1
|
Pukale DD, Lazarenko D, Aryal SR, Khabaz F, Shriver LP, Leipzig ND. Osmotic Contribution of Synthesized Betaine by Choline Dehydrogenase Using In Vivo and In Vitro Models of Post-traumatic Syringomyelia. Cell Mol Bioeng 2023; 16:41-54. [PMID: 36660584 PMCID: PMC9842837 DOI: 10.1007/s12195-022-00749-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/27/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction Syringomyelia (SM) is a debilitating spinal cord disorder in which a cyst, or syrinx, forms in the spinal cord parenchyma due to congenital and acquired causes. Over time syrinxes expand and elongate, which leads to compressing the neural tissues and a mild to severe range of symptoms. In prior omics studies, significant upregulation of betaine and its synthesis enzyme choline dehydrogenase (CHDH) were reported during syrinx formation/expansion in SM injured spinal cords, but the role of betaine regulation in SM etiology remains unclear. Considering betaine's known osmoprotectant role in biological systems, along with antioxidant and methyl donor activities, this study aimed to better understand osmotic contributions of synthesized betaine by CHDH in response to SM injuries in the spinal cord. Methods A post-traumatic SM (PTSM) rat model and in vitro cellular models using rat astrocytes and HepG2 liver cells were utilized to investigate the role of betaine synthesis by CHDH. Additionally, the osmotic contributions of betaine were evaluated using a combination of experimental as well as simulation approaches. Results In the PTSM injured spinal cord CHDH expression was observed in cells surrounding syrinxes. We next found that rat astrocytes and HepG2 cells were capable of synthesizing betaine via CHDH under osmotic stress in vitro to maintain osmoregulation. Finally, our experimental and simulation approaches showed that betaine was capable of directly increasing meaningful osmotic pressure. Conclusions The findings from this study demonstrate new evidence that CHDH activity in the spinal cord provides locally synthesized betaine for osmoregulation in SM pathophysiology. Supplementary Information The online version of this article contains supplementary material available 10.1007/s12195-022-00749-5.
Collapse
Affiliation(s)
- Dipak D. Pukale
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, OH 44325 USA
| | - Daria Lazarenko
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325 USA
| | - Siddhartha R. Aryal
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325 USA
| | - Fardin Khabaz
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, OH 44325 USA
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325 USA
| | - Leah P. Shriver
- Department of Chemistry, Washington University, Saint Louis, MO 63130 USA
- Department of Medicine, Washington University, Saint Louis, MO 63130 USA
- Center for Metabolomics and Isotope Tracing, Washington University, Saint Louis, MO 63130 USA
| | - Nic D. Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, OH 44325 USA
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325 USA
| |
Collapse
|
2
|
Zeiner CA, Purvine SO, Zink E, Wu S, Paša-Tolić L, Chaput DL, Santelli CM, Hansel CM. Mechanisms of Manganese(II) Oxidation by Filamentous Ascomycete Fungi Vary With Species and Time as a Function of Secretome Composition. Front Microbiol 2021; 12:610497. [PMID: 33643238 PMCID: PMC7902709 DOI: 10.3389/fmicb.2021.610497] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/11/2021] [Indexed: 02/03/2023] Open
Abstract
Manganese (Mn) oxides are among the strongest oxidants and sorbents in the environment, and Mn(II) oxidation to Mn(III/IV) (hydr)oxides includes both abiotic and microbially-mediated processes. While white-rot Basidiomycete fungi oxidize Mn(II) using laccases and manganese peroxidases in association with lignocellulose degradation, the mechanisms by which filamentous Ascomycete fungi oxidize Mn(II) and a physiological role for Mn(II) oxidation in these organisms remain poorly understood. Here we use a combination of chemical and in-gel assays and bulk mass spectrometry to demonstrate secretome-based Mn(II) oxidation in three phylogenetically diverse Ascomycetes that is mechanistically distinct from hyphal-associated Mn(II) oxidation on solid substrates. We show that Mn(II) oxidative capacity of these fungi is dictated by species-specific secreted enzymes and varies with secretome age, and we reveal the presence of both Cu-based and FAD-based Mn(II) oxidation mechanisms in all 3 species, demonstrating mechanistic redundancy. Specifically, we identify candidate Mn(II)-oxidizing enzymes as tyrosinase and glyoxal oxidase in Stagonospora sp. SRC1lsM3a, bilirubin oxidase in Stagonospora sp. and Paraconiothyrium sporulosum AP3s5-JAC2a, and GMC oxidoreductase in all 3 species, including Pyrenochaeta sp. DS3sAY3a. The diversity of the candidate Mn(II)-oxidizing enzymes identified in this study suggests that the ability of fungal secretomes to oxidize Mn(II) may be more widespread than previously thought.
