1
|
Morazzani EM, Compton JR, Leary DH, Berry AV, Hu X, Marugan JJ, Glass PJ, Legler PM. Proteolytic cleavage of host proteins by the Group IV viral proteases of Venezuelan equine encephalitis virus and Zika virus. Antiviral Res 2019; 164:106-122. [PMID: 30742841 DOI: 10.1016/j.antiviral.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/13/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
The alphaviral nonstructural protein 2 (nsP2) cysteine proteases (EC 3.4.22.-) are essential for the proteolytic processing of the nonstructural (ns) polyprotein and are validated drug targets. A common secondary role of these proteases is to antagonize the effects of interferon (IFN). After delineating the cleavage site motif of the Venezuelan equine encephalitis virus (VEEV) nsP2 cysteine protease, we searched the human genome to identify host protein substrates. Here we identify a new host substrate of the VEEV nsP2 protease, human TRIM14, a component of the mitochondrial antiviral-signaling protein (MAVS) signalosome. Short stretches of homologous host-pathogen protein sequences (SSHHPS) are present in the nonstructural polyprotein and TRIM14. A 25-residue cyan-yellow fluorescent protein TRIM14 substrate was cleaved in vitro by the VEEV nsP2 protease and the cleavage site was confirmed by tandem mass spectrometry. A TRIM14 cleavage product also was found in VEEV-infected cell lysates. At least ten other Group IV (+)ssRNA viral proteases have been shown to cleave host proteins involved in generating the innate immune responses against viruses, suggesting that the integration of these short host protein sequences into the viral protease cleavage sites may represent an embedded mechanism of IFN antagonism. This interference mechanism shows several parallels with those of CRISPR/Cas9 and RNAi/RISC, but with a protease recognizing a protein sequence common to both the host and pathogen. The short host sequences embedded within the viral genome appear to be analogous to the short phage sequences found in a host's CRISPR spacer sequences. To test this algorithm, we applied it to another Group IV virus, Zika virus (ZIKV), and identified cleavage sites within human SFRP1 (secreted frizzled related protein 1), a retinal Gs alpha subunit, NT5M, and Forkhead box protein G1 (FOXG1) in vitro. Proteolytic cleavage of these proteins suggests a possible link between the protease and the virus-induced phenotype of ZIKV. The algorithm may have value for selecting cell lines and animal models that recapitulate virus-induced phenotypes, predicting host-range and susceptibility, selecting oncolytic viruses, identifying biomarkers, and de-risking live virus vaccines. Inhibitors of the proteases that utilize this mechanism may both inhibit viral replication and alleviate suppression of the innate immune responses.
Collapse
Affiliation(s)
- Elaine M Morazzani
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Jaimee R Compton
- Center for Bio/molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Dagmar H Leary
- Center for Bio/molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | | | - Xin Hu
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, Rockville, MD 20850, USA
| | - Juan J Marugan
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, Rockville, MD 20850, USA
| | - Pamela J Glass
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Patricia M Legler
- Center for Bio/molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
2
|
TRIM14 is a Putative Tumor Suppressor and Regulator of Innate Immune Response in Non-Small Cell Lung Cancer. Sci Rep 2017; 7:39692. [PMID: 28059079 PMCID: PMC5216374 DOI: 10.1038/srep39692] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/25/2016] [Indexed: 12/12/2022] Open
Abstract
Non-small-cell lung carcinoma (NSCLC) accounts for 85% of malignant lung tumors and is the leading cause of cancer deaths. Our group previously identified Tripartite Motif 14 (TRIM14) as a component of a prognostic multigene expression signature for NSCLC. Little is known about the function of TRIM14 protein in normal or disease states. We investigated the functional and prognostic role of TRIM14 in NSCLC using in vitro and in vivo perturbation model systems. Firstly, a pooled RNAi screen identified TRIM14 to effect cell proliferation/survival in NSCLC cells. Secondly, silencing of TRIM14 expression significantly enhanced tumor growth in NSCLC xenograft mouse models, while exogenous TRIM14 expression attenuated tumorigenesis. In addition, differences in apoptotic activity between TRIM14-deficient and control tumors suggests that TRIM14 tumor suppressor activity may depend on cell death signaling pathways. TRIM14-deficient cell lines showed both resistance to hypoxia-induced cell death and attenuation of interferon response via STAT1 signaling. Consistent with these phenotypes, multivariate analyses on published mRNA expression datasets of over 600 primary NSCLCs demonstrated that low TRIM14 mRNA levels are significantly associated with poorer prognosis in early stage NSCLC patients. Our functional data therefore establish a novel tumor suppressive role for TRIM14 in NSCLC progression.
