1
|
Wang T, Soundararajan A, Rabinowitz J, Jaiswal A, Osborne T, Pattabiraman PP. Identification of the novel role of sterol regulatory element binding proteins (SREBPs) in mechanotransduction and intraocular pressure regulation. FASEB J 2023; 37:e23248. [PMID: 37823226 PMCID: PMC10826798 DOI: 10.1096/fj.202301185r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Trabecular meshwork (TM) cells are contractile and mechanosensitive, and they aid in maintaining intraocular pressure (IOP) homeostasis. Lipids are attributed to modulating TM contractility, with poor mechanistic understanding. In this study using human TM cells, we identify the mechanosensing role of the transcription factors sterol regulatory element binding proteins (SREBPs) involved in lipogenesis. By constitutively activating SREBPs and pharmacologically inactivating SREBPs, we have mechanistically deciphered the attributes of SREBPs in regulating the contractile properties of TM. The pharmacological inhibition of SREBPs by fatostatin and molecular inactivation of SREBPs ex vivo and in vivo, respectively, results in significant IOP lowering. As a proof of concept, fatostatin significantly decreased the SREBPs responsive genes and enzymes involved in lipogenic pathways as well as the levels of the phospholipid, cholesterol, and triglyceride. Further, we show that fatostatin mitigated actin polymerization machinery and stabilization, and decreased ECM synthesis and secretion. We thus postulate that lowering lipogenesis in the TM outflow pathway can hold the key to lowering IOP by modifying the TM biomechanics.
Collapse
Affiliation(s)
- Ting Wang
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, Indiana, 46202, United States of America
- Stark Neuroscience Research Institute, Medical Neuroscience Graduate Program, Indiana University School of Medicine, 320 W. 15th Street, Indiana, 46202, United States of America
| | - Avinash Soundararajan
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, Indiana, 46202, United States of America
| | - Jeffrey Rabinowitz
- Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Anant Jaiswal
- Institute for Fundamental Biomedical Research, Department of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, St. Petersburg, Florida, 33701, United States of America
| | - Timothy Osborne
- Institute for Fundamental Biomedical Research, Department of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, St. Petersburg, Florida, 33701, United States of America
| | - Padmanabhan Paranji Pattabiraman
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, Indiana, 46202, United States of America
- Stark Neuroscience Research Institute, Medical Neuroscience Graduate Program, Indiana University School of Medicine, 320 W. 15th Street, Indiana, 46202, United States of America
| |
Collapse
|
2
|
Wang T, Soundararajan A, Rabinowitz J, Jaiswal A, Osborne T, Pattabiraman PP. Identification of the novel role of sterol regulatory element binding proteins (SREBPs) in mechanotransduction and intraocular pressure regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.05.527136. [PMID: 37214961 PMCID: PMC10197526 DOI: 10.1101/2023.02.05.527136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Trabecular meshwork (TM) cells are highly contractile and mechanosensitive to aid in maintaining intraocular pressure (IOP) homeostasis. Lipids are attributed to modulating TM contractility with poor mechanistic understanding. In this study using human TM cells, we identify the mechanosensing role of the transcription factors sterol regulatory element binding proteins (SREBPs) involved in lipogenesis. By constitutively activating SREBPs and pharmacologically inactivating SREBPs, we have mechanistically deciphered the attributes of SREBPs in regulating the contractile properties of TM. The pharmacological inhibition of SREBPs by fatostatin and molecular inactivation of SREBPs ex vivo and in vivo respectively results in significant IOP lowering. As a proof of concept, fatostatin significantly decreased the SREBPs responsive genes and enzymes involved in lipogenic pathways as well as the levels of the phospholipid, cholesterol, and triglyceride. Further, we show that fatostatin mitigated actin polymerization machinery and stabilization, and decreased ECM synthesis and secretion. We thus postulate that lowering lipogenesis in the TM outflow pathway can hold the key to lowering IOP by modifying the TM biomechanics. Synopsis In this study, we show the role of lipogenic transcription factors sterol regulatory element binding proteins (SREBPs) in the regulation of intraocular pressure (IOP). ( Synopsis Figure - Created using Biorender.com ) SREBPs are involved in the sensing of changes in mechanical stress on the trabecular meshwork (TM). SREBPs aid in transducing the mechanical signals to induce actin polymerization and filopodia/lamellipodia formation.SREBPs inactivation lowered genes and enzymes involved in lipogenesis and modified lipid levels in TM.SREBPs activity is a critical regulator of ECM engagement to the matrix sites.Inactivation of SCAP-SREBP pathway lowered IOP via actin relaxation and decreasing ECM production and deposition in TM outflow pathway signifying a novel relationship between SREBP activation status and achieving IOP homeostasis.