Collapse
Affiliation(s)
- Carolyn A Zeiner
- Department of Biology, University of St. Thomas, Saint Paul, MN, United States
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Erika Zink
- Biological Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, United States
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Dominique L Chaput
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | - Cara M Santelli
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Colleen M Hansel
- Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| |
Collapse
|
3
|
Wu DL, Wang TS, Zhang W, Wang JS, Peng DY, Kong LY. NMR-based metabolomics approach to study the effects of Wu-Zi-Yan-Zong-Wan on triptolide-induced oligospermia in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113192. [PMID: 32889033 DOI: 10.1016/j.jep.2020.113192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wu-Zi-Yan-Zong-Wan (WZYZW) is a commonly used Chinese medicinal recipe for oligozoospermia. Oligozoospermia is a common disease that harms human fertility, there is no effective therapeutic medicine at present. However, the underlying pharmacological mechanism remains unclear. METHODS Oligozoospermia rats model induced by Tripterygium glycosides (TG) was established to inspect the efficiency of WZYZW in the treatment of oligozoospermia by traditional pharmacodynamics combined with NMR-based metabolomics. Multivariate statistics were used to extracted the underlying biomarkers and metabolic pathways of WZYZW in the treatment of oligozoospermia. RESULTS The results showed that TG disturbed many metabolites and metabolic pathways such as oxidative stress (choline, O-phosphocholine, betaine and ascorbate), energy metabolism in mitochondria (glucose, lactate, succinate, fumarate, 3-hydroxybutyrate and alanine), mitochondrial apoptosis markers (Bax and Bcl-2) and amino acids metabolisms (arginine, branched-chain amino acids, taurine and myo-inositol). CONCLUSIONS WZYZW could significantly reverse the disturbed metabolites to their normal status by their abilities of anti-oxidation, anti-apoptosis, balancing the osmotic pressure regulatory molecules and regulating the amino acids metabolism. This study provides pharmacological basis and guidance for the clinical usage of WZYZW.
Collapse
Affiliation(s)
- De-Ling Wu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China; School of Pharmacy, Anhui University of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medical Formula, Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.
| | - Tong-Sheng Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medical Formula, Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medical Formula, Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.
| | - Jun-Song Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China; Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Dai-Yin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medical Formula, Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
4
|
Yin Z, Xu X, Tan Y, Cao H, Zhou W, Dong X, Mao H. Expression analysis of microRNAs and their target mRNAs of testes with high and low sperm motility in domestic pigeons (Columba livia). Genomics 2020; 113:257-264. [PMID: 33338630 DOI: 10.1016/j.ygeno.2020.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/09/2020] [Accepted: 12/13/2020] [Indexed: 11/24/2022]
Abstract
Sperm motility is one of the most important indicators to evaluate poultry fertility. In order to explore key molecular regulation roles related to sperm motility, we employed testicular RNA sequencing of pigeon. A total of 705 known and 385 novel microRNAs were identified. Compared with the low sperm motility group, four upregulated and two downregulated miRNAs in the high sperm motility group were identified. A total of 3567 target mRNAs were predicted and four target mRNAs were selected to validate by qPCR. The miRNA-mRNA interaction network analysis, indicated that mmu-miR-183-5p /FOXO1 and PC-3p-244994_31/CHDH pairs might affect sperm motility. GO and KEGG annotation analysis showed that target genes of differentially expressed miRNAs were related to serine/threonine kinase activity, ATP binding, Wnt and MAPK signaling pathway. The study provided a global miRNAs transcriptome of pigeon and a novel insight into the expression of the miRNAs in testes that associated with sperm motility.
