1
|
Bianculli RH, Mase JD, Schulz MD. Antiviral Polymers: Past Approaches and Future Possibilities. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01273] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rachel H. Bianculli
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jonathan D. Mase
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael D. Schulz
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Fatin M, Rahim Ruslinda A, Gopinath SC, Arshad MM, Hashim U, Lakshmipriya T, Tang TH, Kamarulzaman A. Co-ordinated split aptamer assembly and disassembly on Gold nanoparticle for functional detection of HIV-1 tat. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Fatin MF, Ruslinda AR, Md Arshad MK, Tee KK, Ayub RM, Hashim U, Kamarulzaman A, Gopinath SCB. HIV-1 Tat biosensor: Current development and trends for early detection strategies. Biosens Bioelectron 2015; 78:358-366. [PMID: 26655174 DOI: 10.1016/j.bios.2015.11.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus (HIV) has infected almost 35 million people worldwide. Various tests have been developed to detect the presence of HIV during the early stages of the disease in order to reduce the risk of transmission to other humans. The HIV-1 Tat protein is one of the proteins present in HIV that are released abundantly approximately 2-4 weeks after infection. In this review, we have outlined various strategies for detecting the Tat protein, which helps transcribe the virus and enhances replication. Detection strategies presented include immunoassays, biosensors and gene expression, which utilize antibodies or aptamers as common probes to sense the presence of Tat. Alternatively, measuring the levels of gene transcription is a direct method of analysing the HIV gene to confirm the presence of Tat. By detection of the Tat protein, virus transmission can be detected in high-risk individuals in the early stages of the disease to reduce the risk of an HIV pandemic.
Collapse
Affiliation(s)
- M F Fatin
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, Kangar, 01000 Perlis, Malaysia
| | - A R Ruslinda
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, Kangar, 01000 Perlis, Malaysia.
| | - M K Md Arshad
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, Kangar, 01000 Perlis, Malaysia
| | - K K Tee
- Center of Excellence for Research in AIDS (CERiA), Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - R M Ayub
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, Kangar, 01000 Perlis, Malaysia
| | - U Hashim
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, Kangar, 01000 Perlis, Malaysia
| | - A Kamarulzaman
- Center of Excellence for Research in AIDS (CERiA), Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, Kangar, 01000 Perlis, Malaysia
| |
Collapse
|
4
|
Peng J, Wu Z, Qi X, Chen Y, Li X. Dendrimers as potential therapeutic tools in HIV inhibition. Molecules 2013; 18:7912-29. [PMID: 23884127 PMCID: PMC6270362 DOI: 10.3390/molecules18077912] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 11/16/2022] Open
Abstract
The present treatments for HIV transfection include chemical agents and gene therapies. Although many chemical drugs, peptides and genes have been developed for HIV inhibition, a variety of non-ignorable drawbacks limited the efficiency of these materials. In this review, we discuss the application of dendrimers as both therapeutic agents and non-viral vectors of chemical agents and genes for HIV treatment. On the one hand, dendrimers with functional end groups combine with the gp120 of HIV and CD4 molecule of host cell to suppress the attachment of HIV to the host cell. Some of the dendrimers are capable of intruding into the cell and interfere with the later stages of HIV replication as well. On the other hand, dendrimers are also able to transfer chemical drugs and genes into the host cells, which conspicuously increase the anti-HIV activity of these materials. Dendrimers as therapeutic tools provide a potential treatment for HIV infection.
