1
|
Taguchi H, Niwa T. Reconstituted Cell-free Translation Systems for Exploring Protein Folding and Aggregation. J Mol Biol 2024; 436:168726. [PMID: 39074633 DOI: 10.1016/j.jmb.2024.168726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Protein folding is crucial for achieving functional three-dimensional structures. However, the process is often hampered by aggregate formation, necessitating the presence of chaperones and quality control systems within the cell to maintain protein homeostasis. Despite a long history of folding studies involving the denaturation and subsequent refolding of translation-completed purified proteins, numerous facets of cotranslational folding, wherein nascent polypeptides are synthesized by ribosomes and folded during translation, remain unexplored. Cell-free protein synthesis (CFPS) systems are invaluable tools for studying cotranslational folding, offering a platform not only for elucidating mechanisms but also for large-scale analyses to identify aggregation-prone proteins. This review provides an overview of the extensive use of CFPS in folding studies to date. In particular, we discuss a comprehensive aggregation formation assay of thousands of Escherichia coli proteins conducted under chaperone-free conditions using a reconstituted translation system, along with its derived studies.
Collapse
Affiliation(s)
- Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-19, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-19, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
2
|
İncir İ, Kaplan Ö. Escherichia coli as a versatile cell factory: Advances and challenges in recombinant protein production. Protein Expr Purif 2024; 219:106463. [PMID: 38479588 DOI: 10.1016/j.pep.2024.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 05/08/2024]
Abstract
E. coli plays a substantial role in recombinant protein production. Its importance increased with the discovery of recombinant DNA technology and the subsequent production of the first recombinant insulin in E. coli. E. coli is a widely used and cost-effective host to produce recombinant proteins. It is also noteworthy that a significant portion of the approved therapeutic proteins have been produced in this organism. Despite these advantages, it has some disadvantages, such as toxicity and lack of eukaryotic post-translational modifications that can lead to the production of misfolded, insoluble, or dysfunctional proteins. This study focused on the challenges and engineering approaches for improved expression and solubility in recombinant protein production in E. coli. In this context, solution strategies such as strain and vector selection, codon usage, mRNA stability, expression conditions, translocation to the periplasmic region and addition of fusion tags in E. coli were discussed.
Collapse
Affiliation(s)
- İbrahim İncir
- Karamanoğlu Mehmetbey University, Kazım Karabekir Vocational School, Department of Medical Services and Techniques, Environmental Health Program Karaman, Turkey.
| | - Özlem Kaplan
- Alanya Alaaddin Keykubat University, Rafet Kayış Faculty of Engineering, Department of Genetics and Bioengineering, Antalya, Turkey.
| |
Collapse
|
3
|
Krebs SK, Stech M, Jorde F, Rakotoarinoro N, Ramm F, Marinoff S, Bahrke S, Danielczyk A, Wüstenhagen DA, Kubick S. Synthesis of an Anti-CD7 Recombinant Immunotoxin Based on PE24 in CHO and E. coli Cell-Free Systems. Int J Mol Sci 2022; 23:ijms232213697. [PMID: 36430170 PMCID: PMC9697001 DOI: 10.3390/ijms232213697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Recombinant immunotoxins (RITs) are an effective class of agents for targeted therapy in cancer treatment. In this article, we demonstrate the straight-forward production and testing of an anti-CD7 RIT based on PE24 in a prokaryotic and a eukaryotic cell-free system. The prokaryotic cell-free system was derived from Escherichia coli BL21 StarTM (DE3) cells transformed with a plasmid encoding the chaperones groEL/groES. The eukaryotic cell-free system was prepared from Chinese hamster ovary (CHO) cells that leave intact endoplasmic reticulum-derived microsomes in the cell-free reaction mix from which the RIT was extracted. The investigated RIT was built by fusing an anti-CD7 single-chain variable fragment (scFv) with the toxin domain PE24, a shortened variant of Pseudomonas Exotoxin A. The RIT was produced in both cell-free systems and tested for antigen binding against CD7 and cell killing on CD7-positive Jurkat, HSB-2, and ALL-SIL cells. CD7-positive cells were effectively killed by the anti-CD7 scFv-PE24 RIT with an IC50 value of 15 pM to 40 pM for CHO and 42 pM to 156 pM for E. coli cell-free-produced RIT. CD7-negative Raji cells were unaffected by the RIT. Toxin and antibody domain alone did not show cytotoxic effects on either CD7-positive or CD7-negative cells. To our knowledge, this report describes the production of an active RIT in E. coli and CHO cell-free systems for the first time. We provide the proof-of-concept that cell-free protein synthesis allows for on-demand testing of antibody−toxin conjugate activity in a time-efficient workflow without cell lysis or purification required.