Collapse
Affiliation(s)
- Zhaozheng Yin
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xiuli Xu
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yuge Tan
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Haiyue Cao
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Wei Zhou
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xinyang Dong
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Haiguang Mao
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| |
Collapse
|
5
|
Park S, Choi SG, Yoo SM, Son JH, Jung YK. Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy. Autophagy 2014; 10:1906-20. [PMID: 25483962 DOI: 10.4161/auto.32177] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CHDH (choline dehydrogenase) is an enzyme catalyzing the dehydrogenation of choline to betaine aldehyde in mitochondria. Apart from this well-known activity, we report here a pivotal role of CHDH in mitophagy. Knockdown of CHDH expression impairs CCCP-induced mitophagy and PARK2/parkin-mediated clearance of mitochondria in mammalian cells, including HeLa cells and SN4741 dopaminergic neuronal cells. Conversely, overexpression of CHDH accelerates PARK2-mediated mitophagy. CHDH is found on both the outer and inner membranes of mitochondria in resting cells. Interestingly, upon induction of mitophagy, CHDH accumulates on the outer membrane in a mitochondrial potential-dependent manner. We found that CHDH is not a substrate of PARK2 but interacts with SQSTM1 independently of PARK2 to recruit SQSTM1 into depolarized mitochondria. The FB1 domain of CHDH is exposed to the cytosol and is required for the interaction with SQSTM1, and overexpression of the FB1 domain only in cytosol reduces CCCP-induced mitochondrial degradation via competitive interaction with SQSTM1. In addition, CHDH, but not the CHDH FB1 deletion mutant, forms a ternary protein complex with SQSTM1 and MAP1LC3 (LC3), leading to loading of LC3 onto the damaged mitochondria via SQSTM1. Further, CHDH is crucial to the mitophagy induced by MPP+ in SN4741 cells. Overall, our results suggest that CHDH is required for PARK2-mediated mitophagy for the recruitment of SQSTM1 and LC3 onto the mitochondria for cargo recognition.
Collapse
Key Words
- ANT, adenine nucleotide translocator
- Baf, bafilomycin A1
- CCCP, carbonyl cyanide m-chlorophenylhydrazone
- CHX, cycloheximide
- FB1, FAD/NAD (P)-binding domain 1
- FB2, FAD/NAD (P)-binding domain 2
- IM, inner membrane
- IMS, inter-membrane space
- LC3
- MPP+, 1-methyl-4-phenylpyridinium
- MTS, mitochondrial targeting sequence
- Mat, matrix
- OM, outer membrane
- PARK2/parkin
- PB1, Phox and Bem 1 domain
- PD, Parkinson disease
- PK, proteinase K
- RD, FAD-linked reductase domain
- SQSTM1/p62
- choline dehydrogenase
- mitophagy
Collapse
Affiliation(s)
- Sungwoo Park
- a Global Research Laboratory; School of Biological Science/Bio-MAX Institute ; Seoul National University ; Seoul , Korea
| | | | | | | | | |
Collapse
|
6
|
Salvi F, Gadda G. Human choline dehydrogenase: medical promises and biochemical challenges. Arch Biochem Biophys 2013; 537:243-52. [PMID: 23906661 PMCID: PMC7094428 DOI: 10.1016/j.abb.2013.07.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/24/2013] [Accepted: 07/16/2013] [Indexed: 01/17/2023]
Abstract
Human choline dehydrogenase (CHD) is located in the inner membrane of mitochondria primarily in liver and kidney and catalyzes the oxidation of choline to glycine betaine. Its physiological role is to regulate the concentrations of choline and glycine betaine in the blood and cells. Choline is important for regulation of gene expression, the biosynthesis of lipoproteins and membrane phospholipids and for the biosynthesis of the neurotransmitter acetylcholine; glycine betaine plays important roles as a primary intracellular osmoprotectant and as methyl donor for the biosynthesis of methionine from homocysteine, a required step for the synthesis of the ubiquitous methyl donor S-adenosyl methionine. Recently, CHD has generated considerable medical attention due to its association with various human pathologies, including male infertility, homocysteinuria, breast cancer and metabolic syndrome. Despite the renewed interest, the biochemical characterization of the enzyme has lagged behind due to difficulties in the obtainment of purified, active and stable enzyme. This review article summarizes the medical relevance and the physiological roles of human CHD, highlights the biochemical knowledge on the enzyme, and provides an analysis based on the comparison of the protein sequence with that of bacterial choline oxidase, for which structural and biochemical information is available.
