1
|
Wang Y, Hu X, Long Z, Adams E, Li J, Xu M, Liang C, Ning B, Hu C, Zhang Y. Proteomic analysis of Penicillin G acylases and resulting residues in semi-synthetic β-lactam antibiotics using liquid chromatography - tandem mass spectrometry. J Chromatogr A 2022; 1678:463365. [PMID: 35907366 DOI: 10.1016/j.chroma.2022.463365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/31/2022]
Abstract
Penicillin G acylase (PGA), as a key enzyme, is increasingly used in the commercial production of semi-synthetic β-lactam antibiotics (SSBAs). With the substitution of conventional chemical synthesis by emerging bioconversion processes, more and more PGAs fermented from different types of strains such as Escherichia coli (E. coli, ATCC 11105), Achromobacter sp. CCM 4824 and Providencia rettgeri (ATCC 31052) have been used in this kind of enzymatic processes. As an intermediate reaction catalyst, PGA protein and its presence in the final products may cause a potential risk of human allergic reaction and bring challenges for both quality and process controls. To achieve qualitative and quantitative analysis of PGAs and their residues in SSBAs, a tryptic digestion coupled with liquid chromatography - tandem mass spectrometry (LC-MS/MS) method was developed and proposed because of advantages like high selectivity and sensitivity. A suitable filter aided sample preparation (FASP) method was also used to remove matrix interference and to enrich the target PGA retained in the ultrafiltration membrane for an efficient enzymatic hydrolysis and subsequent accurate MS detection. Finally, twelve batches of PGAs from eight companies were identified and categorized into two types of strains (E. coli and Achromobacter sp. CCM 4824) using proteomic analysis. In total nine batches of five types of SSBAs (amoxicillin, cephalexin, cefprozil, cefdinir and cefaclor) from eight manufacturers were selected for investigation. Trace levels of PGA residual proteins ranging from 0.01 to 0.44 ppm were detected in six batches of different SSBAs which were far lower than the safety limit of 35 ppm reported by DSM, a manufacturer with expertise in the production of SSBAs by enzymatic processes. The developed FASP with LC-MS/MS method is superior to traditional protein assays in terms of selectivity, sensitivity and accuracy. Moreover, it could provide in-depth analysis of amino acid sequences and signature peptides contributing to assignment of the strain sources of PGAs. This method could become a promising and powerful tool to monitor enzymatic process robustness and reliability of this kind of SSBAs manufacturing.
Collapse
Affiliation(s)
- Yan Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Department of Antibiotics, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Xinyue Hu
- Department of Antibiotics, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Zhen Long
- Thermo Fisher Scientific Corporation, Beijing 100080, China
| | - Erwin Adams
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, University of Leuven, Herestraat 49, O&N2, PB 923, Leuven 3000, Belgium
| | - Jin Li
- Department of Antibiotics, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Mingzhe Xu
- Department of Antibiotics, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Chenggang Liang
- Department of Antibiotics, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Baoming Ning
- Department of Antibiotics, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Changqin Hu
- Department of Antibiotics, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
2
|
Wang Y, Zhang P, Yao S, Zou W, Zhang Y, Adams E, Hu C. Integrative strategy to determine residual proteins in cefaclor produced by immobilized penicillin G acylase. J Pharm Biomed Anal 2020; 185:113229. [PMID: 32163852 DOI: 10.1016/j.jpba.2020.113229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
There is a growing trend in the pharmaceutical industry towards substituting conventional chemical synthesis routes of semi-synthetic β-lactam antibiotics (SSBAs) through environmentally sustainable enzymatic processes. These have advantages such as cost reduction in terms of solvent and waste treatment and time saving owing to fewer reaction steps. Penicillin G acylase (PGA) is an industrially important enzyme that is mainly used to catalyze the synthesis of SSBAs. In this study, we established an integrative strategy using three different analytical methods for determining the PGA-associated residual protein content, which is a critical quality issue in the end product. Cefaclor was taken as representative example of SSBAs. High-performance liquid chromatography coupled with fluorescence detection (HPLC-FD) allowed the routine analysis of PGA residual proteins and other low molecular weight (MW) impurities with high detection specificity and sensitivity, comparable to those of the Bradford assay and microfluidic protein chip electrophoresis. However, these latter two methods were superior for quantitative and qualitative analysis, respectively, and should be regarded as necessary adjuncts to the HPLC-FD method. By combining the three methods, trace levels of residual proteins were detected in four (out of 13) cefaclor bulk samples from two different manufacturers, with a major protein MW of ∼63 kDa. This suggests that the higher MW PGA subunit tends to persist in the end product. The integrative determination strategy described here can be used to evaluate SSBA bulk samples and monitor the process of SSBA manufacturing by enzymatic methods, especially in terms of inter-batch consistency and process stability.