Collapse
Affiliation(s)
- Simon K. Krebs
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute for Biotechnology, Technical University of Berlin, Ackerstrasse 76, 13355 Berlin, Germany
| | - Marlitt Stech
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Felix Jorde
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Nathanaël Rakotoarinoro
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | - Franziska Ramm
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Sophie Marinoff
- Glycotope GmbH, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Sven Bahrke
- Glycotope GmbH, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Antje Danielczyk
- Glycotope GmbH, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Doreen A. Wüstenhagen
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Stefan Kubick
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14476 Potsdam, Germany
- Correspondence:
| |
Collapse
|
4
|
Berhanu S, Ueda T, Alix JH. The E. coli DnaK chaperone stimulates the α-complementation of β-galactosidase. J Basic Microbiol 2022; 62:669-688. [PMID: 35289419 DOI: 10.1002/jobm.202100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/11/2022] [Accepted: 02/20/2022] [Indexed: 11/09/2022]
Abstract
pUC18 and pUC19 are well-known high copy-number plasmid vectors routinely used for DNA cloning purposes. We show here that, in E. coli transformed by native pUC18, the α-complementation of β-galactosidase (i.e., mediated by the peptide LacZα18) is intrinsically weak and slow, but is greatly stimulated by the DnaK/DnaJ/GrpE chaperone system. In contrast, the α-complementation mediated by the peptide LacZα19 (in E. coli transformed by the native pUC19) is much more efficient, and therefore does not require the assistance of the DnaK chaperone machinery. The marked difference between these two LacZα peptides is reproduced in cell-free protein expression system coupled with α-complementation. We conclude that: (i) α-complementation of β-galactosidase is DnaK-mediated depending upon the LacZα peptide donor. (ii) DnaK, sensu stricto, is not necessary for α-complementation, but can enhance it to a great extent. (iii) this observation could be used to establish an easy and inexpensive method for screening small molecules libraries in search of DnaK inhibitors and also for deciphering the DnaK-mediated protein quality control mechanism. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Samuel Berhanu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba Prefecture, Japan
| | - Takuya Ueda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba Prefecture, Japan
| | - Jean-Hervé Alix
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba Prefecture, Japan
| |
Collapse
|
5
|
Niwa T, Uemura E, Matsuno Y, Taguchi H. Translation-coupled protein folding assay using a protease to monitor the folding status. Protein Sci 2019; 28:1252-1261. [PMID: 30993770 DOI: 10.1002/pro.3624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/16/2019] [Indexed: 11/11/2022]
Abstract
Protein folding is an essential prerequisite for proteins to execute nearly all cellular functions. There is a growing demand for a simple and robust method to investigate protein folding on a large-scale under the same conditions. We previously developed a global folding assay system, in which proteins translated using an Escherichia coli-based cell-free translation system are centrifuged to quantitate the supernatant fractions. Although the assay is based on the assumption that the supernatants contain the folded native states, the supernatants also include nonnative unstructured proteins. In general, proteases recognize and degrade unstructured proteins, and thus we used a protease to digest the unstructured regions to monitor the folding status. The addition of Lon protease during the translation of proteins unmasked subfractions, not only in the soluble fractions but also in the aggregation-prone fractions. We translated ∼90 E. coli proteins in the protease-inclusion assay, in the absence and presence of chaperones. The folding assay, which sheds light on the molecular mechanisms underlying the aggregate formation and the chaperone effects, can be applied to a large-scale analysis.
Collapse
Affiliation(s)
- Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Eri Uemura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuki Matsuno
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
6
|
Bjerregaard-Andersen K, Johannesen H, Abdel-Rahman N, Heggelund JE, Hoås HM, Abraha F, Bousquet PA, Høydahl LS, Burschowsky D, Rojas G, Oscarson S, Løset GÅ, Krengel U. Crystal structure of an L chain optimised 14F7 anti-ganglioside Fv suggests a unique tumour-specificity through an unusual H-chain CDR3 architecture. Sci Rep 2018; 8:10836. [PMID: 30022069 PMCID: PMC6052152 DOI: 10.1038/s41598-018-28918-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
Targeted cancer immunotherapy offers increased efficacy concomitantly with reduced side effects. One antibody with promising clinical potential is 14F7, which specifically recognises the NeuGc GM3 ganglioside. This antigen is found in the plasma membrane of a range of tumours, but is essentially absent from healthy human cells. 14F7 can discriminate NeuGc GM3 from the very similar NeuAc GM3, a common component of cell membranes. The molecular basis for this unique specificity is poorly understood. Here we designed and expressed 14F7-derived single-chain Fvs (scFvs), which retained the specificity of the parent antibody. Detailed expression and purification protocols are described as well as the synthesis of the NeuGc GM3 trisaccharide. The most successful scFv construct, which comprises an alternative variable light chain (VLA), allowed structure determination to 2.2 Å resolution. The structure gives insights into the conformation of the important CDR H3 loop and the suspected antigen binding site. Furthermore, the presence of VLA instead of the original VL elucidates how this subdomain indirectly stabilises the CDR H3 loop. The current work may serve as a guideline for the efficient production of scFvs for structure determination.
