intracellular ROS and prevented M1 polarization. Supportively, we found that MnO2@TMNP prevented disc inflammation and promoted matrix regeneration, leading to downregulated disc degenerative grades in the rat injured disc model. Both mechanical and thermal hyperalgesia were alleviated by MnO2@TMNP, which was attributed to the reduced calcitonin gene-related peptide (CGRP) and substance P expression in the dorsal root ganglion and the downregulated Glial Fibrillary Acidic Protein (GFAP) and Fos Proto-Oncogene (c-FOS) signaling in the spinal cord. We confirmed that the MnO2@TMNP nanomaterial alleviated the inflammatory immune microenvironment of intervertebral discs and the progression of disc degeneration, resulting in relieved discogenic pain.
Collapse
Affiliation(s)
- Wenbo Yang
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Kanglu Li
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Qing Pan
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Wei Huang
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Yan Xiao
- Department
of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Hui Lin
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Sheng Liu
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Xuanzuo Chen
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Xiao Lv
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Shiqing Feng
- The
Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, People’s Republic
of China
- Department
of Orthopaedics, Tianjin Medical University General Hospital, Tianjin
Medical University, International Science and Technology Cooperation
Base of Spinal Cord Injury, Tianjin Key
Laboratory of Spine and Spinal Cord, Tianjin 300052, People’s Republic of China
- Department
of Orthopaedics, Qilu Hospital of Shandong University, Shandong University
Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo
College of Medicine, Shandong University, Jinan, Shandong 250012, People’s
Republic of China
| | - Zengwu Shao
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Xiangcheng Qing
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Yizhong Peng
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| |
Collapse
|
4
|
Persistent muscle hyperalgesia after adolescent stress is exacerbated by a mild-nociceptive input in adulthood and is associated with microglia activation. Sci Rep 2022; 12:18324. [PMID: 36316425 PMCID: PMC9622712 DOI: 10.1038/s41598-022-21808-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
Non-specific low back pain (LBP) is a major global disease burden and childhood adversity predisposes to its development. The mechanisms are largely unknown. Here, we investigated if adversity in young rats augments mechanical hyperalgesia and how spinal cord microglia contribute to this. Adolescent rats underwent restraint stress, control animals were handled. In adulthood, all rats received two intramuscular injections of NGF/saline or both into the lumbar multifidus muscle. Stress induced in rats at adolescence lowered low back pressure pain threshold (PPT; p = 0.0001) and paw withdrawal threshold (PWT; p = 0.0007). The lowered muscle PPT persisted throughout adulthood (p = 0.012). A subsequent NGF in adulthood lowered only PPT (d = 0.87). Immunohistochemistry revealed changes in microglia morphology: stress followed by NGF induced a significant increase in ameboid state (p < 0.05). Repeated NGF injections without stress showed significantly increased cell size in surveilling and bushy states (p < 0.05). Thus, stress in adolescence induced persistent muscle hyperalgesia that can be enhanced by a mild-nociceptive input. The accompanying morphological changes in microglia differ between priming by adolescent stress and by nociceptive inputs. This novel rodent model shows that adolescent stress is a risk factor for the development of LBP in adulthood and that morphological changes in microglia are signs of spinal mechanisms involved.
Collapse
|
5
|
Syrett M, Reed NR, Reed WR, Richey ML, Frolov A, Little JW. Sex-Related Pain Behavioral Differences following Unilateral NGF Injections in a Rat Model of Low Back Pain. BIOLOGY 2022; 11:biology11060924. [PMID: 35741445 PMCID: PMC9219698 DOI: 10.3390/biology11060924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Low back pain (LBP) is a globally prevalent and costly societal problem with multifactorial etiologies and incompletely understood pathophysiological mechanisms. To address such shortcomings regarding the role of neurotrophins in the underlying mechanisms of pain, an LBP model was developed in rats involving two unilateral intramuscular injections of nerve growth factor (NGF) into deep trunk muscles. To date, behavioral investigations of this NGF-LBP model have been limited, especially as it pertains to female pain behaviors. This study compared mechanical sensitivity to noxious (hyperalgesia) and non-noxious (hypersensitivity) stimuli in control and NGF-injected male and female rats through pain resolution. Although the baseline testing revealed no differences between males and females, NGF-injected females demonstrated prolonged ipsilateral deep trunk mechanical hyperalgesia that resolved seven days later than males. Moreover, females showed bilateral trunk mechanical sensitivity to noxious and non-noxious stimuli compared to only ipsilateral behaviors in males. Sex differences were also observed in the severity of behavioral responses, with females displaying greater mean differences from baseline at several timepoints. Overall, these NGF-LBP behavioral findings mirror some of the sex differences reported in the clinical presentation of LBP and accentuate the translatability of this NGF-LBP model. Future studies using this LBP-NGF model could help to elucidate the neurobiological mechanisms responsible for the development, severity, and/or resolution of muscular LBP as well as to provide insights into the processes governing the transition from acute to chronic LBP.
Collapse
Affiliation(s)
- Michael Syrett
- Saint Louis University School of Medicine, 1402 South Grand Blvd., Saint Louis, MO 63104, USA; (M.S.); (N.R.R.); (M.L.R.); (A.F.)
| | - Nicholas R. Reed
- Saint Louis University School of Medicine, 1402 South Grand Blvd., Saint Louis, MO 63104, USA; (M.S.); (N.R.R.); (M.L.R.); (A.F.)
| | - William R. Reed
- Department of Physical Therapy, University of Alabama at Birmingham, 1720 2nd Ave. South, Birmingham, AL 35294, USA;
| | - Madison L. Richey
- Saint Louis University School of Medicine, 1402 South Grand Blvd., Saint Louis, MO 63104, USA; (M.S.); (N.R.R.); (M.L.R.); (A.F.)
| | - Andrey Frolov
- Saint Louis University School of Medicine, 1402 South Grand Blvd., Saint Louis, MO 63104, USA; (M.S.); (N.R.R.); (M.L.R.); (A.F.)
| | - Joshua W. Little
- Saint Louis University School of Medicine, 1402 South Grand Blvd., Saint Louis, MO 63104, USA; (M.S.); (N.R.R.); (M.L.R.); (A.F.)
- Correspondence:
| |
Collapse
|