Collapse
Affiliation(s)
- Francesca Salvi
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, United States
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, United States
- Department of Biology, Georgia State University, Atlanta, GA 30302-3965, United States
- The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-3965, United States
| |
Collapse
|
7
|
Johnson AR, Lao S, Wang T, Galanko JA, Zeisel SH. Choline dehydrogenase polymorphism rs12676 is a functional variation and is associated with changes in human sperm cell function. PLoS One 2012; 7:e36047. [PMID: 22558321 PMCID: PMC3338626 DOI: 10.1371/journal.pone.0036047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/28/2012] [Indexed: 11/27/2022] Open
Abstract
Approximately 15% of couples are affected by infertility and up to half of these cases arise from male factor infertility. Unidentified genetic aberrations such as chromosomal deletions, translocations and single nucleotide polymorphisms (SNPs) may be the underlying cause of many cases of idiopathic male infertility. Deletion of the choline dehydrogenase (Chdh) gene in mice results in decreased male fertility due to diminished sperm motility; sperm from Chdh−/− males have decreased ATP concentrations likely stemming from abnormal sperm mitochondrial morphology and function in these cells. Several SNPs have been identified in the human CHDH gene that may result in altered CHDH enzymatic activity. rs12676 (G233T), a non-synonymous SNP located in the CHDH coding region, is associated with increased susceptibility to dietary choline deficiency and risk of breast cancer. We now report evidence that this SNP is also associated with altered sperm motility patterns and dysmorphic mitochondrial structure in sperm. Sperm produced by men who are GT or TT for rs12676 have 40% and 73% lower ATP concentrations, respectively, in their sperm. rs12676 is associated with decreased CHDH protein in sperm and hepatocytes. A second SNP located in the coding region of IL17BR, rs1025689, is linked to altered sperm motility characteristics and changes in choline metabolite concentrations in sperm.
Collapse
Affiliation(s)
- Amy R. Johnson
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sai Lao
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Tongwen Wang
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Nutrition Research Institute, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joseph A. Galanko
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Steven H. Zeisel
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Nutrition Research Institute, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
8
|
Phosphatidylethanolamine N-methyltransferase and choline dehydrogenase gene polymorphisms are associated with human sperm concentration. Asian J Androl 2012; 14:778-83. [PMID: 22387881 DOI: 10.1038/aja.2011.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Choline is a crucial factor in the regulation of sperm membrane structure and fluidity, and this nutrient plays an important role in the maturation and fertilizing capacity of spermatozoa. Transcripts of phosphatidylethanolamine N-methyltransferase (PEMT) and choline dehydrogenase (CHDH), two basic enzymes of choline metabolism, have been observed in the human testis, demonstrating their gene expression in this tissue. In the present study, we explored the contribution of the PEMT and CHDH gene variants to sperm parameters. Two hundred oligospermic and 250 normozoospermic men were recruited. DNA was extracted from the spermatozoa, and the PEMT -774G>C and CHDH +432G>T polymorphisms were genotyped. The genotype distribution of the PEMT -774G>C polymorphism did not differ between oligospermic and normozoospermic men. In contrast, in the case of the CHDH +432G>T polymorphism, oligospermic men presented the CHDH 432G/G genotype more frequently than normozoospermic men (62% vs. 42%, P<0.001). The PEMT 774G/G genotype was associated with a higher sperm concentration compared to the PEMT 774G/C and 774C/C genotypes in oligospermic men (12.5 ± 5.6 × 10(6) spermatozoa ml(-1) vs. 8.3 ± 5.2 × 10(6) spermatozoa ml(-1), P<0.002) and normozoospermic men (81.5 ± 55.6 × 10(6) vs. 68.1 ± 44.5 × 10(6) spermatozoa ml(-1), P<0.006). In addition, the CHDH 432G/G genotype was associated with higher sperm concentration compared to CHDH 432G/T and 432T/T genotypes in oligospermic (11.8 ± 5.1 × 10(6) vs. 7.8 ± 5.3 × 10(6) spermatozoa ml(-1), P<0.003) and normozoospermic men (98.6 ± 62.2 × 10(6) vs. 58.8 ± 33.6 × 10(6) spermatozoa ml(-1), P<0.001). In our series, the PEMT -774G>C and CHDH +432G>T polymorphisms were associated with sperm concentration. This finding suggests a possible influence of these genes on sperm quality.