Collapse
Affiliation(s)
| | - Hedda Johannesen
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway
| | - Noha Abdel-Rahman
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway.,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Julie Elisabeth Heggelund
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway.,School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Fana Abraha
- School of Chemistry, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Paula A Bousquet
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway
| | - Lene Støkken Høydahl
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, NO-0372 Oslo, Norway
| | - Daniel Burschowsky
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway.,Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, LE1 7HB, UK
| | - Gertrudis Rojas
- Center of Molecular Immunology, Calle 216 esq 15, Atabey, Playa, La Habana, CP, 11300, Cuba
| | - Stefan Oscarson
- School of Chemistry, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Geir Åge Løset
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, NO-0372 Oslo, Norway. .,Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway. .,Nextera AS, NO-0349 Oslo, Norway.
| | - Ute Krengel
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway.
| |
Collapse
|
7
|
Effect of DnaK/DnaJ/GrpE and DsbC Chaperons on Periplasmic Expression of Fab Antibody by E. coli SEC Pathway. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9637-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Abstract
Since the development of therapeutic antibodies the demand of recombinant human antibodies is steadily increasing. Traditionally, therapeutic antibodies were generated by immunization of rat or mice, the generation of hybridoma clones, cloning of the antibody genes and subsequent humanization and engineering of the lead candidates. In the last few years, techniques were developed that use transgenic animals with a human antibody gene repertoire. Here, modern recombinant DNA technologies can be combined with well established immunization and hybridoma technologies to generate already affinity maturated human antibodies. An alternative are in vitro technologies which enabled the generation of fully human antibodies from antibody gene libraries that even exceed the human antibody repertoire. Specific antibodies can be isolated from these libraries in a very short time and therefore reduce the development time of an antibody drug at a very early stage.In this review, we describe different technologies that are currently used for the in vitro and in vivo generation of human antibodies.
Collapse
|
9
|
Niwa T, Sasaki Y, Uemura E, Nakamura S, Akiyama M, Ando M, Sawada S, Mukai SA, Ueda T, Taguchi H, Akiyoshi K. Comprehensive study of liposome-assisted synthesis of membrane proteins using a reconstituted cell-free translation system. Sci Rep 2015; 5:18025. [PMID: 26667602 PMCID: PMC4678891 DOI: 10.1038/srep18025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/03/2015] [Indexed: 02/02/2023] Open
Abstract
Membrane proteins play pivotal roles in cellular processes and are key targets for drug discovery. However, the reliable synthesis and folding of membrane proteins are significant problems that need to be addressed owing to their extremely high hydrophobic properties, which promote irreversible aggregation in hydrophilic conditions. Previous reports have suggested that protein aggregation could be prevented by including exogenous liposomes in cell-free translation processes. Systematic studies that identify which membrane proteins can be rescued from irreversible aggregation during translation by liposomes would be valuable in terms of understanding the effects of liposomes and developing applications for membrane protein engineering in the context of pharmaceutical science and nanodevice development. Therefore, we performed a comprehensive study to evaluate the effects of liposomes on 85 aggregation-prone membrane proteins from Escherichia coli by using a reconstituted, chemically defined cell-free translation system. Statistical analyses revealed that the presence of liposomes increased the solubility of >90% of the studied membrane proteins, and ultimately improved the yields of the synthesized proteins. Bioinformatics analyses revealed significant correlations between the liposome effect and the physicochemical properties of the membrane proteins.
Collapse
Affiliation(s)
- Tatsuya Niwa
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Eri Uemura
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Shugo Nakamura
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Minato Akiyama
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Mitsuru Ando
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Shinichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Sada-atu Mukai
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Takuya Ueda
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, FSB401, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Hideki Taguchi
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
10
|
Awai T, Ichihashi N, Yomo T. Activities of 20 aminoacyl-tRNA synthetases expressed in a reconstituted translation system in Escherichia coli. Biochem Biophys Rep 2015; 3:140-143. [PMID: 29124177 PMCID: PMC5668874 DOI: 10.1016/j.bbrep.2015.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 01/18/2023] Open
Abstract
A significant challenge in the field of in vitro synthetic biology is the construction of a self-reproducing cell-free translation system, which reproduces its components, such as translation proteins, through translation and transcription by itself. As a first step for such construction, in this study we expressed and evaluated the activity of 20 aminoacyl-tRNA synthetases (aaRSs), a major component of a translation system, in a reconstituted translation system (PURE system). We found that 19 aaRS with the exception of phenylalanyl-tRNA synthetase (PheRS) are expressed as soluble proteins and their activities are comparable to those expressed in Escherichia coli . This study provides basic information on the properties of aaRSs expressed in the PURE system, which will be helpful for the future reconstitution of a self-reproducing translation system. We expressed 20 aminoacyl-tRNA synthetases in a reconstituted translation system. All aminoacyl-tRNA synthetases (aaRSs) are expressed as soluble proteins. All aaRSs with the exception of phenylalanyl-tRNA synthetase are active. Their activities are comparable to those expressed in E. coli.