Collapse
Affiliation(s)
| | - Zhenghong Wu
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-150-6220-8341; Fax: +86-025-8317-9703
| | | | | | | |
Collapse
|
5
|
Cooper MA, Singleton VT. A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. J Mol Recognit 2007; 20:154-84. [PMID: 17582799 DOI: 10.1002/jmr.826] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The widespread exploitation of biosensors in the analysis of molecular recognition has its origins in the mid-1990s following the release of commercial systems based on surface plasmon resonance (SPR). More recently, platforms based on piezoelectric acoustic sensors (principally 'bulk acoustic wave' (BAW), 'thickness shear mode' (TSM) sensors or 'quartz crystal microbalances' (QCM)), have been released that are driving the publication of a large number of papers analysing binding specificities, affinities, kinetics and conformational changes associated with a molecular recognition event. This article highlights salient theoretical and practical aspects of the technologies that underpin acoustic analysis, then reviews exemplary papers in key application areas involving small molecular weight ligands, carbohydrates, proteins, nucleic acids, viruses, bacteria, cells and lipidic and polymeric interfaces. Key differentiators between optical and acoustic sensing modalities are also reviewed.
Collapse
Affiliation(s)
- Matthew A Cooper
- Akubio Ltd., 181 Cambridge Science Park, Cambridge, United Kingdom, UK.
| | | |
Collapse
|
6
|
Kasicka V. Recent developments in capillary electrophoresis and capillary electrochromatography of peptides. Electrophoresis 2006; 27:142-75. [PMID: 16307429 DOI: 10.1002/elps.200500527] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The article gives a comprehensive review on the recent developments in the applications of high-performance capillary electromigration methods, zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography, to analysis, preparation, and physicochemical characterization of peptides. The article presents new approaches to the theoretical description and experimental verification of electromigration behavior of peptides, covers the methodological aspects of capillary electroseparations of peptides, such as rational selection of separation conditions, sample preparation, suppression of peptide adsorption, new developments in individual separation modes, and new designs of detection systems. Several types of applications of capillary electromigration methods to peptide analysis are presented: conventional qualitative and quantitative analysis, purity control, determination in biomatrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid and sequence analysis, and peptide mapping of proteins. Some examples of micropreparative peptide separations are given and capabilities of capillary electromigration techniques to provide important physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kasicka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
7
|
Abstract
Systems biology depends on a comprehensive assignment and characterization of the interactions of proteins and polypeptides (functional proteomics) and of other classes of biomolecules in a given organism. High‐capacity screening methods are in place for ligand capture and interaction screening, but a detailed dynamic characterization of molecular interactions under physiological conditions in efficiently separated mixtures with minimal sample consumption is presently provided only by electrophoretic interaction analysis in capillaries, affinity CE (ACE). This has been realized in different fields of biology and analytical chemistry, and the resulting advances and uses of ACE during the last 2.5 years are covered in this review. Dealing with anything from small divalent metal ions to large supramolecular assemblies, the applications of ACE span from low‐affinity binding of broad specificity being exploited in optimizing selectivity, e.g., in enantiomer analysis to miniaturized affinity technologies, e.g., for fast processing immunoassay. Also, approaches that provide detailed quantitative characterization of analyte–ligand interaction for drug, immunoassay, and aptamer development are increasingly important, but various approaches to ACE are more and more generally applied in biological research. In addition, the present overview emphasizes that distinct challenges regarding sensitivity, parallel processing, information‐rich detection, interfacing with MS, analyte recovery, and preparative capabilities remain. This will be addressed by future technological improvements that will ensure continuing new applications of ACE in the years to come.
Collapse
Affiliation(s)
- Christian Schou
- Department of Autoimmunology, Statens Serum Institute, Copenhagen, Denmark
| | | |
Collapse
|
8
|
Yu X, Lin W, Pang R, Yang M. Design, synthesis and bioactivities of TAR RNA targeting β-carboline derivatives based on Tat–TAR interaction. Eur J Med Chem 2005; 40:831-9. [PMID: 15925430 DOI: 10.1016/j.ejmech.2005.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 01/07/2005] [Indexed: 11/18/2022]
Abstract
A series of new beta-carboline derivatives 3-14 bearing guanidinium group or amino group-terminated side chain targeting the TAR RNA were designed and synthesized. Molecular modeling studies indicated that the minimal interaction energy was obtained for compound 11, which contained the optimal linker of three methylene groups and the terminal guanidinium group interacted with the three-base bulge of TAR element by hydrogen bonds, which were the main contributor to the stability of drug-TAR RNA complex. To evaluate the ability of compounds 3-14 to block Tat-TAR interaction, we established a rapid, sensitive quantitative bioassay based on transient cotransfection of a Tat expression vector and a long terminal repeat region-chloramphenicol acetyltransferase (LTR-CAT) reporter construct in eukaryotic cells, monitoring the influence of the compounds on CAT expression levels with ELISA. Compounds 11 and 12 were the most active compounds of all in inhibiting Tat-TAR interaction bearing the terminal guanidinium group, and the optimal linker of the three methylene groups. Both compounds also exhibited anti-HIV-1 activity in MT4 cells, and their LD50 values of intraperitoneal acute toxicity for mice were 320.0 and 104.3 mg/kg, respectively. Furthermore, the results of capillary electrophoresis (CE) suggest that it is through targeting TAR RNA that this series of compounds block the Tat-TAR interaction.