Collapse
|
3
|
Williams L, Layton T, Yang N, Feldmann M, Nanchahal J. Collagen VI as a driver and disease biomarker in human fibrosis. FEBS J 2021; 289:3603-3629. [PMID: 34109754 DOI: 10.1111/febs.16039] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Fibrosis of visceral organs such as the lungs, heart, kidneys and liver remains a major cause of morbidity and mortality and is also associated with many other disorders, including cancer and metabolic disease. In this review, we focus upon the microfibrillar collagen VI, which is present in the extracellular matrix (ECM) of most tissues. However, expression is elevated in numerous fibrotic conditions, such as idiopathic pulmonary disease (IPF), and chronic liver and kidney diseases. Collagen VI is composed of three subunits α1, α2 and α3, which can be replaced with alternate chains of α4, α5 or α6. The C-terminal globular domain (C5) of collagen VI α3 can be proteolytically cleaved to form a biologically active fragment termed endotrophin, which has been shown to actively drive fibrosis, inflammation and insulin resistance. Tissue biopsies have long been considered the gold standard for diagnosis and monitoring of progression of fibrotic disease. The identification of neoantigens from enzymatically processed collagen chains have revolutionised the biomarker field, allowing rapid diagnosis and evaluation of prognosis of numerous fibrotic conditions, as well as providing valuable clinical trial endpoint determinants. Collagen VI chain fragments such as endotrophin (PRO-C6), C6M and C6Mα3 are emerging as important biomarkers for fibrotic conditions.
Collapse
Affiliation(s)
- Lynn Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Thomas Layton
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Nan Yang
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Jagdeep Nanchahal
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| |
Collapse
|
4
|
Dorotea D, Koya D, Ha H. Recent Insights Into SREBP as a Direct Mediator of Kidney Fibrosis via Lipid-Independent Pathways. Front Pharmacol 2020; 11:265. [PMID: 32256356 PMCID: PMC7092724 DOI: 10.3389/fphar.2020.00265] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
Sterol regulatory-element binding proteins (SREBPs) are classical regulators of cellular lipid metabolism in the kidney and other tissues. SREBPs are currently recognized as versatile transcription factors involved in a myriad of cellular processes. Meanwhile, SREBPs have been recognized to mediate lipotoxicity, contributing to the progression of kidney diseases. SREBP1 has been shown to bind to the promoter region of TGFβ, a major pro-fibrotic signaling mechanism in the kidney. Conversely, TGFβ activates SREBP1 transcriptional activity suggesting a positive feedback loop of SREBP1 in TGFβ signaling. Public ChIP-seq data revealed numerous non-lipid transcriptional targets of SREBPs that plausibly play roles in progressive kidney disease and fibrosis. This review provides new insights into SREBP as a mediator of kidney fibrosis via lipid-independent pathways.
Collapse
Affiliation(s)
- Debra Dorotea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Daisuke Koya
- Department of Internal Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
5
|
Wang TN, Chen X, Li R, Gao B, Mohammed-Ali Z, Lu C, Yum V, Dickhout JG, Krepinsky JC. SREBP-1 Mediates Angiotensin II-Induced TGF-β1 Upregulation and Glomerular Fibrosis. J Am Soc Nephrol 2014; 26:1839-54. [PMID: 25398788 DOI: 10.1681/asn.2013121332] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 09/23/2014] [Indexed: 12/16/2022] Open
Abstract
Angiotensin II is an important mediator of CKD of diverse etiology. A common pathologic feature of CKD is glomerular fibrosis, a central mediator of which is the profibrotic cytokine TGF-β. The mechanisms underlying the induction of TGF-β and matrix by angiotensin II are not completely understood. Recent studies showed that overexpression of the transcription factor SREBP-1 induces glomerular sclerosis and that angiotensin II can activate SREBP-1 in tubular cells. We thus studied whether SREBP-1 is activated by angiotensin II and mediates angiotensin II-induced profibrogenic responses in primary rat mesangial cells. Treatment of cells with angiotensin II induced the upregulation and activation of SREBP-1. Angiotensin II-induced activation of SREBP-1 required signaling through the angiotensin II type I receptor and activation of PI3K/Akt in addition to the chaperone SCAP and protease S1P. Notably, angiotensin II-induced endoplasmic reticulum stress was identified as a key mediator of Akt-SREBP-1 activation, and inhibition of endoplasmic reticulum stress or SREBP-1 prevented angiotensin II-induced SREBP-1 binding to the TGF-β promoter, TGF-β upregulation, and downstream fibronectin upregulation. Endoplasmic reticulum stress alone, however, did not induce TGF-β upregulation despite activating SREBP-1. Although not required for SREBP-1 activation by angiotensin II, EGF receptor signaling was necessary for activation of the SREBP-1 cotranscription factor Sp1, which provided a required second signal for TGF-β upregulation. In vivo, endoplasmic reticulum stress and SREBP-1-dependent effects were induced in glomeruli of angiotensin II-infused mice, and administration of the SREBP inhibitor fatostatin prevented angiotensin II-induced TGF-β upregulation and matrix accumulation. SREBP-1 and endoplasmic reticulum stress thus provide potential novel therapeutic targets for the treatment of CKD.