Collapse
Affiliation(s)
- Takako Awai
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Japan
| | - Norikazu Ichihashi
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Yomo
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Li J, Gu L, Aach J, Church GM. Improved cell-free RNA and protein synthesis system. PLoS One 2014; 9:e106232. [PMID: 25180701 PMCID: PMC4152126 DOI: 10.1371/journal.pone.0106232] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/04/2014] [Indexed: 12/13/2022] Open
Abstract
Cell-free RNA and protein synthesis (CFPS) is becoming increasingly used for protein production as yields increase and costs decrease. Advances in reconstituted CFPS systems such as the Protein synthesis Using Recombinant Elements (PURE) system offer new opportunities to tailor the reactions for specialized applications including in vitro protein evolution, protein microarrays, isotopic labeling, and incorporating unnatural amino acids. In this study, using firefly luciferase synthesis as a reporter system, we improved PURE system productivity up to 5 fold by adding or adjusting a variety of factors that affect transcription and translation, including Elongation factors (EF-Ts, EF-Tu, EF-G, and EF4), ribosome recycling factor (RRF), release factors (RF1, RF2, RF3), chaperones (GroEL/ES), BSA and tRNAs. The work provides a more efficient defined in vitro transcription and translation system and a deeper understanding of the factors that limit the whole system efficiency.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Liangcai Gu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John Aach
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
PURE ribosome display and its application in antibody technology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1925-1932. [PMID: 24747149 DOI: 10.1016/j.bbapap.2014.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/03/2014] [Accepted: 04/10/2014] [Indexed: 11/23/2022]
Abstract
Ribosome display utilizes formation of the mRNA-ribosome-polypeptide ternary complex in a cell-free protein synthesis system to link genotype (mRNA) to phenotype (polypeptide). However, the presence of intrinsic components, such as nucleases in the cell-extract-based cell-free protein synthesis system, reduces the stability of the ternary complex, which would prevent attainment of reliable results. We have developed an efficient and highly controllable ribosome display system using the PURE (Protein synthesis Using Recombinant Elements) system. The mRNA-ribosome-polypeptide ternary complex is highly stable in the PURE system, and the selected mRNA can be easily recovered because activities of nucleases and other inhibitory factors are very low in the PURE system. We have applied the PURE ribosome display to antibody engineering approaches, such as epitope mapping and affinity maturation of antibodies, and obtained results showing that the PURE ribosome display is more efficient than the conventional method. We believe that the PURE ribosome display can contribute to the development of useful antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
|
13
|
Global analysis of chaperone effects using a reconstituted cell-free translation system. Proc Natl Acad Sci U S A 2012; 109:8937-42. [PMID: 22615364 DOI: 10.1073/pnas.1201380109] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein folding is often hampered by protein aggregation, which can be prevented by a variety of chaperones in the cell. A dataset that evaluates which chaperones are effective for aggregation-prone proteins would provide an invaluable resource not only for understanding the roles of chaperones, but also for broader applications in protein science and engineering. Therefore, we comprehensively evaluated the effects of the major Escherichia coli chaperones, trigger factor, DnaK/DnaJ/GrpE, and GroEL/GroES, on ∼800 aggregation-prone cytosolic E. coli proteins, using a reconstituted chaperone-free translation system. Statistical analyses revealed the robustness and the intriguing properties of chaperones. The DnaK and GroEL systems drastically increased the solubilities of hundreds of proteins with weak biases, whereas trigger factor had only a marginal effect on solubility. The combined addition of the chaperones was effective for a subset of proteins that were not rescued by any single chaperone system, supporting the synergistic effect of these chaperones. The resource, which is accessible via a public database, can be used to investigate the properties of proteins of interest in terms of their solubilities and chaperone effects.
Collapse
|
14
|
Abstract
A large antibody fragment library (>10(12)) has been generated in ribosome display format. The library was constructed in a two-step process. First, variable (V) genes were isolated from human B cells from a panel of 14 donors and cloned into designated ribosome display vectors to create a gene bank. Second, RD-VH and RD-VL genes from individual immunoglobulin families were combined in vitro resulting in 112 scFv ribosome display sub-libraries. These were subsequently pooled to form a master library.This library was used to isolate a panel of antibodies to the IL4 receptor by three rounds of selections on a soluble target.
Collapse
|
15
|
Abstract
Recombinant production has become an invaluable tool for supplying research and therapy with proteins of interest. The target proteins are not in every case soluble and/or correctly folded. That is why different production parameters such as host, cultivation conditions and co-expression of chaperones and foldases are applied in order to yield functional recombinant protein. There has been a constant increase and success in the use of folding promoting agents in recombinant protein production. Recent cases are reviewed and discussed in this chapter. Any impact of such strategies cannot be predicted and has to be analyzed and optimized for the corresponding target protein. The in vivo effects of the agents are at least partially comparable to their in vitro mode of action and have been studied by means of modern systems approaches and even in combination with folding/activity screening assays. Resulting data can be used directly for experimental planning or can be fed into knowledge-based modelling. An overview of such technologies is included in the chapter in order to facilitate a decision about the potential in vivo use of folding promoting agents.
