1
|
McFleder RL, Musacchio T, Keller J, Knorr S, Petschner T, Chen JZ, Muthuraman M, Badr M, Harder-Rauschenberger L, Kremer F, Asci S, Steinhauser S, Karl AK, Brotchie JM, Koprich JB, Volkmann J, Ip CW. Deep brain stimulation halts Parkinson's disease-related immune dysregulation in the brain and peripheral blood. Brain Behav Immun 2024; 123:851-862. [PMID: 39481497 DOI: 10.1016/j.bbi.2024.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/13/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024] Open
Abstract
Immune dysregulation in the brain and periphery is thought to contribute to the detrimental neurodegeneration that occurs in Parkinson's disease (PD). Identifying mechanisms to reverse this dysregulation is key to developing disease-altering therapeutics for this currently incurable disease. Here we utilized the longitudinal data from the Parkinson's Progression Marker Initiative to demonstrate that circulating lymphocytes progressively decline in PD and can be used to predict future motor symptom progression. Deep brain stimulation (DBS), which is used as a symptomatic treatment, could halt this progressive decline. By analyzing specific immune populations from a second cohort of patients, we could show that DBS causes a shift from the pro-inflammatory CD4+ T helper 17 cells driving neurodegeneration to anti-inflammatory CD4+ regulatory T cells. RNA-sequencing and immunohistochemistry in the brain of the A53T alpha-synuclein rat model of PD revealed that DBS also decreases neuroinflammation. These data suggest a potential disease-altering role for DBS by halting inflammatory processes.
Collapse
Affiliation(s)
- Rhonda L McFleder
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Thomas Musacchio
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Johanna Keller
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Susanne Knorr
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Tobias Petschner
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Jia Zhi Chen
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | | | - Mohammad Badr
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | | | - Fabian Kremer
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Selin Asci
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Sophie Steinhauser
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Ann-Kathrin Karl
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Jonathan M Brotchie
- Atuka Inc., Toronto, ON, Canada; Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - James B Koprich
- Atuka Inc., Toronto, ON, Canada; Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Chevalier S, Decourt M, Francheteau M, Nicol F, Balbous A, Fernagut PO, Benoit-Marand M. Alpha-synuclein-induced nigrostriatal degeneration and pramipexole treatment disrupt frontostriatal plasticity. NPJ Parkinsons Dis 2024; 10:169. [PMID: 39251645 PMCID: PMC11385550 DOI: 10.1038/s41531-024-00781-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Parkinson's disease is characterized by the degeneration of substantia nigra pars compacta (SNc) dopaminergic neurons, leading to motor and cognitive symptoms. Numerous cellular and molecular adaptations following neurodegeneration or dopamine replacement therapy (DRT) have been described in motor networks but little is known regarding associative basal ganglia loops. This study investigated the contributions of nigrostriatal degeneration and pramipexole (PPX) on neuronal activity in the orbitofrontal cortex (OFC), frontostriatal plasticity, and markers of synaptic plasticity. Bilateral nigrostriatal degeneration was induced by viral-mediated expression of human mutated alpha-synuclein in the SNc. Juxtacellular recordings were performed in anesthetized rats to evaluate neuronal activity in the OFC. Recordings in the dorsomedial striatum (DMS) were performed, and spike probability in response to OFC stimulation was measured before and after high-frequency stimulation (HFS). Post-mortem analysis included stereological assessment of nigral neurodegeneration, BDNF and TrkB protein levels. Nigrostriatal neurodegeneration led to altered firing patterns of OFC neurons that were restored by PPX. HFS of the OFC led to an increased spike probability in the DMS, while dopaminergic loss had the opposite effect. PPX led to a decreased spike probability following HFS in control rats and failed to counteract the effect of dopaminergic neurodegeneration. These alterations were associated with decreased levels of BDNF and TrkB in the DMS. This study demonstrates that nigral dopaminergic loss and PPX both contribute to alter frontostriatal transmission, precluding adequate information processing in associative basal ganglia loops as a gateway for the development of non-motor symptoms or non-motor side effects of DRT.
