1
|
Ninham B, Reines B, Battye M, Thomas P. Pulmonary surfactant and COVID-19: A new synthesis. QRB DISCOVERY 2022; 3:e6. [PMID: 37564950 PMCID: PMC10411325 DOI: 10.1017/qrd.2022.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022] Open
Abstract
Chapter 1 COVID-19 pathogenesis poses paradoxes difficult to explain with traditional physiology. For instance, since type II pneumocytes are considered the primary cellular target of SARS-CoV-2; as these produce pulmonary surfactant (PS), the possibility that insufficient PS plays a role in COVID-19 pathogenesis has been raised. However, the opposite of predicted high alveolar surface tension is found in many early COVID-19 patients: paradoxically normal lung volumes and high compliance occur, with profound hypoxemia. That 'COVID anomaly' was quickly rationalised by invoking traditional vascular mechanisms-mainly because of surprisingly preserved alveolar surface in early hypoxemic cases. However, that quick rejection of alveolar damage only occurred because the actual mechanism of gas exchange has long been presumed to be non-problematic, due to diffusion through the alveolar surface. On the contrary, we provide physical chemical evidence that gas exchange occurs by an process of expansion and contraction of the three-dimensional structures of PS and its associated proteins. This view explains anomalous observations from the level of cryo-TEM to whole individuals. It encompasses results from premature infants to the deepest diving seals. Once understood, the COVID anomaly dissolves and is straightforwardly explained as covert viral damage to the 3D structure of PS, with direct treatment implications. As a natural experiment, the SARS-CoV-2 virus itself has helped us to simplify and clarify not only the nature of dyspnea and its relationship to pulmonary compliance, but also the fine detail of the PS including such features as water channels which had heretofore been entirely unexpected. Chapter 2 For a long time, physical, colloid and surface chemistry have not intersected with physiology and cell biology as much as we might have hoped. The reasons are starting to become clear. The discipline of physical chemistry suffered from serious unrecognised omissions that rendered it ineffective. These foundational defects included omission of specific ion molecular forces and hydration effects. The discipline lacked a predictive theory of self-assembly of lipids and proteins. Worse, theory omitted any role for dissolved gases, O2, N2, CO2, and their existence as stable nanobubbles above physiological salt concentration. Recent developments have gone some way to explaining the foam-like lung surfactant structures and function. It delivers O2/N2 as nanobubbles, and efflux of CO2, and H2O nanobubbles at the alveolar surface. Knowledge of pulmonary surfactant structure allows an explanation of the mechanism of corona virus entry, and differences in infectivity of different variants. CO2 nanobubbles, resulting from metabolism passing through the molecular frit provided by the glycocalyx of venous tissue, forms the previously unexplained foam which is the endothelial surface layer. CO2 nanobubbles turn out to be lethal to viruses, providing a plausible explanation for the origin of 'Long COVID'. Circulating nanobubbles, stable above physiological 0.17 M salt drive various enzyme-like activities and chemical reactions. Awareness of the microstructure of Pulmonary Surfactant and that nanobubbles of (O2/N2) and CO2 are integral to respiratory and circulatory physiology provides new insights to the COVID-19 and other pathogen activity.
Collapse
Affiliation(s)
- Barry Ninham
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
- School of Science, University of New South Wales, Northcott Drive, Campbell, Canberra, ACT2612, Australia
| | - Brandon Reines
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 5607 Baum Blvd, Pittsburgh, PA15206, USA
| | | | - Paul Thomas
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
| |
Collapse
|
2
|
Allen KN, Vázquez-Medina JP. Natural Tolerance to Ischemia and Hypoxemia in Diving Mammals: A Review. Front Physiol 2019; 10:1199. [PMID: 31620019 PMCID: PMC6763568 DOI: 10.3389/fphys.2019.01199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Reperfusion injury follows ischemia/reperfusion events occurring during myocardial infarction, stroke, embolism, and other peripheral vascular diseases. Decreased blood flow and reduced oxygen tension during ischemic episodes activate cellular pathways that upregulate pro-inflammatory signaling and promote oxidant generation. Reperfusion after ischemia recruits inflammatory cells to the vascular wall, further exacerbating oxidant production and ultimately resulting in cell death, tissue injury, and organ dysfunction. Diving mammals tolerate repetitive episodes of peripheral ischemia/reperfusion as part of the cardiovascular adjustments supporting long duration dives. These adjustments allow marine mammals to optimize the use of their body oxygen stores while diving but can result in selectively reduced perfusion to peripheral tissues. Remarkably, diving mammals show no apparent detrimental effects associated with these ischemia/reperfusion events. Here, we review the current knowledge regarding the strategies marine mammals use to suppress inflammation and cope with oxidant generation potentially derived from diving-induced ischemia/reperfusion.