Collapse
Affiliation(s)
- Beatrix Fahnert
- Cardiff School of Biosciences, Cardiff University, Wales, UK.
| |
Collapse
|
16
|
Mallam AL, Jackson SE. Knot formation in newly translated proteins is spontaneous and accelerated by chaperonins. Nat Chem Biol 2011; 8:147-53. [PMID: 22179065 DOI: 10.1038/nchembio.742] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/27/2011] [Indexed: 12/20/2022]
Abstract
Topological knots are found in a considerable number of protein structures, but it is not clear how they knot and fold within the cellular environment. We investigated the behavior of knotted protein molecules as they are first synthesized by the ribosome using a cell-free translation system. We found that newly translated knotted proteins can spontaneously self-tie and do not require the assistance of molecular chaperones to fold correctly to their trefoil-knotted structures. This process is slow but efficient, and we found no evidence of misfolded species. A kinetic analysis indicates that the knotting process is rate limiting, occurs post-translationally, and is specifically and significantly (P < 0.001) accelerated by the GroEL-GroES chaperonin complex. This demonstrates a new active mechanism for this molecular chaperone and suggests that chaperonin-catalyzed knotting probably dominates in vivo. These results explain how knotted protein structures have withstood evolutionary pressures despite their topological complexity.
Collapse
Affiliation(s)
- Anna L Mallam
- Department of Chemistry, The University of Cambridge, Cambridge, UK
| | | |
Collapse
|
17
|
Jeong KJ, Jang SH, Velmurugan N. Recombinant antibodies: engineering and production in yeast and bacterial hosts. Biotechnol J 2011; 6:16-27. [PMID: 21170983 DOI: 10.1002/biot.201000381] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
After the appearance of the first FDA-approved antibody 25 years ago, antibodies have become major therapeutic agents in the treatment of many human diseases, including cancer and infectious diseases, and the use of antibodies as therapeutic/diagnostic agents is expected to increase in the future. So far, a variety of strategies have been devised for engineering of these fascinating molecules to develop superior properties and functions. Recent progress in systems biology has provided more information about the structures and cellular networks of antibodies, and, in addition, recent development of biotechnology tools, particularly in regard to high-throughput screening, has made it possible to perform more intensive engineering on these substances. Based on a sound understanding and new technologies, antibodies are now being developed as more powerful drugs. In this review, we highlight the recent, significant progress that has been made in antibody engineering, with a particular focus on Fc engineering and glycoengineering for improved functions, and cellular engineering for enhanced production of antibodies in yeast and bacterial hosts.
Collapse
Affiliation(s)
- Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon, Korea.
| | | | | |
Collapse
|
18
|
Sasaki Y, Asayama W, Niwa T, Sawada SI, Ueda T, Taguchi H, Akiyoshi K. Amphiphilic Polysaccharide Nanogels as Artificial Chaperones in Cell-Free Protein Synthesis. Macromol Biosci 2011; 11:814-20. [DOI: 10.1002/mabi.201000457] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/15/2011] [Indexed: 11/09/2022]
|
19
|
Sasaki Y, Nomura Y, Sawada SI, Akiyoshi K. Polysaccharide nanogel–cyclodextrin system as an artificial chaperone for in vitro protein synthesis of green fluorescent protein. Polym J 2010. [DOI: 10.1038/pj.2010.73] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Gunnarsen KS, Lunde E, Kristiansen PE, Bogen B, Sandlie I, Løset GÅ. Periplasmic expression of soluble single chain T cell receptors is rescued by the chaperone FkpA. BMC Biotechnol 2010; 10:8. [PMID: 20128915 PMCID: PMC2834602 DOI: 10.1186/1472-6750-10-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 02/03/2010] [Indexed: 12/01/2022] Open
Abstract
Background Efficient expression systems exist for antibody (Ab) molecules, which allow for characterization of large numbers of individual Ab variants. In contrast, such expression systems have been lacking for soluble T cell receptors (TCRs). Attempts to generate bacterial systems have generally resulted in low yields and material which is prone to aggregation and proteolysis. Here we present an optimized periplasmic bacterial expression system for soluble single chain (sc) TCRs. Results The effect of 1) over-expression of the periplasmic chaperon FkpA, 2) culture conditions and 3) molecular design was investigated. Elevated levels of FkpA allowed periplasmic soluble scTCR expression, presumably by preventing premature aggregation and inclusion body formation. Periplasmic expression enables disulphide bond formation, which is a prerequisite for the scTCR to reach its correct fold. It also enables quick and easy recovery of correctly folded protein without the need for time-consuming downstream processing. Expression without IPTG induction further improved the periplasmic expression yield, while addition of sucrose to the growth medium showed little effect. Shaker flask yield of mg levels of active purified material was obtained. The Vαβ domain orientation was far superior to the Vβα domain orientation regarding monomeric yield of functionally folded molecules. Conclusion The general expression regime presented here allows for rapid production of soluble scTCRs and is applicable for 1) high yield recovery sufficient for biophysical characterization and 2) high throughput screening of such molecules following molecular engineering.
