1
|
Vasilev F, Ezhova Y, Chun JT. Signaling Enzymes and Ion Channels Being Modulated by the Actin Cytoskeleton at the Plasma Membrane. Int J Mol Sci 2021; 22:ijms221910366. [PMID: 34638705 PMCID: PMC8508623 DOI: 10.3390/ijms221910366] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
A cell should deal with the changing external environment or the neighboring cells. Inevitably, the cell surface receives and transduces a number of signals to produce apt responses. Typically, cell surface receptors are activated, and during this process, the subplasmalemmal actin cytoskeleton is often rearranged. An intriguing point is that some signaling enzymes and ion channels are physically associated with the actin cytoskeleton, raising the possibility that the subtle changes of the local actin cytoskeleton can, in turn, modulate the activities of these proteins. In this study, we reviewed the early and new experimental evidence supporting the notion of actin-regulated enzyme and ion channel activities in various cell types including the cells of immune response, neurons, oocytes, hepatocytes, and epithelial cells, with a special emphasis on the Ca2+ signaling pathway that depends on the synthesis of inositol 1,4,5-trisphosphate. Some of the features that are commonly found in diverse cells from a wide spectrum of the animal species suggest that fine-tuning of the activities of the enzymes and ion channels by the actin cytoskeleton may be an important strategy to inhibit or enhance the function of these signaling proteins.
Collapse
Affiliation(s)
- Filip Vasilev
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Rue St Denis, Montreal, QC H2X 0A9, Canada
- Correspondence: (F.V.); (J.T.C.); Tel.: +1-514-249-5862 (F.V.); +39-081-583-3407 (J.T.C.)
| | - Yulia Ezhova
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada;
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
- Correspondence: (F.V.); (J.T.C.); Tel.: +1-514-249-5862 (F.V.); +39-081-583-3407 (J.T.C.)
| |
Collapse
|
2
|
Wypych D, Pomorski P. Calcium Signaling in Glioma Cells: The Role of Nucleotide Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:67-86. [PMID: 32034709 DOI: 10.1007/978-3-030-30651-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Calcium signaling is probably one of the evolutionary oldest and the most common way by which the signal can be transmitted from the cell environment to the cytoplasmic calcium binding effectors. Calcium signal is fast and due to diversity of calcium binding proteins it may have a very broad effect on cell behavior. Being a crucial player in neuronal transmission it is also very important for glia physiology. It is responsible for the cross-talk between neurons and astrocytes, for microglia activation and motility. Changes in calcium signaling are also crucial for the behavior of transformed glioma cells. The present chapter summarizes molecular mechanisms of calcium signal formation present in glial cells with a strong emphasis on extracellular nucleotide-evoked signaling pathways. Some aspects of glioma C6 signaling such as the cross-talk between P2Y1 and P2Y12 nucleotide receptors in calcium signal generation will be discussed in-depth, to show complexity of machinery engaged in formation of this signal. Moreover, possible mechanisms of modulation of the calcium signal in diverse environments there will be presented herein. Finally, the possible role of calcium signal in glioma motility is also discussed. This is a very important issue, since glioma cells, contrary to the vast majority of neoplastic cells, cannot spread in the body with the bloodstream and, at least in early stages of tumor development, may expand only by means of sheer motility.