Collapse
|
9
|
Musicco C, Capelli V, Pesce V, Timperio AM, Calvani M, Mosconi L, Cantatore P, Gadaleta MN. Rat liver mitochondrial proteome: changes associated with aging and acetyl-L-carnitine treatment. J Proteomics 2011; 74:2536-47. [PMID: 21672642 DOI: 10.1016/j.jprot.2011.05.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/16/2011] [Accepted: 05/26/2011] [Indexed: 12/19/2022]
Abstract
Oxidative stress has a central role in aging and in several age-linked diseases such as neurodegenerative diseases, diabetes and cancer. Mitochondria, as the main cellular source and target of reactive oxygen species (ROS) in aging, are recognized as very important players in the above reported diseases. Impaired mitochondrial oxidative phosphorylation has been reported in several aging tissues. Defective mitochondria are not only responsible of bioenergetically less efficient cells but also increase ROS production further contributing to tissues oxidative stress. Acetyl-L-carnitine (ALCAR) is a biomolecule able to limit age-linked mitochondrial decay in brain, liver, heart and skeletal muscles by increasing mitochondrial efficiency. Here the global changes induced by aging and by ALCAR supplementation to old rat on the mitochondrial proteome of rat liver has been analyzed by means of the two-dimensional polyacrylamide gel electrophoresis. Mass spectrometry has been used to identify the differentially expressed proteins. A significant age-related change occurred in 31 proteins involved in several metabolisms. ALCAR supplementation altered the levels of 26 proteins. In particular, ALCAR reversed the age-related alterations of 10 mitochondrial proteins relative to mitochondrial cristae morphology, to the oxidative phosphorylation and antioxidant systems, to urea cycle, to purine biosynthesis.
Collapse
Affiliation(s)
- Clara Musicco
- CNR - National Research Council of Italy - Institute of Biomembranes and Bioenergetics, Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lenaz G, Genova ML. Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 2010; 12:961-1008. [PMID: 19739941 DOI: 10.1089/ars.2009.2704] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The enzymatic complexes of the mitochondrial respiratory chain have been extensively investigated in their structural and functional properties. A clear distinction is possible today between three complexes in which the difference in redox potential allows proton translocation (complexes I, III, and IV) and those having the mere function to convey electrons to the respiratory chain. We also have a clearer understanding of the structure and function of most respiratory complexes, of their biogenesis and regulation, and of their capacity to generate reactive oxygen species. Past investigations led to the conclusion that the complexes are randomly dispersed and functionally connected by diffusion of smaller redox components, coenzyme Q and cytochrome c. More-recent investigations by native gel electrophoresis and single-particle image processing showed the existence of supramolecular associations. Flux-control analysis demonstrated that complexes I and III in mammals and I, III, and IV in plants kinetically behave as single units, suggesting the existence of substrate channeling. This review discusses conditions affecting the formation of supercomplexes that, besides kinetic advantage, have a role in the stability and assembly of the individual complexes and in preventing excess oxygen radical formation. Disruption of supercomplex organization may lead to functional derangements responsible for pathologic changes.
Collapse
Affiliation(s)
- Giorgio Lenaz
- Dipartimento di Biochimica "G. Moruzzi," Alma Mater Studiorum, Università di Bologna, Bologna, Italy.
| | | |
Collapse
|
11
|
Johnson AR, Craciunescu CN, Guo Z, Teng YW, Thresher RJ, Blusztajn JK, Zeisel SH. Deletion of murine choline dehydrogenase results in diminished sperm motility. FASEB J 2010; 24:2752-61. [PMID: 20371614 DOI: 10.1096/fj.09-153718] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Choline dehydrogenase (CHDH) catalyzes the conversion of choline to betaine, an important methyl donor and organic osmolyte. We have previously identified single nucleotide polymorphisms (SNPs) in the human CHDH gene that, when present, seem to alter the activity of the CHDH enzyme. These SNPs occur frequently in humans. We created a Chdh(-/-) mouse to determine the functional effects of mutations that result in decreased CHDH activity. Chdh deletion did not affect fetal viability or alter growth or survival of these mice. Only one of eleven Chdh(-/-) males was able to reproduce. Loss of CHDH activity resulted in decreased testicular betaine and increased choline and PCho concentrations. Chdh(+/+) and Chdh(-/-) mice produced comparable amounts of sperm; the impaired fertility was due to diminished sperm motility in the Chdh(-/-) males. Transmission electron microscopy revealed abnormal mitochondrial morphology in Chdh(-/-) sperm. ATP content, total mitochondrial dehydrogenase activity and inner mitochondrial membrane polarization were all significantly reduced in sperm from Chdh(-/-) animals. Mitochondrial changes were also detected in liver, kidney, heart, and testis tissues. We suggest that men who have SNPs in CHDH that decrease the activity of the CHDH enzyme could have decreased sperm motility and fertility.