Collapse
|
21
|
de Marco A. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact 2009; 8:26. [PMID: 19442264 PMCID: PMC2689190 DOI: 10.1186/1475-2859-8-26] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/14/2009] [Indexed: 12/22/2022] Open
Abstract
Bacteria are simple and cost effective hosts for producing recombinant proteins. However, their physiological features may limit their use for obtaining in native form proteins of some specific structural classes, such as for instance polypeptides that undergo extensive post-translational modifications. To some extent, also the production of proteins that depending on disulfide bridges for their stability has been considered difficult in E. coli. Both eukaryotic and prokaryotic organisms keep their cytoplasm reduced and, consequently, disulfide bond formation is impaired in this subcellular compartment. Disulfide bridges can stabilize protein structure and are often present in high abundance in secreted proteins. In eukaryotic cells such bonds are formed in the oxidizing environment of endoplasmic reticulum during the export process. Bacteria do not possess a similar specialized subcellular compartment, but they have both export systems and enzymatic activities aimed at the formation and at the quality control of disulfide bonds in the oxidizing periplasm. This article reviews the available strategies for exploiting the physiological mechanisms of bactera to produce properly folded disulfide-bonded proteins.
Collapse
Affiliation(s)
- Ario de Marco
- Cogentech, IFOM-IEO Campus for Oncogenomic, via Adamello, 16 - 20139, Milano, Italy.
| |
Collapse
|
22
|
Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of Escherichia coli proteins. Proc Natl Acad Sci U S A 2009; 106:4201-6. [PMID: 19251648 DOI: 10.1073/pnas.0811922106] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein folding often competes with intermolecular aggregation, which in most cases irreversibly impairs protein function, as exemplified by the formation of inclusion bodies. Although it has been empirically determined that some proteins tend to aggregate, the relationship between the protein aggregation propensities and the primary sequences remains poorly understood. Here, we individually synthesized the entire ensemble of Escherichia coli proteins by using an in vitro reconstituted translation system and analyzed the aggregation propensities. Because the reconstituted translation system is chaperone-free, we could evaluate the inherent aggregation propensities of thousands of proteins in a translation-coupled manner. A histogram of the solubilities, based on data from 3,173 translated proteins, revealed a clear bimodal distribution, indicating that the aggregation propensities are not evenly distributed across a continuum. Instead, the proteins can be categorized into 2 groups, soluble and aggregation-prone proteins. The aggregation propensity is most prominently correlated with the structural classification of proteins, implying that the prediction of aggregation propensity requires structural information about the protein.
Collapse
|
23
|
Hillebrecht JR, Chong S. A comparative study of protein synthesis in in vitro systems: from the prokaryotic reconstituted to the eukaryotic extract-based. BMC Biotechnol 2008; 8:58. [PMID: 18664286 PMCID: PMC2507708 DOI: 10.1186/1472-6750-8-58] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 07/29/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell-free protein synthesis is not only a rapid and high throughput technology to obtain proteins from their genes, but also provides an in vitro platform to study protein translation and folding. A detailed comparison of in vitro protein synthesis in different cell-free systems may provide insights to their biological differences and guidelines for their applications. RESULTS Protein synthesis was investigated in vitro in a reconstituted prokaryotic system, a S30 extract-based system and a eukaryotic system. Compared to the S30 system, protein synthesis in the reconstituted system resulted in a reduced yield, and was more cold-sensitive. Supplementing the reconstituted system with fractions from a size-exclusion separation of the S30 extract significantly increased the yield and activity, to a level close to that of the S30 system. Though protein synthesis in both prokaryotic and eukaryotic systems showed no significant differences for eukaryotic reporter proteins, drastic differences were observed when an artificial fusion protein was synthesized in vitro. The prokaryotic systems failed to synthesize and correctly fold a significant amount of the full-length fusion protein, even when supplemented with the eukaryotic lysate. The active full-length fusion protein was synthesized only in the eukaryotic system. CONCLUSION The reconstituted bacterial system is sufficient but not efficient in protein synthesis. The S30 system by comparison contains additional cellular factors capable of enhancing protein translation and folding. The eukaryotic translation machinery may have evolved from its prokaryotic counterpart in order to translate more complex (difficult-to-translate) templates into active proteins.
