1
|
Lawther AJ, Zieba J, Fang Z, Furlong TM, Conn I, Govindaraju H, Choong LLY, Turner N, Siddiqui KS, Bridge W, Merlin S, Hyams TC, Killingsworth M, Eapen V, Clarke RA, Walker AK. Antioxidant Behavioural Phenotype in the Immp2l Gene Knock-Out Mouse. Genes (Basel) 2023; 14:1717. [PMID: 37761857 PMCID: PMC10531238 DOI: 10.3390/genes14091717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondrial dysfunction is strongly associated with autism spectrum disorder (ASD) and the Inner mitochondrial membrane protein 2-like (IMMP2L) gene is linked to autism inheritance. However, the biological basis of this linkage is unknown notwithstanding independent reports of oxidative stress in association with both IMMP2L and ASD. To better understand IMMP2L's association with behaviour, we developed the Immp2lKD knockout (KO) mouse model which is devoid of Immp2l peptidase activity. Immp2lKD -/- KO mice do not display any of the core behavioural symptoms of ASD, albeit homozygous Immp2lKD -/- KO mice do display increased auditory stimulus-driven instrumental behaviour and increased amphetamine-induced locomotion. Due to reports of increased ROS and oxidative stress phenotypes in an earlier truncated Immp2l mouse model resulting from an intragenic deletion within Immp2l, we tested whether high doses of the synthetic mitochondrial targeted antioxidant (MitoQ) could reverse or moderate the behavioural changes in Immp2lKD -/- KO mice. To our surprise, we observed that ROS levels were not increased but significantly lowered in our new Immp2lKD -/- KO mice and that these mice had no oxidative stress-associated phenotypes and were fully fertile with no age-related ataxia or neurodegeneration as ascertained using electron microscopy. Furthermore, the antioxidant MitoQ had no effect on the increased amphetamine-induced locomotion of these mice. Together, these findings indicate that the behavioural changes in Immp2lKD -/- KO mice are associated with an antioxidant-like phenotype with lowered and not increased levels of ROS and no oxidative stress-related phenotypes. This suggested that treatments with antioxidants are unlikely to be effective in treating behaviours directly resulting from the loss of Immp2l/IMMP2L activity, while any behavioural deficits that maybe associated with IMMP2L intragenic deletion-associated truncations have yet to be determined.
Collapse
Affiliation(s)
- Adam J. Lawther
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Jerzy Zieba
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Department of Psychology, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Zhiming Fang
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
| | - Teri M. Furlong
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Illya Conn
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Hemna Govindaraju
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Laura L. Y. Choong
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Khawar Sohail Siddiqui
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wallace Bridge
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sam Merlin
- Medical Science, School of Science, Western Sydney University, Campbelltown, Sydney, NSW 2751, Australia
| | - Tzipi Cohen Hyams
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
| | - Murray Killingsworth
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- NSW Health Pathology, Liverpool Hospital Campus, 1 Campbell Street, Liverpool, NSW 2107, Australia
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
| | - Raymond A. Clarke
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
| | - Adam K. Walker
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
2
|
Filošević Vujnović A, Rubinić M, Starčević I, Andretić Waldowski R. Influence of Redox and Dopamine Regulation in Cocaine-Induced Phenotypes Using Drosophila. Antioxidants (Basel) 2023; 12:antiox12040933. [PMID: 37107308 PMCID: PMC10136103 DOI: 10.3390/antiox12040933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Reactive Oxidative Species (ROS) are produced during cellular metabolism and their amount is finely regulated because of negative consequences that ROS accumulation has on cellular functioning and survival. However, ROS play an important role in maintaining a healthy brain by participating in cellular signaling and regulating neuronal plasticity, which led to a shift in our understanding of ROS from being solely detrimental to having a more complex role in the brain. Here we use Drosophila melanogaster to investigate the influence of ROS on behavioral phenotypes induced by single or double exposure to volatilized cocaine (vCOC), sensitivity and locomotor sensitization (LS). Sensitivity and LS depend on glutathione antioxidant defense. Catalase activity and hydrogen peroxide (H2O2) accumulation play a minor role, but their presence is necessary in dopaminergic and serotonergic neurons for LS. Feeding flies the antioxidant quercetin completely abolishes LS confirming the permissive role of H2O2 in the development of LS. This can only partially be rescued by co-feeding H2O2 or the dopamine precursor 3,4-dihydroxy-L-phenylalanine (L-DA) showing coordinate and similar contribution of dopamine and H2O2. Genetic versatility of Drosophila can be used as a tool for more precise dissection of temporal, spatial and transcriptional events that regulate behaviors induced by vCOC.
Collapse
Affiliation(s)
| | - Marko Rubinić
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivona Starčević
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | | |
Collapse
|
3
|
Zegers-Delgado J, Aguilera-Soza A, Calderón F, Davidson H, Verbel-Vergara D, Yarur HE, Novoa J, Blanlot C, Bastias CP, Andrés ME, Gysling K. Type 1 Corticotropin-Releasing Factor Receptor Differentially Modulates Neurotransmitter Levels in the Nucleus Accumbens of Juvenile versus Adult Rats. Int J Mol Sci 2022; 23:ijms231810800. [PMID: 36142716 PMCID: PMC9505341 DOI: 10.3390/ijms231810800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Adversity is particularly pernicious in early life, increasing the likelihood of developing psychiatric disorders in adulthood. Juvenile and adult rats exposed to social isolation show differences in anxiety-like behaviors and significant changes in dopamine (DA) neurotransmission in the nucleus accumbens (NAc). Brain response to stress is partly mediated by the corticotropin-releasing factor (CRF) system, composed of CRF and its two main receptors, CRF-R1 and CRF-R2. In the NAc shell of adult rats, CRF induces anxiety-like behavior and changes local DA balance. However, the role of CRF receptors in the control of neurotransmission in the NAc is not fully understood, nor is it known whether there are differences between life stages. Our previous data showed that infusion of a CRF-R1 antagonist into the NAc of juvenile rats increased DA levels in response to a depolarizing stimulus and decreased basal glutamate levels. To extend this analysis, we now evaluated the effect of a CRF-R1 antagonist infusion in the NAc of adult rats. Here, we describe that the opposite occurred in the NAc of adult compared to juvenile rats. Infusion of a CRF-R1 antagonist decreased DA and increased glutamate levels in response to a depolarizing stimulus. Furthermore, basal levels of DA, glutamate, and γ-Aminobutyric acid (GABA) were similar in juvenile animals compared to adults. CRF-R1 protein levels and localization were not different in juvenile compared to adult rats. Interestingly, we observed differences in the signaling pathways of CRF-R1 in the NAc of juveniles compared to adult rats. We propose that the function of CRF-R1 receptors is differentially modulated in the NAc according to life stage.
Collapse
|