Collapse
|
3
|
Orgeig S, Morrison JL, Daniels CB. Evolution, Development, and Function of the Pulmonary Surfactant System in Normal and Perturbed Environments. Compr Physiol 2015; 6:363-422. [PMID: 26756637 DOI: 10.1002/cphy.c150003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Surfactant lipids and proteins form a surface active film at the air-liquid interface of internal gas exchange organs, including swim bladders and lungs. The system is uniquely positioned to meet both the physical challenges associated with a dynamically changing internal air-liquid interface, and the environmental challenges associated with the foreign pathogens and particles to which the internal surface is exposed. Lungs range from simple, transparent, bag-like units to complex, multilobed, compartmentalized structures. Despite this anatomical variability, the surfactant system is remarkably conserved. Here, we discuss the evolutionary origin of the surfactant system, which likely predates lungs. We describe the evolution of surfactant structure and function in invertebrates and vertebrates. We focus on changes in lipid and protein composition and surfactant function from its antiadhesive and innate immune to its alveolar stability and structural integrity functions. We discuss the biochemical, hormonal, autonomic, and mechanical factors that regulate normal surfactant secretion in mature animals. We present an analysis of the ontogeny of surfactant development among the vertebrates and the contribution of different regulatory mechanisms that control this development. We also discuss environmental (oxygen), hormonal and biochemical (glucocorticoids and glucose) and pollutant (maternal smoking, alcohol, and common "recreational" drugs) effects that impact surfactant development. On the adult surfactant system, we focus on environmental variables including temperature, pressure, and hypoxia that have shaped its evolution and we discuss the resultant biochemical, biophysical, and cellular adaptations. Finally, we discuss the effect of major modern gaseous and particulate pollutants on the lung and surfactant system.
Collapse
Affiliation(s)
- Sandra Orgeig
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Christopher B Daniels
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
4
|
Castellini M. Life under water: physiological adaptations to diving and living at sea. Compr Physiol 2013; 2:1889-919. [PMID: 23723028 DOI: 10.1002/cphy.c110013] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review covers the field of diving physiology by following a chronological approach and focusing heavily on marine mammals. Because the study of modern diving physiology can be traced almost entirely to the work of Laurence Irving in the 1930s, this particular field of physiology is different than most in that it did not derive from multiple laboratories working at many locations or on different aspects of a similar problem. Because most of the physiology principles still used today were first formulated by Irving, it is important to the study of this field that the sequence of thought is examined as a progression of theory. The review covers the field in roughly decadal blocks and traces ideas as they were first suggested, tested, modified and in some cases, abandoned. Because diving physiology has also been extremely dependent on new technologies used in the development of diving recorders, a chronological approach fits well with advances in electronics and mechanical innovation. There are many species that dive underwater as part of their natural behavior, but it is mainly the marine mammals (seals, sea lions, and whales) that demonstrate both long duration and dives to great depth. There have been many studies on other diving species including birds, snakes, small aquatic mammals, and humans. This work examines these other diving species as appropriate and a listing of reviews and relevant literature on these groups is included at the end.
Collapse
Affiliation(s)
- Michael Castellini
- School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska.