Collapse
Affiliation(s)
- Sarah Chevalier
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France
| | - Mélina Decourt
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France
| | - Maureen Francheteau
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France
| | - François Nicol
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France
| | - Anaïs Balbous
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | - Pierre-Olivier Fernagut
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France
| | - Marianne Benoit-Marand
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France.
| |
Collapse
|
3
|
Gan QX, Peng MY, Wei HB, Chen LL, Chen XY, Li ZH, An GQ, Ma YT. Gastrodia elata polysaccharide alleviates Parkinson's disease via inhibiting apoptotic and inflammatory signaling pathways and modulating the gut microbiota. Food Funct 2024; 15:2920-2938. [PMID: 38385354 DOI: 10.1039/d3fo05169b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Parkinson's disease (PD) is a common, chronic, and progressive degenerative disease of the central nervous system for which there is no effective treatment. Gastrodia elata is a well-known food and medicine homologous resource with neuroprotective potential. Gastrodia elata polysaccharide (GEP), which is a highly active and safe component in Gastrodia elata, is an important ingredient in the development of functional products. In this study, GEP was administered to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice over 3 weeks to investigate its neuroprotective effects. The results showed that GEP significantly alleviated the motor dysfunction of PD mice, inhibited the accumulation of α-synuclein, and reduced the loss of dopaminergic neurons in the brain. Moreover, GEP increased the Bcl-2/Bax ratio and decreased the cleaved-caspase-3 level, suggesting that GEP may ameliorate PD by preventing MPTP-induced mitochondrial apoptosis. GEP also significantly inhibited the increase of GFAP and decreased the levels of TNF-α, IL-1β, and IL-6 in the brain of PD mice, which may be the result of the inhibition of neuroinflammation by the inactivation of the TLR4/NF-κB pathway. Furthermore, the neuroprotective effects of GEP involve the gut-brain axis, as it has been shown that GEP regulated the dysbiosis of PD-related gut microbiota such as Akkermansia, Lactobacillus, Bacteroides, Prevotella, and Faecalibacterium, increased the content of microbial metabolites SCFAs in the colon and increased the level of occludin that repairs the intestinal barrier of PD mice. In conclusion, this study is expected to provide a theoretical basis for the development and application of functional products with GEP from the perspective of neuroprotective effects.
Collapse
Affiliation(s)
- Qing-Xia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Mao-Yao Peng
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Hao-Bo Wei
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Lin-Lin Chen
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Xiao-Yan Chen
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Zi-Han Li
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Guang-Qin An
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Yun-Tong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| |
Collapse
|
4
|
Xiang W, Vicente Miranda H. Unraveling the complexity of alpha-synucleinopathies: Insights from the special issue "alpha synuclein and synucleinopathies". Behav Brain Res 2024; 460:114797. [PMID: 38043676 DOI: 10.1016/j.bbr.2023.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Affiliation(s)
- Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
| | - Hugo Vicente Miranda
- iNOVA4Health, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal.