Collapse
|
24
|
Fujiwara K, Taguchi H. Filamentous morphology in GroE-depleted Escherichia coli induced by impaired folding of FtsE. J Bacteriol 2007; 189:5860-6. [PMID: 17557821 PMCID: PMC1952032 DOI: 10.1128/jb.00493-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chaperonin GroE (GroEL and the cochaperonin GroES) is the only chaperone system that is essential for the viability of Escherichia coli. It is known that GroE-depleted cells exhibit a filamentous morphology, suggesting that GroE is required for the folding of proteins involved in cell division. Although previous studies, including proteome-wide analyses of GroE substrates, have suggested several targets of GroE in cell division, there is no direct in vivo evidence to identify which substrates exhibit obligate dependence on GroE for folding. Among the candidate substrates, we found that prior excess production of FtsE, a protein engaged in cell division, completely suppressed the filamentation of GroE-depleted E. coli. The GroE depletion led to a drastic decrease in FtsE, and the cells exhibited a known phenotype associated with impaired FtsE function. In the GroE-depleted filamentous cells, the localizations of FtsA and ZipA, both of which assemble with the FtsZ septal ring before FtsE, were normal, whereas FtsX, the interaction partner of FtsE, and FtsQ, which is recruited after FtsE, did not localize to the ring, suggesting that the decrease in FtsE is a cause of the filamentous morphology. Finally, a reconstituted cell-free translation system revealed that the folding of newly translated FtsE was stringently dependent on GroEL/GroES. Based on these findings, we concluded that FtsE is a target substrate of the GroE system in E. coli cell division.
Collapse
Affiliation(s)
- Kei Fujiwara
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, FSB-401, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | |
Collapse
|
25
|
Ohashi H, Shimizu Y, Ying BW, Ueda T. Efficient protein selection based on ribosome display system with purified components. Biochem Biophys Res Commun 2006; 352:270-6. [PMID: 17113037 DOI: 10.1016/j.bbrc.2006.11.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 11/07/2006] [Indexed: 11/17/2022]
Abstract
Using the PURE (Protein synthesis Using Recombinant Elements) system, we developed an efficient and highly controllable ribosome display method for selection of functional protein. The PURE system is composed of purified factors and enzymes that are responsible for gene expression in Escherichia coli. We performed the detailed analyses and optimization of the ribosome display system and demonstrated the formation of stable mRNA/ribosome/polypeptide ternary complexes. As complex formation is fundamental to successful ribosome display, these improvements resulted in a dramatic increase in the mRNA recovery rate. As a result, a approximately 12,000-fold enrichment of single-chain antibody (scFv) cDNA was achieved in a single round of selection. Specific selection of scFv mRNA from a 1:10(10) dilution in competitor mRNA was achieved with only three rounds of affinity selection. These findings, together with the results in the accompanying paper [T. Matsuura, H. Yanagida, J. Ushioda, I. Urabe, T. Yomo, Nascent chain, RNA, and ribosome complexes generated by pure translation system (see the accompanying paper).], demonstrate that the PURE system can provide a basis for reliable and reproducible ribosome display.
Collapse
Affiliation(s)
- Hiroyuki Ohashi
- The Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, FSB-401, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | |
Collapse
|
26
|
Shin EJ, Park SL, Jeon SJ, Lee JW, Kim YT, Kim YH, Nam SW. Effect of molecular chaperones on the soluble expression of alginate lyase inE. coli. BIOTECHNOL BIOPROC E 2006. [DOI: 10.1007/bf02932308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Abstract
Cell-free translation systems have developed significantly over the last two decades and improvements in yield have resulted in their use for protein production in the laboratory. These systems have protein engineering applications, such as the production of proteins containing unnatural amino acids and development of proteins exhibiting novel functions. Recently, it has been suggested that cell-free translation systems might be used as the fundamental basis for cell-like systems. We review recent progress in the field of cell-free translation systems and describe their use as tools for protein production and engineering.
Collapse
Affiliation(s)
- Yoshihiro Shimizu
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa-shi, Chiba, Japan
| | | | | | | | | |
Collapse
|
28
|
Ying BW, Taguchi H, Ueda T. Co-translational binding of GroEL to nascent polypeptides is followed by post-translational encapsulation by GroES to mediate protein folding. J Biol Chem 2006; 281:21813-21819. [PMID: 16754671 DOI: 10.1074/jbc.m603091200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The eubacterial chaperonins GroEL and GroES are essential chaperones and primarily assist protein folding in the cell. Although the molecular mechanism of the GroEL system has been examined previously, the mechanism by which GroEL and GroES assist folding of nascent polypeptides during translation is still poorly understood. We previously demonstrated a co-translational involvement of the Escherichia coli GroEL in folding of newly synthesized polypeptides using a reconstituted cell-free translation system (Ying, B. W., Taguchi, H., Kondo, M., and Ueda, T. (2005) J. Biol. Chem. 280, 12035-12040). Employing the same system here, we further characterized the mechanism by which GroEL assists folding of translated proteins via encapsulation into the GroEL-GroES cavity. The stable co-translational association between GroEL and the newly synthesized polypeptide is dependent on the length of the nascent chain. Furthermore, GroES is capable of interacting with the GroEL-nascent peptide-ribosome complex, and experiments using a single-ring variant of GroEL clearly indicate that GroES association occurs only at the trans-ring, not the cis-ring, of GroEL. GroEL holds the nascent chain on the ribosome in a polypeptide length-dependent manner and post-translationally encapsulates the polypeptide using the GroES cap to accomplish the chaperonin-mediated folding process.