Collapse
Affiliation(s)
- Amy R Johnson
- Department of Nutrition, Nutrition Research Institute, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Slow S, Garrow TA. Liver choline dehydrogenase and kidney betaine-homocysteine methyltransferase expression are not affected by methionine or choline intake in growing rats. J Nutr 2006; 136:2279-83. [PMID: 16920841 DOI: 10.1093/jn/136.9.2279] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Choline dehydrogenase (CHDH) and betaine-homocysteine methyltransferase (BHMT) are 2 enzymes involved in choline oxidation. BHMT is expressed at high levels in rat liver and its expression is regulated by dietary Met and choline. BHMT is also found in rat kidney, albeit in substantially lower amounts, but it is not known whether kidney BHMT expression is regulated by dietary Met or choline. Similarly, CHDH activity is highest in the liver and kidney, but the regulation of its expression by diet has not been thoroughly investigated. Sprague Dawley rats ( approximately 50 g) were fed, for 9 d in 2 x 3 factorial design (n = 8), an l-amino acid-defined diet varying in l-Met (0.125, 0.3, or 0.8%) and choline (0 or 25 mmol/kg diet). Liver and kidney BHMT and CHDH were assessed using enzymatic, Western blot, and real-time PCR analyses. Liver samples were also fixed for histological analysis. Liver BHMT activity was 1.3-fold higher in rats fed the Met deficient diet containing choline, which was reflected in corresponding increases in mRNA content and immunodetectable protein. Independent of dietary choline, supplemental Met increased hepatic BHMT activity approximately 30%. Kidney BHMT and liver CHDH expression were refractory to these diets. Some degree of fatty liver developed in all rats fed a choline-devoid diet, indicating that supplemental Met cannot completely compensate for the lack of dietary choline in growing rats.
Collapse
Affiliation(s)
- Sandy Slow
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana IL 61801, USA
| | | |
Collapse
|
13
|
Jiang XS, Dai J, Sheng QH, Zhang L, Xia QC, Wu JR, Zeng R. A comparative proteomic strategy for subcellular proteome research: ICAT approach coupled with bioinformatics prediction to ascertain rat liver mitochondrial proteins and indication of mitochondrial localization for catalase. Mol Cell Proteomics 2004; 4:12-34. [PMID: 15507458 DOI: 10.1074/mcp.m400079-mcp200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subcellular proteomics, as an important step to functional proteomics, has been a focus in proteomic research. However, the co-purification of "contaminating" proteins has been the major problem in all the subcellular proteomic research including all kinds of mitochondrial proteome research. It is often difficult to conclude whether these "contaminants" represent true endogenous partners or artificial associations induced by cell disruption or incomplete purification. To solve such a problem, we applied a high-throughput comparative proteome experimental strategy, ICAT approach performed with two-dimensional LC-MS/MS analysis, coupled with combinational usage of different bioinformatics tools, to study the proteome of rat liver mitochondria prepared with traditional centrifugation (CM) or further purified with a Nycodenz gradient (PM). A total of 169 proteins were identified and quantified convincingly in the ICAT analysis, in which 90 proteins have an ICAT ratio of PM:CM>1.0, while another 79 proteins have an ICAT ratio of PM:CM<1.0. Almost all the proteins annotated as mitochondrial according to Swiss-Prot annotation, bioinformatics prediction, and literature reports have a ratio of PM:CM>1.0, while proteins annotated as extracellular or secreted, cytoplasmic, endoplasmic reticulum, ribosomal, and so on have a ratio of PM:CM<1.0. Catalase and AP endonuclease 1, which have been known as peroxisomal and nuclear, respectively, have shown a ratio of PM:CM>1.0, confirming the reports about their mitochondrial location. Moreover, the 125 proteins with subcellular location annotation have been used as a testing dataset to evaluate the efficiency for ascertaining mitochondrial proteins by ICAT analysis and the bioinformatics tools such as PSORT, TargetP, SubLoc, MitoProt, and Predotar. The results indicated that ICAT analysis coupled with combinational usage of different bioinformatics tools could effectively ascertain mitochondrial proteins and distinguish contaminant proteins and even multilocation proteins. Using such a strategy, many novel proteins, known proteins without subcellular location annotation, and even known proteins that have been annotated as other locations have been strongly indicated for their mitochondrial location.
Collapse
Affiliation(s)
- Xiao-Sheng Jiang
- Research Centre for Proteome Analysis, Key Lab of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|