Collapse
Affiliation(s)
- Yan Wang
- Department of Antibiotics, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Peipei Zhang
- Department of Antibiotics, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Shangchen Yao
- Department of Antibiotics, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Wenbo Zou
- Department of Antibiotics, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Erwin Adams
- KU Leuven,University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, O&N2, PB 923, 3000 Leuven, Belgium
| | - Changqin Hu
- Department of Antibiotics, National Institutes for Food and Drug Control, Beijing 102629, China.
| |
Collapse
|
3
|
Grulich M, Brezovský J, ŠtĿpánek V, Palyzová A, Kyslíková E, Kyslík P. Resolution of α/β-amino acids by enantioselective penicillin G acylase from Achromobacter sp . ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Panigrahi P, Chand D, Mukherji R, Ramasamy S, Suresh CG. Sequence and structure-based comparative analysis to assess, identify and improve the thermostability of penicillin G acylases. ACTA ACUST UNITED AC 2015; 42:1493-506. [DOI: 10.1007/s10295-015-1690-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/14/2015] [Indexed: 11/28/2022]
Abstract
Abstract
Penicillin acylases are enzymes employed by the pharmaceutical industry for the manufacture of semi-synthetic penicillins. There is a continuous demand for thermostable and alkalophilic enzymes in such applications. We have carried out a computational analysis of known penicillin G acylases (PGAs) in terms of their thermostable nature using various protein-stabilizing factors. While the presence of disulfide bridges was considered initially to screen putative thermostable PGAs from the database, various other factors such as high arginine to lysine ratio, less content of thermolabile amino acids, presence of proline in β-turns, more number of ion-pair and other non-bonded interactions were also considered for comparison. A modified consensus approach designed could further identify stabilizing residue positions by site-specific comparison between mesostable and thermostable PGAs. A most likely thermostable enzyme identified from the analysis was PGA from Paracoccus denitrificans (PdPGA). This was cloned, expressed and tested for its thermostable nature using biochemical and biophysical experiments. The consensus site-specific sequence-based approach predicted PdPGA to be more thermostable than Escherichia coli PGA, but not as thermostable as the PGA from Achromobacter xylosoxidans. Experimental data showed that PdPGA was comparatively less thermostable than Achromobacter xylosoxidans PGA, although thermostability factors favored a much higher stability. Despite being mesostable, PdPGA being active and stable at alkaline pH is an advantage. Finally, several residue positions could be identified in PdPGA, which upon mutation selectively could improve the thermostability of the enzyme.
Collapse
Affiliation(s)
- Priyabrata Panigrahi
- grid.417643.3 0000000449057788 Division of Biochemical Sciences CSIR-National Chemical Laboratory Dr. Homi Bhabha Road 411008 Pune India
| | - Deepak Chand
- grid.417643.3 0000000449057788 Division of Biochemical Sciences CSIR-National Chemical Laboratory Dr. Homi Bhabha Road 411008 Pune India
| | - Ruchira Mukherji
- grid.417643.3 0000000449057788 Division of Biochemical Sciences CSIR-National Chemical Laboratory Dr. Homi Bhabha Road 411008 Pune India
| | - Sureshkumar Ramasamy
- grid.417643.3 0000000449057788 Division of Biochemical Sciences CSIR-National Chemical Laboratory Dr. Homi Bhabha Road 411008 Pune India
| | - C G Suresh
- grid.417643.3 0000000449057788 Division of Biochemical Sciences CSIR-National Chemical Laboratory Dr. Homi Bhabha Road 411008 Pune India
| |
Collapse
|
5
|
Liu F, Liu Q, Mezo AR. An Iodine-Free and Directed-Disulfide-Bond-Forming Route to Insulin Analogues. Org Lett 2014; 16:3126-9. [DOI: 10.1021/ol501252b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Fa Liu
- Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Qingyuan Liu
- Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Adam R. Mezo
- Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| |
Collapse
|
6
|
Current state and perspectives of penicillin G acylase-based biocatalyses. Appl Microbiol Biotechnol 2014; 98:2867-79. [DOI: 10.1007/s00253-013-5492-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/20/2013] [Accepted: 12/22/2013] [Indexed: 10/25/2022]
|
7
|