Collapse
|
3
|
Xu XW, Ding BW, Zhu CR, Ji W, Li JS. PU.1-silenced dendritic cells prolong allograft survival in rats receiving intestinal transplantation. World J Gastroenterol 2013; 19:7766-7771. [PMID: 24282365 PMCID: PMC3837277 DOI: 10.3748/wjg.v19.i43.7766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/05/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the function of PU.1-silenced semi-mature dendritic cells (DCs) and the possibility of utilizing cell immunity in rat intestinal transplantation.
METHODS: DCs were isolated from the bone marrow of F344 rats and cultured using the adherent method. The PU.1 gene was knocked down in DCs using small interfering RNAs (siRNAs) for 24 h, and the cells were then incubated with lipopolysaccharide for 48 h. The PU.1 siRNA that had the highest silencing efficiency was screened using reverse transcription-polymerase chain reaction and Western blot for further study. The tolerance capacity was analyzed and compared between PU.1-silenced DCs (siRNA PU.1 group), negative control-silenced DCs (siRNA NC group) and immature DCs (control group) both in vitro and in vivo.
RESULTS: Blocking expression of the PU.1 gene in vitro led to a reduction in DC maturation and an increased tolerance capability. PU.1-silenced DCs expressed moderate levels of major histocompatibility complex (MHC)-II and low levels of co-stimulatory molecules, and produced more interleukin (IL)-10, but less IL-12. Compared with the negative control group, surface molecules cluster of differentiation 80 (CD80), CD86 and MHC-II in the siRNA PU.1 group were 27.0% ± 5.6%, 23.6% ± 4.8% and 36.8% ± 6.8%, respectively, and showed a significantly lower trend (P < 0.05). In vivo treatment of recipients with PU.1-silenced DCs injected before intestinal transplantation (siRNA PU.1 group), significantly prolonged allograft survival and resulted in better tissue histopathology compared with the siRNA NC group and control group. Mean survival time after transplantation was 14.3 ± 3.3 d in the siRNA PU.1 group (P < 0.05).
CONCLUSION: PU.1-silenced semi-mature DCs induced partial immune tolerance both in vitro and in vivo, which could be used as a new strategy to promote transplantation tolerance.
Collapse
|
4
|
Nenasheva VV, Kovaleva GV, Khaidarova NV, Novosadova EV, Manuilova ES, Antonov SA, Tarantul VZ. Trim14 overexpression causes the same transcriptional changes in mouse embryonic stem cells and human HEK293 cells. In Vitro Cell Dev Biol Anim 2013; 50:121-8. [PMID: 24092016 DOI: 10.1007/s11626-013-9683-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 08/05/2013] [Indexed: 12/11/2022]
Abstract
The trim14 (pub, KIAA0129) gene encodes the TRIM14 protein which is a member of the tripartite motif (TRIM) family. Previously, we revealed high expression levels of trim14 in HIV- or SIV-associated lymphomas and demonstrated the influence of trim14 on mesodermal differentiation of mouse embryonic stem cells (mESC). In the present work, to elucidate the role of trim14 in normal and pathological processes in the cell, we used two different types of cells transfected with trim14: mESC and human HEK293. Using subtractive hybridization and real-time PCR, we found a number of genes which expression was elevated in trim14-transfected mESC: hsp90ab1, prr13, pu.1, tnfrsf13c (baff-r), tnfrsf13b (taci), hlx1, hbp1, junb, and pdgfrb. A further analysis of the trim14-transfected mESC at the initial stage of differentiation (embryoid bodies (EB) formation) showed essential changes in the expression of these upregulated genes. The transfection of trim14 into HEK293 also induced an enhanced expression of the several genes upregulated in trim14-transfected mESC (hsp90ab1, prr13, pu.1, tnfrsf13c (baff-r), tnfrsf13b (taci), and hlx1). Summarizing, we found similar genes that participated in trim14-directed processes both in mESC and in HEK293. These results demonstrate the presence of the similar mechanism of trim14 gene action in different types of mammalian cells.