Collapse
Affiliation(s)
- Tony N Wang
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | - Xing Chen
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | - Renzhong Li
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | - Bo Gao
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | | | - Chao Lu
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | - Victoria Yum
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | | | - Joan C Krepinsky
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Uttarwar L, Gao B, Ingram AJ, Krepinsky JC. SREBP-1 activation by glucose mediates TGF-β upregulation in mesangial cells. Am J Physiol Renal Physiol 2012; 302:F329-41. [DOI: 10.1152/ajprenal.00136.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glomerular matrix accumulation is a hallmark of diabetic nephropathy. Recent studies showed that overexpression of the transcription factor sterol-responsive element-binding protein (SREBP)-1 induces pathology reminiscent of diabetic nephropathy, and SREBP-1 upregulation was observed in diabetic kidneys. We thus studied whether SREBP-1 is activated by high glucose (HG) and mediates its profibrogenic responses. In primary rat mesangial cells, HG activated SREBP-1 by 30 min, seen by the appearance of its cleaved nuclear form (nSREBP-1), EMSA, and by activation of an SREBP-1 response element (SRE)-driven green fluorescent protein construct. Activation was dose dependent and not induced by an osmotic control. Site 1 protease was required, since its inhibition by AEBSF prevented SREBP-1 activation. SCAP, the ER-associated chaperone for SREBP-1, was also necessary since its inhibitor fatostatin also blocked SREBP-1 activation. Signaling through the EGFR/phosphatidylinositol 3-kinase (PI3K) pathway, which we previously showed mediates HG-induced TGF-β1 upregulation, and through RhoA, were upstream of SREBP-1 activation (Wu D, Peng F, Zhang B, Ingram AJ, Gao B, Krepinsky JC. Diabetologia 50: 2008–2018, 2007; Wu D, Peng F, Zhang B, Ingram AJ, Kelly DJ, Gilbert RE, Gao B, Krepinsky JC. J Am Soc Nephrol 20: 554–566, 2009). Fatostatin and AEBSF prevented HG-induced TGF-β1 upregulation by Northern blot analysis, and HG-induced TGF-β1 promoter activation was inhibited by both fatostatin and dominant negative SREBP-1a. Chromatin immunoprecipitation analysis confirmed that HG led to SREBP-1 binding to the TGF-β1 promoter in a region containing a putative SREBP-1 binding site (SRE). Thus HG-induced SREBP-1 activation requires EGFR/PI3K/RhoA signaling and SCAP-mediated transport to the Golgi for its proteolytic cleavage. Activated SREBP-1 binds to the TGF-β promoter, resulting in TGF-β1 upregulation in response to HG. SREBP-1 thus provides a potential novel therapeutic target for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Lalita Uttarwar
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | - Bo Gao
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | | | - Joan C. Krepinsky
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
García-Heredia A, Marsillach J, Aragonès G, Guardiola M, Rull A, Beltrán-Debón R, Folch A, Mackness B, Mackness M, Pedro-Botet J, Joven J, Camps J. Serum paraoxonase-3 concentration is associated with the severity of hepatic impairment in patients with chronic liver disease. Clin Biochem 2011; 44:1320-4. [DOI: 10.1016/j.clinbiochem.2011.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/29/2011] [Accepted: 08/02/2011] [Indexed: 12/20/2022]
|
8
|
Fujimori K, Aritake K, Urade Y. Enhancement of prostaglandin D(2) production through cyclooxygenase-2 and lipocalin-type prostaglandin D synthase by upstream stimulatory factor 1 in human brain-derived TE671 cells under serum starvation. Gene 2008; 426:72-80. [PMID: 18817855 DOI: 10.1016/j.gene.2008.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 08/17/2008] [Accepted: 08/29/2008] [Indexed: 11/15/2022]
Abstract
We found that prostaglandin (PG) D(2) production was induced through transcriptional activation of cyclooxygenase (COX)-2 and lipocalin-type PGD synthase (L-PGDS) genes under serum-starved conditions in human brain-derived TE671 cells. Analysis of promoter and intron regions of the human L-PGDS gene demonstrated that an atypical E-box within intron 4 mediated serum starvation-induced up-regulation of L-PGDS gene expression. The results of electrophoretic mobility shift assay and chromatin immunoprecipitation assay showed that upstream stimulatory factor (USF) 1 bound to this atypical E-box. USF1 gene expression was also enhanced during serum starvation in TE671 cells through activation of p38 mitogen activated protein kinase, and the efficiency of the binding of USF1 to the atypical E-box was clearly increased by serum starvation. Administration of USF1 siRNA suppressed both L-PGDS and COX-2 gene expression and PGD(2) production. Moreover, NS-398, a COX-2 inhibitor and AT-56, an L-PGDS inhibitor, suppressed PGD(2) production in TE671 cells cultured under the serum-starved condition. These results indicate that PGD(2) production stimulated by serum starvation is mediated by both COX-2 and L-PGDS through enhancement of USF1 in TE671 cells.