| |
Collapse
|
5
|
Nohesara S, Abdolmaleky HM, Thiagalingam S, Zhou JR. Gut microbiota defined epigenomes of Alzheimer's and Parkinson's diseases reveal novel targets for therapy. Epigenomics 2024; 16:57-77. [PMID: 38088063 PMCID: PMC10804213 DOI: 10.2217/epi-2023-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The origins of Alzheimer's disease (AD) and Parkinson's disease (PD) involve genetic mutations, epigenetic changes, neurotoxin exposure and gut microbiota dysregulation. The gut microbiota's dynamic composition and its metabolites influence intestinal and blood-brain barrier integrity, contributing to AD and PD development. This review explores protein misfolding, aggregation and epigenetic links in AD and PD pathogenesis. It also highlights the role of a leaky gut and the microbiota-gut-brain axis in promoting these diseases through inflammation-induced epigenetic alterations. In addition, we investigate the potential of diet, probiotics and microbiota transplantation for preventing and treating AD and PD via epigenetic modifications, along with a discussion related to current challenges and future considerations. These approaches offer promise for translating research findings into practical clinical applications.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Surgery, Nutrition/Metabolism laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jin-Rong Zhou
- Department of Surgery, Nutrition/Metabolism laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| |
Collapse
|
6
|
Patrigeon M, Brot S, Bonnet ML, Belnoue L, Gaillard A. Host-to-graft Propagation of α-synuclein in a Mouse Model of Parkinson's Disease: Intranigral Versus Intrastriatal Transplantation. Transplantation 2023; 107:e201-e212. [PMID: 36944598 DOI: 10.1097/tp.0000000000004565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and by the accumulation of misfolded α-synuclein (α-syn) in Lewy bodies. Ectopic transplantation of human fetal ventral mesencephalic DA neurons into the striatum of PD patients have provided proof-of-principle for the cell replacement strategy in this disorder. However, 10 to 22 y after transplantation, 1% to 27% of grafted neurons contained α-syn aggregates similar to those observed in the host brain. We hypothesized that intrastriatal grafts are more vulnerable to α-syn propagation because the striatum is not the ontogenic site of nigral DA neurons and represents an unfavorable environment for transplanted neurons. Here, we compared the long-term host-to-graft propagation of α-syn in 2 transplantation sites: the SNpc and the striatum. METHODS Two mouse models of PD were developed by injecting adeno-associated-virus2/9-human α-syn A53T into either the SNpc or the striatum of C57BL/6 mice. Mouse fetal ventral mesencephalic DA progenitors were grafted into the SNpc or into the striatum of SNpc or striatum of α-syn injected mice, respectively. RESULTS First, we have shown a degeneration of the nigrostriatal pathway associated with motor deficits after nigral but not striatal adeno-associated-virus-hαsyn A53T injection. Second, human α-syn preferentially accumulates in striatal grafts compared to nigral grafts. However, no differences were observed for phosphorylated α-syn, a marker of pathological α-syn aggregates. CONCLUSIONS Taken together, our results suggest that the ectopic site of the transplantation impacts the host-to-graft transmission of α-syn.
Collapse
Affiliation(s)
- Maëlig Patrigeon
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers Cedex, France
| | - Sébastien Brot
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers Cedex, France
| | - Marie-Laure Bonnet
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers Cedex, France
- CHU Poitiers, Poitiers, France
| | - Laure Belnoue
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers Cedex, France
- CHU Poitiers, Poitiers, France
| | - Afsaneh Gaillard
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers Cedex, France
| |
Collapse
|
7
|
Squarzoni A, Scuteri A, Cavaletti G. HDACi: The Columbus' Egg in Improving Cancer Treatment and Reducing Neurotoxicity? Cancers (Basel) 2022; 14:5251. [PMID: 36358670 PMCID: PMC9654569 DOI: 10.3390/cancers14215251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 08/29/2023] Open
Abstract
Histone deacetylases (HDACs) are a group of enzymes that modify gene expression through the lysine acetylation of both histone and non-histone proteins, leading to a broad range of effects on various biological pathways. New insights on this topic broadened the knowledge on their biological activity and even more questions arose from those discoveries. The action of HDACs is versatile in biological pathways and, for this reason, inhibitors of HDACs (HDACis) have been proposed as a way to interfere with HDACs' involvement in tumorigenesis. In 2006, the first HDACi was approved by FDA for the treatment of cutaneous T-cell lymphoma; however, more selective HDACis were recently approved. In this review, we will consider new information on HDACs' expression and their regulation for the treatment of central and peripheral nervous system diseases.
Collapse
Affiliation(s)
- Angelica Squarzoni
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
- PhD Program in Neuroscience, School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Arianna Scuteri
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| |
Collapse
|