Collapse
Affiliation(s)
- Valentina V Nenasheva
- Department of viral and cellular molecular genetics, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Square, Moscow, 123182, Russia,
| | | | | | | | | | | | | |
Collapse
|
5
|
Lee MS, Kim B, Lee SM, Cho WC, Lee WB, Kang JS, Choi UY, Lyu J, Kim YJ. Genome-wide profiling of in vivo LPS-responsive genes in splenic myeloid cells. Mol Cells 2013; 35:498-513. [PMID: 23666259 PMCID: PMC3887871 DOI: 10.1007/s10059-013-2349-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 11/24/2022] Open
Abstract
Lipopolysaccharide (LPS), the major causative agent of bacterial sepsis, has been used by many laboratories in genome-wide expression profiling of the LPS response. However, these studies have predominantly used in vitro cultured macrophages (Macs), which may not accurately reflect the LPS response of these innate immune cells in vivo. To overcome this limitation and to identify inflammatory genes in vivo, we have profiled genome-wide expression patterns in non-lymphoid, splenic myeloid cells extracted directly from LPS-treated mice. Genes encoding factors known to be involved in mediating or regulating inflammatory processes, such as cytokines and chemokines, as well as many genes whose immunological functions are not well known, were strongly induced by LPS after 3 h or 8 h of treatment. Most of the highly LPS-responsive genes that we randomly selected from the microarray data were independently confirmed by quantitative RT-PCR, implying that our microarray data are quite reliable. When our in vivo data were compared to previously reported microarray data for in vitro LPS-treated Macs, a significant proportion (∼20%) of the in vivo LPS-responsive genes defined in this study were specific to cells exposed to LPS in vivo, but a larger proportion of them (∼60%) were influenced by LPS in both in vitro and in vivo settings. This result indicates that our in vivo LPS-responsive gene set includes not only previously identified in vitro LPS-responsive genes but also novel LPS-responsive genes. Both types of genes would be a valuable resource in the future for understanding inflammatory responses in vivo.
Collapse
Affiliation(s)
- Myeong Sup Lee
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Byungil Kim
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Sun-Min Lee
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Woo-Cheul Cho
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Wook-Bin Lee
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Ji-Seon Kang
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Un Yung Choi
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Jaemyun Lyu
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
- Department of Integrated OMICS for Biomedical Sciences, World Class University, Yonsei University, Seoul 120–749,
Korea
| |
Collapse
|
6
|
TRIM involvement in transcriptional regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 770:59-76. [PMID: 23631000 DOI: 10.1007/978-1-4614-5398-7_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Members of the tripartite motif (TRIM) protein family are found in all multicellular eukaryotes and function in a wide range of cellular processes such as cell cycle regulation, differentiation, development, oncogenesis and viral response. Over the past few years, several TRIM proteins have been reported to control gene expression through regulation of the transcriptional activity of numerous sequence-specific transcription factors. These proteins include the transcriptional intermediary factor 1 (TIF1) regulators, the promyelocytic leukemia tumor suppressor PML and the RET finger protein (RFP). In this chapter, we will consider the molecular interactions made by these TRIM proteins and will attempt to clarify some of the molecular mechanisms underlying their regulatory effect on transcription.