Collapse
Affiliation(s)
- Xiaolin Yu
- National Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | | | | | | |
Collapse
|
9
|
Gayton-Ely M, Pappas TJ, Holland LA. Probing affinity via capillary electrophoresis: advances in 2003–2004. Anal Bioanal Chem 2005; 382:570-80. [PMID: 15703915 DOI: 10.1007/s00216-004-3033-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 12/09/2004] [Indexed: 10/25/2022]
Abstract
This review addresses recent advances in capillary electrophoresis of biological-based molecular interaction from a broader perspective, based on applications reported during the period 2003-2004. These capillary electrophoresis-based studies of molecular interactions include affinity capillary electrophoresis, electrokinetic chromatography, and free zone electrophoresis. The review is written as a general synopsis of applications and does not cover the theory or protocol involved in the implementation of the analyses.
Collapse
Affiliation(s)
- Melissa Gayton-Ely
- Department of Chemistry, West Virginia University, 217 Clark Hall, P.O.Box 6045, Morgantown, WV 26506, USA
| | | | | |
Collapse
|
10
|
|
11
|
Zhao H, Li J, Jiang L. Inhibition of HIV-1 TAR RNA-Tat peptide complexation using poly(acrylic acid). Biochem Biophys Res Commun 2004; 320:95-9. [PMID: 15207707 DOI: 10.1016/j.bbrc.2004.05.148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Indexed: 11/29/2022]
Abstract
HIV-1 is regulated at the transcriptional level by the interaction of Tat protein with the transactivation responsive region (TAR) RNA, a 59-base stem-loop structure located at the 5'-end of all nascent HIV-1 transcripts. Here, by targeting the Tat peptide, we found that negatively charged poly(acrylic acid) (PAA) had high affinity with Tat peptide and could inhibit the interaction of TAR with Tat. Therefore, PAA could block HIV replication by binding to Tat not to TAR RNA, providing a new thinking for the design of novel anti-HIV drugs.
Collapse
Affiliation(s)
- Hong Zhao
- Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | | | | |
Collapse
|
12
|
Zhao H, Li J, Xi F, Jiang L. Polyamidoamine dendrimers inhibit binding of Tat peptide to TAR RNA. FEBS Lett 2004; 563:241-5. [PMID: 15063756 DOI: 10.1016/s0014-5793(04)00284-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 02/20/2004] [Accepted: 03/10/2004] [Indexed: 11/16/2022]
Abstract
The binding of polyamidoamine (PAMAM) dendrimer or Tat peptide to trans-acting responsive element (TAR) RNA has been studied using microgravimetric quartz crystal microbalance (QCM). Experimental results showed that PAMAM dendrimer could form complexes with TAR RNA. Especially, PAMAM dendrimer could disrupt the interaction of Tat peptide with TAR RNA, which is essential for HIV-1 virus replication, suggesting that QCM is a powerful tool for studying the binding processes of Tat peptide-TAR RNA and drug-TAR RNA and has great significance for the design of new drugs. An equation to measure the binding ability between TAR RNA and other species has been proposed.
Collapse
Affiliation(s)
- Hong Zhao
- Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, PR China
| | | | | | | |
Collapse
|