Collapse
Affiliation(s)
- Bei-Wen Ying
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, FSB-401, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562
| | - Hideki Taguchi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, FSB-401, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan.
| | - Takuya Ueda
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, FSB-401, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562.
| |
Collapse
|
29
|
Villemagne D, Jackson R, Douthwaite JA. Highly efficient ribosome display selection by use of purified components for in vitro translation. J Immunol Methods 2006; 313:140-8. [PMID: 16730021 DOI: 10.1016/j.jim.2006.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 03/30/2006] [Accepted: 04/07/2006] [Indexed: 11/18/2022]
Abstract
Ribosome display is a powerful in vitro technology for the selection and directed evolution of proteins. The ribosome display process exploits cell-free translation to achieve coupling of phenotype and genotype by the production of stabilised ribosome complexes in which translated proteins and their encoding mRNA remain attached to the ribosome. Current ribosome display systems that are well proven, by the evolution of high affinity antibodies and the optimisation of defined protein characteristics, use an Escherichia coli cell extract for in vitro translation and display of an mRNA library. Recently, a cell-free translation system has been produced by combining recombinant E. coli protein factors with purified 70S ribosomes. We have applied this development in cell-free translation technology to ribosome display by using the reconstituted system to generate stabilised ribosome complexes for selection. We show that higher cDNA yields are recovered from ribosome display selections when using a reconstituted translation system and the degree of improvement seen is selection specific. These effects are likely to reflect higher mRNA and protein stability and potentially other advantages that may include protein specific improvements in expression. Reconstituted translation systems therefore enable a highly efficient, robust and accessible prokaryotic ribosome display technology.
Collapse
Affiliation(s)
- Denis Villemagne
- Cambridge Antibody Technology, Milstein Building, Granta Park, Cambridge, CB1 6GH, UK
| | | | | |
Collapse
|
30
|
Abstract
Maximizing the expression yields of recombinant whole antibodies and antibody fragments such as Fabs, single-chain Fvs and single-domain antibodies is highly desirable since it leads to lower production costs. Various eukaryotic and prokaryotic expression systems have been exploited to accommodate antibody expression but Escherichia coli systems have enjoyed popularity, in particular with respect to antibody fragments, because of their low cost and convenience. In many instances, product yields have been less than adequate and intrinsic and extrinsic variables have been investigated in an effort to improve yields. This review deals with various aspects of antibody expression in E. coli with a particular focus on single-domain antibodies.
Collapse
Affiliation(s)
- Mehdi Arbabi-Ghahroudi
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario.
| | | | | |
Collapse
|
31
|
Shimizu Y, Kanamori T, Ueda T. Protein synthesis by pure translation systems. Methods 2005; 36:299-304. [PMID: 16076456 DOI: 10.1016/j.ymeth.2005.04.006] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 04/28/2005] [Indexed: 10/25/2022] Open
Abstract
We have developed a partially recombinant, cell-free, protein-synthesis system reconstituted solely from those essential elements of the Escherichia coli translation system, termed protein synthesis using recombinant elements (PURE). It provides higher reaction controllability in comparison to crude cell-free protein-synthesis systems for translation studies and biotechnology applications. The PURE system stands out among translation methods in that it provides not only a simple and unique "reverse" purification method of separating the synthesized protein from reaction mixture, but also that the system can be tailor-made according to individual protein requirements. In this paper, two new approaches to obtaining active proteins are described: the use of molecular chaperones, and modification of the reaction conditions. Several possible applications of the PURE system are also discussed.
Collapse
Affiliation(s)
- Yoshihiro Shimizu
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bldg. FSB-4015-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| | | | | |
Collapse
|
32
|
Ying BW, Taguchi H, Kondo M, Ueda T. Co-translational involvement of the chaperonin GroEL in the folding of newly translated polypeptides. J Biol Chem 2005; 280:12035-40. [PMID: 15664980 DOI: 10.1074/jbc.m500364200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A large fraction of the newly translated polypeptides emerging from the ribosome require certain proteins, the so-called molecular chaperones, to assist in their folding. In Escherichia coli, three major chaperone systems are considered to contribute to the folding of newly synthesized cytosolic polypeptides. Trigger factor (TF), a ribosome-tethered chaperone, and DnaK are known to exhibit overlapping co-translational roles, whereas the cage-shaped GroEL, with the aid of the co-chaperonin, GroES, and ATP, is believed to be implicated in folding only after the polypeptides are released from the ribosome. However, the recent finding that GroEL-GroES overproduction permits the growth of E. coli cells lacking both TF and DnaK raised questions regarding the separate roles of these chaperones. Here, we report the puromycin-sensitive association of GroEL-GroES with translating ribosomes in vivo. Further experiments in vitro, using a reconstituted cell-free translation system, clearly demonstrate that GroEL associates with the translation complex and accomplishes proper folding by encapsulating the newly translated polypeptides in the central cavity formed by GroES. Therefore, we propose that GroEL is a versatile chaperone, which participates in the folding pathway co-translationally and also achieves correct folding post-translationally.
Collapse
Affiliation(s)
- Bei-Wen Ying
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, FSB401, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | |
Collapse
|