Collapse
|
7
|
Novosadova EV, Arsen’eva EL, Kobylyanskii AG, Lebedev AN, Manuilova ES, Tarantul VZ, Khaidarova NV, Grivennikov IA. Effect of the expression of the human pub gene on the proliferation and differentiation of rat pheochromocytoma PC-12 cells. NEUROCHEM J+ 2011. [DOI: 10.1134/s1819712411010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Jung JW, Choi JC, Kim JY, Park IW, Choi BW, Shin JW, Christman JW. The Macrophage-Specific Transcription Factor Can Be Modified Posttranslationally by Ubiquitination in the Lipopolysaccharide-Treated Macrophages. Tuberc Respir Dis (Seoul) 2011. [DOI: 10.4046/trd.2011.70.2.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Jae Woo Jung
- Divisioin of Allergy, Respiratory and Critical Care Medicine, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jae Chol Choi
- Divisioin of Allergy, Respiratory and Critical Care Medicine, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jae Yeol Kim
- Divisioin of Allergy, Respiratory and Critical Care Medicine, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - In Won Park
- Divisioin of Allergy, Respiratory and Critical Care Medicine, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Byoung Whui Choi
- Divisioin of Allergy, Respiratory and Critical Care Medicine, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jong Wook Shin
- Divisioin of Allergy, Respiratory and Critical Care Medicine, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - John William Christman
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Illinois College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
9
|
Kwok JC, Perdomo J, Chong BH. Identification of a monopartite sequence in PU.1 essential for nuclear import, DNA-binding and transcription of myeloid-specific genes. J Cell Biochem 2008; 101:1456-74. [PMID: 17340619 DOI: 10.1002/jcb.21264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Ets transcription factor PU.1 is an essential regulator of normal hematopoiesis, especially within the myeloid lineage. As such, endogenous PU.1 predominantly localizes to the nucleus of mammalian cells to facilitate gene regulation. However, to date, little is known regarding the mechanisms of PU.1 nuclear transport. We found, using HeLa and RAW 264.7 macrophage cells, that PU.1 enters the nucleus via passive diffusion and active transport. The latter can be facilitated by: (i) the classical pathway requiring importin alpha and beta; (ii) the non-classical pathway requiring only importin beta; or (iii) direct interaction with nucleoporins. A group of six positively charged lysine or arginine residues within the Ets DNA-binding domain was determined to be crucial in active nuclear import. These residues directly interact with importin beta to facilitate a predominantly non-classical import pathway. Furthermore, luciferase reporter assays demonstrated that these same six amino acids are crucial for PU.1-mediated transcriptional activation of myeloid-specific genes. Indeed, these residues may represent a consensus sequence vital for nuclear import, DNA-binding and transcriptional activity of Ets family members. By identifying and characterizing the mechanisms of PU.1 nuclear import and the specific amino acids involved, this report may provide insights into the molecular basis of diseases.
Collapse
Affiliation(s)
- Juliana C Kwok
- Centre for Thrombosis and Vascular Research, Department of Medicine, St. George Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
10
|
Bao F, Polk P, Nordberg ML, Veillon DM, Sun A, Deininger M, Murray D, Andersson BS, Munker R. Comparative gene expression analysis of a chronic myelogenous leukemia cell line resistant to cyclophosphamide using oligonucleotide arrays and response to tyrosine kinase inhibitors. Leuk Res 2007; 31:1511-20. [PMID: 17403535 DOI: 10.1016/j.leukres.2007.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/27/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
Acquired imatinib resistance in chronic myelogenous leukemia (CML) can be the consequence of mutations in the kinase domain of BCR-ABL or increased protein levels. However, as in other malignancies, acquired resistance to cytostatic drugs is a common reason for treatment failure or disease progression. As a model for drug resistance, we developed a CML cell line resistant to cyclophosphamide (CP). Using oligonucleotide arrays, we examined changes in global gene expression. Selected genes were also examined by real-time PCR and flow cytometry. Neither the parent nor the resistant lines had mutations in their ATP binding domain. Filtering genes with a low-base line expression, a total of 239 genes showed significant changes (162 up- and 77 down-regulated) in the resistant clone. Most of the up-regulated genes were associated with metabolism, signal transduction, or encoded enzymes. The gene for aldehyde dehydrogenase 1 was over-expressed more than 2000-fold in the resistant clone. BCR-ABL was expressed in both cell lines to a comparable extent. When exposed to the tyrosine kinase inhibitors imatinib and nilotinib, both lines were sensitive. In conclusion, we found multiple genetic changes in a CML cell line resistant to CP related to metabolism, signal transduction or apoptosis. Despite these changes, the resistant cells retained sensitivity to tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Fei Bao
- Department of Pathology, Louisiana State University, Shreveport, LA 71130, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Meroni G, Diez-Roux G. TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases. Bioessays 2006; 27:1147-57. [PMID: 16237670 DOI: 10.1002/bies.20304] [Citation(s) in RCA: 559] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The TRIM/RBCC proteins are defined by the presence of the tripartite motif composed of a RING domain, one or two B-box motifs and a coiled-coil region. These proteins are involved in a plethora of cellular processes such as apoptosis, cell cycle regulation and viral response. Consistently, their alteration results in many diverse pathological conditions. The highly conserved modular structure of these proteins suggests that a common biochemical function may underlie their assorted cellular roles. Here, we review recent data indicating that some TRIM/RBCC proteins are implicated in ubiquitination and propose that this large protein family represents a novel class of 'single protein RING finger' ubiquitin E3 ligases.