Grulich M, Štěpánek V, Kyslík P. Perspectives and industrial potential of PGA selectivity and promiscuity. Biotechnol Adv 2013; 31:1458-72. [DOI: 10.1016/j.biotechadv.2013.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 07/02/2013] [Accepted: 07/06/2013] [Indexed: 11/26/2022]
|
8
|
Pollegioni L, Rosini E, Molla G. Cephalosporin C acylase: dream and(/or) reality. Appl Microbiol Biotechnol 2013; 97:2341-55. [PMID: 23417342 DOI: 10.1007/s00253-013-4741-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/24/2013] [Accepted: 01/24/2013] [Indexed: 11/30/2022]
Abstract
Cephalosporins currently constitute the most widely prescribed class of antibiotics and are used to treat diseases caused by both Gram-positive and Gram-negative bacteria. Cephalosporins contain a 7-aminocephalosporanic acid (7-ACA) nucleus which is derived from cephalosporin C (CephC). The 7-ACA nucleus is not sufficiently potent for clinical use; however, a series of highly effective antibiotic agents could be produced by modifying the side chains linked to the 7-ACA nucleus. The industrial production of higher-generation semi-synthetic cephalosporins starts from 7-ACA, which is obtained by deacylation of the naturally occurring antibiotic CephC. CephC can be converted to 7-ACA either chemically or enzymatically using D-amino acid oxidase and glutaryl-7-aminocephalosporanic acid acylase. Both these methods show limitation, including the production of toxic waste products (chemical process) and the expense (the enzymatic one). In order to circumvent these problems, attempts have been undertaken to design a single-step means of enzymatically converting CephC to 7-ACA in the course of the past 10 years. The most suitable approach is represented by engineering the activity of a known glutaryl-7-aminocephalosporanic acid acylase such that it will bind and deacylate CephC more preferentially over glutaryl-7-aminocephalosporanic acid. Here, we describe the state of the art in the production of an effective and specific CephC acylase.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Varese, Italy.
| | | | | |
Collapse
|
9
|
Wang Y, Yu H, Zhang J, Luo H, Shen Z. Double knockout of β-lactamase and cephalosporin acetyl esterase genes from Escherichia coli reduces cephalosporin C decomposition. J Biosci Bioeng 2012; 113:737-41. [PMID: 22382016 DOI: 10.1016/j.jbiosc.2012.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/23/2012] [Accepted: 02/02/2012] [Indexed: 11/28/2022]
Abstract
The phenomenon of CPC decomposition occurs in Escherichia coli JM105/pMKC-sCPCacy during the one-step enzymatic conversion of cephalosporin C (CPC) into 7-aminocephalosporanic acid (7-ACA) by CPC acylase (sCPCAcy) for synthesis of cephalosporin antibiotics. E. coli JM105/pMKC-sCPCacy can constitutively produce sCPCacy as a fusion protein with maltose binding protein (MBP). Control experiments verified that the cell lysis solution from the host E. coli JM105 resulted in CPC decomposition by approximately 15%. Two miscellaneous enzymes, β-lactamase (AmpC) and cephalosporin acetyl esterase (Aes), are believed to play a major role in the degradation of CPC. Using the Red recombination system, the genes ampC, aes or both ampC and aes were knocked out from the chromosome of E. coli JM105 to generate the engineers: E. coli JM105(ΔampC), E. coli JM105(Δaes) and E. coli JM105(ΔampC, Δaes). The CPC decomposition was reduced to 12.2% in E. coli JM105(Δaes), 1.3% in E. coli JM105(ΔampC), and even undetectable in ampC-aes double knockout cells of E. coli JM105(ΔampC, Δaes). When catalyzed by crude MBP-sCPCAcy isolated from E. coli JM105(ΔampC, Δaes)/pMKC-sCPCacy (3377U·l(-1)), the CPC utilization efficiency increased to 98.4% from the original 88.7%. Similar results were obtained for the ampC-aes double knockout host derived from E. coli JM109(DE3) and the CPC utilization efficiency enhanced to 99.3% in the catalysis of crude sCPCAcy harvested from E. coli JM109(DE3, ΔampC, Δaes)/pET28-sCPCacy.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P R China
| | | | | | | | | |
Collapse
|
10
|
Wang Y, Yu H, Song W, An M, Zhang J, Luo H, Shen Z. Overexpression of synthesized cephalosporin C acylase containing mutations in the substrate transport tunnel. J Biosci Bioeng 2012; 113:36-41. [DOI: 10.1016/j.jbiosc.2011.08.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/05/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
|
11
|