Collapse
Affiliation(s)
- Dorota Wypych
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Pomorski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
3
|
Amar M, Singh A, Mallick BN. Noradrenergic β-Adrenoceptor-Mediated Intracellular Molecular Mechanism of Na-K ATPase Subunit Expression in C6 Cells. Cell Mol Neurobiol 2017; 38:441-457. [PMID: 28353187 DOI: 10.1007/s10571-017-0488-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/23/2017] [Indexed: 11/26/2022]
Abstract
Rapid eye movement sleep deprivation-associated elevated noradrenaline increases and decreases neuronal and glial Na-K ATPase activity, respectively. In this study, using C6 cell-line as a model, we investigated the possible intracellular molecular mechanism of noradrenaline-induced decreased glial Na-K ATPase activity. The cells were treated with noradrenaline in the presence or absence of adrenoceptor antagonists, modulators of extra- and intracellular Ca++ and modulators of intracellular signalling pathways. We observed that noradrenaline acting on β-adrenoceptor decreased Na-K ATPase activity and mRNA expression of the catalytic α2-Na-K ATPase subunit in the C6 cells. Further, cAMP and protein kinase-A mediated release of intracellular Ca++ played a critical role in such decreased α2-Na-K ATPase expression. In contrast, noradrenaline acting on β-adrenoceptor up-regulated the expression of regulatory β2-Na-K ATPase subunit, which although was cAMP and Ca++ dependent, was independent of protein kinase-A and protein kinase-C. Combining these with previous findings (including ours) we have proposed a working model for noradrenaline-induced suppression of glial Na-K ATPase activity and alteration in its subunit expression. The findings help understanding noradrenaline-associated maintenance of brain excitability during health and altered states, particularly in relation to rapid eye movement sleep and its deprivation when the noradrenaline level is naturally altered.
Collapse
Affiliation(s)
- Megha Amar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abhishek Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | |
Collapse
|
4
|
Calcium signaling in glioma cells--the role of nucleotide receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 986:61-79. [PMID: 22879064 DOI: 10.1007/978-94-007-4719-7_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium signaling is probably one of the evolutionary oldest and the most common way by which the signal can be transmitted from the cell environment to the cytoplasmic calcium binding effectors. Calcium signal is fast and due to diversity of calcium binding proteins it may have a very broad effect on cell behavior. Being a crucial player in neuronal transmission it is also very important for glia physiology. It is responsible for the cross-talk between neurons and astrocytes, for microglia activation and motility. Changes in calcium signaling are also crucial for the behavior of transformed glioma cells. The present Chapter summarizes molecular mechanisms of calcium signal formation present in glial cells with a strong emphasis on extracellular nucleotide-evoked signaling pathways. Some aspects of glioma C6 signaling such as the cross-talk between P2Y(1) and P2Y(12) nucleotide receptors in calcium signal generation will be discussed in-depth, to show complexity of machinery engaged in formation of this signal. Moreover, possible mechanisms of modulation of the calcium signal in diverse environments there will be presented herein. Finally, the possible role of calcium signal in glioma motility is also discussed. This is a very important issue, since glioma cells, contrary to the vast majority of neoplastic cells, cannot spread in the body with the bloodstream and, at least in early stages of tumor development, may expand only by means of sheer motility.
Collapse
|
5
|
Puzianowska-Kuznicka M, Kuznicki J. The ER and ageing II: calcium homeostasis. Ageing Res Rev 2009; 8:160-72. [PMID: 19427411 DOI: 10.1016/j.arr.2009.05.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/30/2009] [Accepted: 05/01/2009] [Indexed: 11/29/2022]
Abstract
Increase in intracellular Ca(2+) concentration occurs by Ca(2+) influx through the plasma membrane and by Ca(2+) release from intracellular stores. The ER is the most important Ca(2+) store. Its stress, characterized by the impairment of Ca(2+) homeostasis and by the accumulation of misfolded proteins, can be induced by different factors. In turn, it induces defense mechanisms such as unfolded protein response, and when it is severe and prolonged, activation of the apoptotic pathway. Damage to the ER, impairment of its function, and a decreased level of its Ca(2+)-handling proteins might all play a role in physiological ageing by handicapping the ER stress response. Thus, healthy ageing is accompanied by subtle alterations of Ca(2+) homeostasis and signaling, including alterations in the ER Ca(2+) load and release. The expression and/or function of ryanodine receptors, IP3 receptors, and SERCA Ca(2+) pumps located in the ER membrane, and Ca(2+)-binding proteins within ER lumen all seem to be affected in aged cells. Data are presented on age-dependent, tissue-specific changes in ER-related Ca(2+) homeostasis in skeletal, cardiac and smooth muscles, as well as in the nervous and immune systems. Disturbances of Ca(2+) homeostasis and of signaling are potential targets for intervention in aged humans.