| |
Collapse
|
5
|
Piscitelli MA, Raverty SA, Lillie MA, Shadwick RE. A review of cetacean lung morphology and mechanics. J Morphol 2013; 274:1425-40. [DOI: 10.1002/jmor.20192] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 06/25/2013] [Accepted: 08/05/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Marina A. Piscitelli
- Department of Zoology; University of British Columbia; Vancouver British Columbia Canada V6T 1Z4
| | - Stephen A. Raverty
- Department of Zoology; University of British Columbia; Vancouver British Columbia Canada V6T 1Z4
- Division of Plant and Animal Health; British Columbia Ministry of Agriculture; Abbotsford British Columbia Canada V3G 2M3
| | - Margo A. Lillie
- Department of Zoology; University of British Columbia; Vancouver British Columbia Canada V6T 1Z4
| | - Robert E. Shadwick
- Department of Zoology; University of British Columbia; Vancouver British Columbia Canada V6T 1Z4
| |
Collapse
|
6
|
Pantazi D, Kitsiouli E, Karkabounas A, Trangas T, Nakos G, Lekka ME. Dipalmitoyl-Phosphatidylcholine Biosynthesis is Induced by Non-Injurious Mechanical Stretch in a Model of Alveolar Type II Cells. Lipids 2013; 48:827-38. [DOI: 10.1007/s11745-013-3800-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/04/2013] [Indexed: 10/26/2022]
|
7
|
|
8
|
Maina JN, West JB, Orgeig S, Foot NJ, Daniels CB, Kiama SG, Gehr P, Mühlfeld C, Blank F, Müller L, Lehmann A, Brandenberger C, Rothen-Rutishauser B. Recent advances into understanding some aspects of the structure and function of mammalian and avian lungs. Physiol Biochem Zool 2010; 83:792-807. [PMID: 20687843 DOI: 10.1086/652244] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recent findings are reported about certain aspects of the structure and function of the mammalian and avian lungs that include (a) the architecture of the air capillaries (ACs) and the blood capillaries (BCs); (b) the pulmonary blood capillary circulatory dynamics; (c) the adaptive molecular, cellular, biochemical, compositional, and developmental characteristics of the surfactant system; (d) the mechanisms of the translocation of fine and ultrafine particles across the airway epithelial barrier; and (e) the particle-cell interactions in the pulmonary airways. In the lung of the Muscovy duck Cairina moschata, at least, the ACs are rotund structures that are interconnected by narrow cylindrical sections, while the BCs comprise segments that are almost as long as they are wide. In contrast to the mammalian pulmonary BCs, which are highly compliant, those of birds practically behave like rigid tubes. Diving pressure has been a very powerful directional selection force that has influenced phenotypic changes in surfactant composition and function in lungs of marine mammals. After nanosized particulates are deposited on the respiratory tract of healthy human subjects, some reach organs such as the brain with potentially serious health implications. Finally, in the mammalian lung, dendritic cells of the pulmonary airways are powerful agents in engulfing deposited particles, and in birds, macrophages and erythrocytes are ardent phagocytizing cellular agents. The morphology of the lung that allows it to perform different functions-including gas exchange, ventilation of the lung by being compliant, defense, and secretion of important pharmacological factors-is reflected in its "compromise design."
Collapse
Affiliation(s)
- J N Maina
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Torday JS, Powell FL, Farmer CG, Orgeig S, Nielsen HC, Hall AJ. Leptin integrates vertebrate evolution: from oxygen to the blood-gas barrier. Respir Physiol Neurobiol 2010; 173 Suppl:S37-42. [PMID: 20096383 DOI: 10.1016/j.resp.2010.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/11/2010] [Accepted: 01/13/2010] [Indexed: 11/30/2022]
Abstract
The following are the proceedings of a symposium held at the Second International Congress for Respiratory Science in Bad Honnef, Germany. The goals of the symposium were to delineate the blood-gas barrier phenotype across vertebrate species; to delineate the interrelationship between the evolution of the blood-gas barrier, locomotion and metabolism; to introduce the selection pressures for the evolution of the surfactant system as a key to understanding the physiology of the blood-gas barrier; to introduce the lung lipofibroblast and its product, leptin, which coordinately regulates pulmonary surfactant, type IV collagen in the basement membrane and host defense, as the cell-molecular site of selection pressure for the blood-gas barrier; to drill down to the gene regulatory network(s) involved in leptin signaling and the blood-gas barrier phenotype; to extend the relationship between leptin and the blood-gas barrier to diving mammals.
Collapse
Affiliation(s)
- J S Torday
- Department of Pediatrics, University of California-Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Foot NJ, Orgeig S, Donnellan S, Bertozzi T, Daniels CB. Positive selection in the N-terminal extramembrane domain of lung surfactant protein C (SP-C) in marine mammals. J Mol Evol 2007; 65:12-22. [PMID: 17568982 DOI: 10.1007/s00239-006-0083-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 02/12/2007] [Indexed: 10/23/2022]
Abstract
Maximum-likelihood models of codon and amino acid substitution were used to analyze the lung-specific surfactant protein C (SP-C) from terrestrial, semi-aquatic, and diving mammals to identify lineages and amino acid sites under positive selection. Site models used the nonsynonymous/synonymous rate ratio (omega) as an indicator of selection pressure. Mechanistic models used physicochemical distances between amino acid substitutions to specify nonsynonymous substitution rates. Site models strongly identified positive selection at different sites in the polar N-terminal extramembrane domain of SP-C in the three diving lineages: site 2 in the cetaceans (whales and dolphins), sites 7, 9, and 10 in the pinnipeds (seals and sea lions), and sites 2, 9, and 10 in the sirenians (dugongs and manatees). The only semi-aquatic contrast to indicate positive selection at site 10 was that including the polar bear, which had the largest body mass of the semi-aquatic species. Analysis of the biophysical properties that were influential in determining the amino acid substitutions showed that isoelectric point, chemical composition of the side chain, polarity, and hydrophobicity were the crucial determinants. Amino acid substitutions at these sites may lead to stronger binding of the N-terminal domain to the surfactant phospholipid film and to increased adsorption of the protein to the air-liquid interface. Both properties are advantageous for the repeated collapse and reinflation of the lung upon diving and resurfacing and may reflect adaptations to the high hydrostatic pressures experienced during diving.