Liu Y, Gong G, Zhu C, Zhu B, Hu Y. Environmentally Safe Production of 7-ACA by Recombinant Acremonium chrysogenum. Curr Microbiol 2010; 61:609-14. [DOI: 10.1007/s00284-010-9660-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 04/15/2010] [Indexed: 11/29/2022]
|
12
|
Tan Q, Zhang Y, Song Q, Wei D. Single-pot conversion of cephalosporin C to 7-aminocephalosporanic acid in the absence of hydrogen peroxide. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0153-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
|
14
|
Rajendhran J, Gunasekaran P. Molecular cloning and characterization of thermostable β-lactam acylase with broad substrate specificity from Bacillus badius. J Biosci Bioeng 2007; 103:457-63. [PMID: 17609162 DOI: 10.1263/jbb.103.457] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 02/19/2007] [Indexed: 11/17/2022]
Abstract
The gene (pac) encoding beta-lactam acylase from Bacillus badius was cloned and expressed in Escherichia coli. The pac gene was identified by polymerase chain reaction (PCR) using degenerated primers, on the basis of conserved amino acid residues. By using single specific primer PCR (SSP-PCR) and direct genome sequencing, a complete pac gene with its promoter region was obtained. The ORF consisted of 2415 bp and the deduced amino acid sequence indicated that the enzyme is synthesized as a preproenzyme with a signal sequence, an alpha-subunit, a spacer peptide and a beta-subunit. The pac gene was expressed with its own promoter in different E. coli host strains and a maximum recombinant PAC (1820 U l(-1)) was obtained in E. coli DH5alpha. The recombinant PAC was purified by Ni-NTA chromatography and the purified PAC had two subunits with apparent molecular masses of 25 and 62 kDa. This enzyme exhibited a high thermostability with a maximum activity at 50 degrees C. This enzyme showed stability over a wide pH range (pH 6.0-8.5) with a maximum activity at pH 7.0 and activity on a wide beta-lactam substrate range. The K(m) values obtained for the hydrolysis of penicillin G and a chromogenic substrate, 6-nitro-3-phenylacetylamidobenzoic acid, from B. badius PAC were 39 and 41 microM, respectively. The PAC activity was competitively inhibited by PAA (K(i), 108 microM) and noncompetitively by 6-APA (K(i), 17 mM). The constitutive production of B. badius PAC in E. coli and its easier purification together with the advantageous properties, such as thermostability, pH stability and broad substrate specificity, make this as a novel enzyme suitable for beta-lactam industry.
Collapse
Affiliation(s)
- Jeyaprakash Rajendhran
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | | |
Collapse
|
15
|
Pollegioni L, Lorenzi S, Rosini E, Marcone GL, Molla G, Verga R, Cabri W, Pilone MS. Evolution of an acylase active on cephalosporin C. Protein Sci 2005; 14:3064-76. [PMID: 16260759 PMCID: PMC2253238 DOI: 10.1110/ps.051671705] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Semisynthetic cephalosporins are synthesized from 7-amino cephalosporanic acid, which is produced by chemical deacylation or by a two-step enzymatic process of the natural antibiotic cephalosporin C. The known acylases take glutaryl-7-amino cephalosporanic acid as a primary substrate, and their specificity and activity are too low for cephalosporin C. Starting from a known glutaryl-7-amino cephalosporanic acid acylase as the protein scaffold, an acylase gene optimized for expression in Escherichia coli and for molecular biology manipulations was designed. Subsequently we used error-prone PCR mutagenesis, a molecular modeling approach combined with site-saturation mutagenesis, and site-directed mutagenesis to produce enzymes with a cephalosporin C/glutaryl-7-amino cephalosporanic acid catalytic efficiency that was increased up to 100-fold, and with a significant and higher maximal activity on cephalosporin C as compared to glutaryl-7-amino cephalosporanic acid (e.g., 3.8 vs. 2.7 U/mg protein, respectively, for the A215Y-H296S-H309S mutant). Our data in a bioreactor indicate an ~90% conversion of cephalosporin C to 7-amino-cephalosporanic acid in a single deacylation step. The evolved acylase variants we produced are enzymes with a new substrate specificity, not found in nature, and represent a hallmark for industrial production of 7-amino cephalosporanic acid.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze Molecolari, Università degli Studi dell'Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy.
| | | | | | | | | | | | | | | |
Collapse
|