Collapse
|
6
|
Liang SH, Zhang W, Mcgrath B, Zhang P, Cavener D. PERK (eIF2alpha kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate-early genes upon disruption of ER calcium homoeostasis. Biochem J 2006; 393:201-9. [PMID: 16124869 PMCID: PMC1383678 DOI: 10.1042/bj20050374] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The eIF2alpha (eukaryotic initiation factor-2alpha) kinase PERK (doublestranded RNA-activated protein kinase-like ER kinase) is essential for the normal function of highly secretory cells in the pancreas and skeletal system, as well as the UPR (unfolded protein response) in mammalian cells. To delineate the regulatory machinery underlying PERK-dependent stress-responses, gene profiling was employed to assess global changes in gene expression in PERK-deficient MEFs (mouse embryonic fibroblasts). Several IE (immediate-early) genes, including c-myc, c-jun, egr-1 (early growth response factor-1), and fra-1 (fos-related antigen-1), displayed PERK-dependent expression in MEFs upon disruption of calcium homoeostasis by inhibiting the ER (endoplasmic reticulum) transmembrane SERCA (sarcoplasmic/ER Ca2+-ATPase) calcium pump. Induction of c-myc and egr-1 by other reagents that elicit the UPR, however, showed variable dependence upon PERK. Induction of c-myc expression by thapsigargin was shown to be linked to key signalling enzymes including PLC (phospholipase C), PI3K (phosphatidylinositol 3-kinase) and p38 MAPK (mitogen-activated protein kinase). Analysis of the phosphorylated status of major components in MAPK signalling pathways indicated that thapsigargin and DTT (dithiothreitol) but not tunicamycin could trigger the PERK-dependent activation of JNK (c-Jun N-terminal kinase) and p38 MAPK. However, activation of JNK and p38 MAPK by non-ER stress stimuli including UV irradiation, anisomycin, and TNF-alpha (tumour necrosis factor-alpha) was found to be independent of PERK. PERK plays a particularly important role in mediating the global cellular response to ER stress that is elicited by the depletion of calcium from the ER. We suggest that this specificity of PERK function in the UPR is an extension of the normal physiological function of PERK to act as a calcium sensor in the ER.
Collapse
Affiliation(s)
- Shun-Hsin Liang
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Wei Zhang
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Barbara C. Mcgrath
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Peichuan Zhang
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Douglas R. Cavener
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
7
|
Pomorski P, Targos B, Barańska J. Rearrangement of the endoplasmic reticulum and calcium transient formation: The computational approach. Biochem Biophys Res Commun 2005; 328:1126-32. [PMID: 15707994 DOI: 10.1016/j.bbrc.2005.01.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Indexed: 10/25/2022]
Abstract
Experiments affecting calcium signaling often lead to changes in the calcium transient height. The present work is designed to approach this effect theoretically. Use of computational model let us to follow results of precisely designed changes in the endoplasmic reticulum distribution as a possible cause of cytoplasmic free calcium ion level. Obtained results suggest that indeed, rearrangement of the endoplasmic reticulum elements may be responsible for modulation of calcium signal's strength. We have also noticed that even if the endoplasmic reticulum concentration levels are local, the resulting changes in free calcium concentration are global and evenly distributed throughout the cell. The used mathematical method proved to be a powerful tool which made us understand the chemical dynamics of nonequilibrium processes of calcium transient formation. Presented data show how Ca2+ signal resulting from IP3 provoked release of calcium from the endoplasmic reticulum may depend on the cytoskeleton structure.
Collapse
Affiliation(s)
- Paweł Pomorski
- Laboratory of Signal Transduction, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland.
| | | | | |
Collapse
|