Collapse
Affiliation(s)
- Natalie J Foot
- Discipline of Environmental Biology, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | | | | | | | | |
Collapse
|
11
|
Foot NJ, Orgeig S, Daniels CB. The evolution of a physiological system: the pulmonary surfactant system in diving mammals. Respir Physiol Neurobiol 2006; 154:118-38. [PMID: 16877052 DOI: 10.1016/j.resp.2006.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 04/18/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
Pulmonary surfactant lines the alveolar air-water interface, varying surface tension with lung volume to increase compliance and prevent adhesion of respiratory surfaces. We examined whether the surfactant system of diving mammals exhibits adaptations for more efficient lung function during diving, to complement other respiratory adaptations. Here we review adaptations at the molecular, compositional, functional and cellular levels and during development for animals beginning life on land and progressing to an aquatic environment. Molecular adaptations to diving were examined in surfactant protein C (SP-C) from terrestrial, semi-aquatic and diving mammals using phylogenetic analyses. Diving species exhibited sites under positive selection in the polar N-terminal domain. These amino acid substitutions may lead to stronger binding of SP-C to the phospholipid film and increased adsorption to the air-liquid interface. The concentration of shorter chain phospholipid molecular species was greater and SP-B levels were lower in diving than terrestrial mammals. This may lead to a greater fluidity and explain the relatively poor surface activity of diving mammal surfactant. There were no consistent differences in cholesterol between diving and terrestrial mammals. Surfactant from newborn California sea lions was similar to that of terrestrial mammals. Secretory activity of alveolar type II epithelial cells of sea lions demonstrated an insensitivity to pressure relative to sheep cells. The poor surface activity of diving mammal surfactant is consistent with the hypothesis that it has an anti-adhesive function that develops after the first entry into the water, with a surfactant film that is better suited to repeated collapse and respreading.
Collapse
Affiliation(s)
- Natalie J Foot
- Discipline of Environmental Biology, School of Earth & Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | | | | |
Collapse
|
12
|
Hammond JA, Bennett KA, Walton MJ, Hall AJ. Molecular cloning and expression of leptin in gray and harbor seal blubber, bone marrow, and lung and its potential role in marine mammal respiratory physiology. Am J Physiol Regul Integr Comp Physiol 2005; 289:R545-R553. [PMID: 15831765 DOI: 10.1152/ajpregu.00203.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leptin is a multifunctional hormone, produced predominantly in adipocytes. It regulates energy balance through its impact on appetite and fat metabolism, and its concentration indicates the size of body fat reserves. Leptin also plays a vital role in stretch-induced surfactant production during alveolar development in the fetus. The structure, expression pattern, and role of leptin have not previously been explored in marine mammals. Phocid seals undergo cyclical changes in body composition as a result of prolonged fasting and intensive foraging bouts and experience rapid, dramatic, and repeated changes in lung volume during diving. Here, we report the tissue-specific expression pattern of leptin in these animals. This is the first demonstration of leptin expression in the lung tissue of a mature mammal, in addition to its expression in the blubber and bone marrow, in common with other animals. We propose a role for leptin in seal pulmonary surfactant production, in addition to its likely role in long-term energy balance. We identify substitutions in the phocine leptin sequence in regions normally highly conserved between widely distinct vertebrate groups, and, using a purified seal leptin antiserum, we confirm the presence of the leptin protein in gray seal lung and serum fractions. Finally, we report the substantial inadequacies of using heterologous antibodies to measure leptin in unextracted gray seal serum.
Collapse
Affiliation(s)
- John A Hammond
- Sea Mammal Research Unit, Gatty Marine Laboratory, University of St Andrews, St Andrews, Scotland, KY16 8LB, UK.
| | | | | | | |
Collapse
|