Collapse
Affiliation(s)
- Germana Meroni
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.
| | | |
Collapse
|
12
|
Carlsson R, Thorell K, Liberg D, Leanderson T. SPI-C and STAT6 can cooperate to stimulate IgE germline transcription. Biochem Biophys Res Commun 2006; 344:1155-60. [PMID: 16647686 DOI: 10.1016/j.bbrc.2006.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 04/04/2006] [Indexed: 12/18/2022]
Abstract
SPI-C is a novel ETS protein that is expressed in B lymphocytes. No target gene for SPI-C has so far been defined. We have performed a yeast two-hybrid screen using SPI-C as bait in order to further analyze the functional role of this orphan transcription factor. We found that SPI-C interacted specifically with the C-terminus of STAT6 in yeast. By co-immunoprecipitation in transfected COS7 cells the physical interaction between SPI-C and STAT6 was confirmed. Furthermore, this protein-protein interaction is functional since we could demonstrate that SPI-C and STAT6 stimulated IL4 induced Iepsilon transcription synergistically but only when both proteins bound to DNA. Thus, a protein interaction between SPI-C and STAT6 is the basis for a novel mechanism for regulation of IL4 induced gene expression.
Collapse
Affiliation(s)
- Robert Carlsson
- Immunology Group, Lund University, BMC I:13, 22184 Lund, Sweden
| | | | | | | |
Collapse
|
13
|
Novosadova EV, Manuilova ES, Arsen'eva EL, Khaidarova NV, Dolotov OV, Inozemtseva LS, Kozachenkov KY, Tarantul VZ, Grivennikov IA. Different effects of enhanced and reduced expression of pub gene on the formation of embryoid bodies by cultured embryonic mouse stem cell. Bull Exp Biol Med 2006; 140:153-8. [PMID: 16254642 DOI: 10.1007/s10517-005-0432-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The effects of pub gene on proliferation and initial stages of differentiation of embryonic mouse stem cells were studied in vitro. To this end we used enhanced expression of human pub gene (hpub) and suppression of expression of mouse endogenous pub gene with RNA-interference in embryonic stem cells. Proliferative activity of genetically modified polyclonal lines of the embryonic stem cells transfected with plasmids carrying expressing hpub gene or plasmids generating small interference RNA to this gene did not differ from that of the control cells. Inhibition of expression of endogenous pub gene in embryonic stem cells using small interference RNA 2-fold decreased the formation of embryoid bodies, at the same time additional expression of exogenous hpub gene almost 2-fold increased their number in comparison with the control. It was hypothesized that pub gene participates in early stages of differentiation of embryonic stem cells leading to the formation of embryoid bodies.
Collapse
Affiliation(s)
- E V Novosadova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nenasheva VV, Nikolaev AI, Martynenko AV, Kaplanskaya IB, Bodemer W, Hunsmann G, Tarantul VZ. Differential gene expression in HIV/SIV-associated and spontaneous lymphomas. Int J Med Sci 2005; 2:122-8. [PMID: 16239949 PMCID: PMC1252723 DOI: 10.7150/ijms.2.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 08/29/2005] [Indexed: 12/03/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is more prevalent and more often fatal in HIV-infected patients and SIV-infected monkeys compared to immune-competent individuals. Molecular, biological, and immunological data indicate that virus-associated lymphomagenesis is similar in both infected hosts. To find genes specifically overexpressed in HIV/SIV-associated and non-HIV/SIV-associated DLBCL we compared gene expression profiles of HIV/SIV-related and non-HIV-related lymphomas using subtractive hybridization and Northern blot analysis. Our experimental approach allowed us to detect two genes (a-myb and pub) upregulated solely in HIV/SIV-associated DLBCLs potentially involved in virus-specific lymphomagenesis in human and monkey. Downregulation of the pub gene was observed in all non-HIV-associated lymphomas investigated. In addition, we have found genes upregulated in both non-HIV- and HIV-associated lymphomas. Among those were genes both with known (set, ND4, SMG-1) and unknown functions. In summary, we have demonstrated that simultaneous transcriptional upregulation of at least two genes (a-myb and pub) was specific for AIDS-associated lymphomas.
Collapse
Affiliation(s)
- V V Nenasheva
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|