Collapse
Affiliation(s)
- Ko Fujimori
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | |
Collapse
|
9
|
Maraldi NM, Capanni C, Lattanzi G, Camozzi D, Facchini A, Manzoli FA. SREBP1 interaction with prelamin A forms: A pathogenic mechanism for lipodystrophic laminopathies. ACTA ACUST UNITED AC 2008; 48:209-23. [DOI: 10.1016/j.advenzreg.2007.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Marsillach J, Ferré N, Vila MC, Lligoña A, Mackness B, Mackness M, Deulofeu R, Solá R, Parés A, Pedro-Botet J, Joven J, Caballeria J, Camps J. Serum paraoxonase-1 in chronic alcoholics: relationship with liver disease. Clin Biochem 2007; 40:645-50. [PMID: 17335791 DOI: 10.1016/j.clinbiochem.2007.01.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 12/21/2006] [Accepted: 01/29/2007] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To investigate the relationship between serum paraoxonase-1 and liver damage in chronic alcoholic patients. To assess the diagnostic accuracy of paraoxonase-1 plus standard biochemical tests in the assessment of liver damage in alcoholics. DESIGN AND METHODS We studied 328 chronic alcoholics and 368 healthy individuals. RESULTS Paraoxonase-1 activity was decreased and the concentration was increased in alcoholics (P<0.001). The enzyme activity was correlated with albumin (r=0.45; P<0.001) and prothrombin time (r=0.49; P<0.001). Addition of paraoxonase-1 activity measurement to a battery of biochemical tests increased the sensitivity in differentiating between patients and controls up to 96.6% but did not improve the sensitivity in differentiating between subgroups of alcoholics. CONCLUSIONS Paraoxonase-1 was related to the severity of alcoholic liver disease. Its measurement was useful in discriminating between patients and healthy subjects, but did not add any valuable information in subgroups of alcoholics.
Collapse
Affiliation(s)
- Judit Marsillach
- Centre de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut de Recerca en Ciències de la Salut, Reus, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ferré N, Marsillach J, Camps J, Mackness B, Mackness M, Riu F, Coll B, Tous M, Joven J. Paraoxonase-1 is associated with oxidative stress, fibrosis and FAS expression in chronic liver diseases. J Hepatol 2006; 45:51-9. [PMID: 16510204 DOI: 10.1016/j.jhep.2005.12.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 12/02/2005] [Accepted: 12/05/2005] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS We previously reported that paraoxonase-1 activity measurement may be useful for the evaluation of liver diseases. Because oxidative stress plays a role in liver apoptosis, and lipid peroxides are hydrolyzed by paraoxonase-1, we have extended our studies to explore the relationships between this enzyme and oxidative stress, fibrosis and apoptosis. METHODS We measured paraoxonase-1 activity and concentration, soluble FAS concentration, serum fibrosis markers, and total peroxides in a group of patients with minimal hepatic changes (n=25), chronic hepatitis (n=51), or liver cirrhosis (n=17). We also measured the Knodell activity index in liver biopsies and performed FAS and PON1 immunostaining. RESULTS Patients with liver diseases showed an increase in soluble FAS, fibrosis markers and paraoxonase-1 concentrations, as well as a decrease in PON1 activity. Paroxonase-1 activity and concentration were correlated with soluble FAS (r=-0.43, P<0.001 and r=0.27, P=0.007, respectively). Paraoxonase-1 concentration showed a significant inverse association with FAS immunostaining (P=0.013) and a direct association with PON1 immunostaining (P<0.001). CONCLUSIONS These results suggest an active role of PON1 in the regulation of oxidative stress, fibrosis and hepatic cell apoptosis in chronic liver diseases.
Collapse
Affiliation(s)
- Natàlia Ferré
- DNA Unit, Centre de Diagnòstic Biomèdic, IDIBAPS, Hospital Clínic Universitari,C. Villarroel 170, 08036-Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|