1
|
Saker Z, Rizk M, Bahmad HF, Nabha SM. Targeting Angiogenic Factors for the Treatment of Medulloblastoma. Curr Treat Options Oncol 2022; 23:864-886. [PMID: 35412196 DOI: 10.1007/s11864-022-00981-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2022] [Indexed: 11/24/2022]
Abstract
OPINION STATEMENT Medulloblastoma (MB) is the most frequent pediatric brain tumor. Despite conventional therapy, MB patients have high mortality and morbidity rates mainly due to the incomplete understanding of the molecular and cellular processes involved in development of this cancer. Similar to other solid tumors, MB demonstrated high endothelial cell proliferation and angiogenic activity, wherein new blood vessels arise from the pre-existing vasculature, a process named angiogenesis. MB angiogenesis is considered a hallmark for MB development, progression, and metastasis emphasizing its potential target for antitumor therapy. However, angiogenesis is tightly regulated by a set of angiogenic factors making it a complex process to be targeted. Although agents targeting these factors and their receptors are early in development, the potential for their targeting may translate into improvement in the clinical care for MB patients. In this review, we focus on the most potent angiogenic factors and their corresponding receptors, highlighting their basic properties and expression in MB. We describe their contribution to MB tumorigenesis and angiogenesis and the potential therapeutic targeting of these factors.
Collapse
Affiliation(s)
- Zahraa Saker
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Mahdi Rizk
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hisham F Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL, 33140, USA.
| | - Sanaa M Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
2
|
Hwang S, Seong H, Ryu J, Jeong JY, Kang TS, Nam KY, Seo SW, Kim SJ, Kang SS, Han YS. Phosphorylation of STAT3 and ERBB2 mediates hypoxia‑induced VEGF release in ARPE‑19 cells. Mol Med Rep 2020; 22:2733-2740. [PMID: 32945388 PMCID: PMC7453508 DOI: 10.3892/mmr.2020.11344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Neovascularization in the retina can cause loss of vision. Vascular endothelial growth factor (VEGF) serves an important role in the pathogenesis of retinal vascular diseases. Hypoxia is a notable cause of VEGF release and both STAT3 and ERBB2 are known to be associated with VEGF. In addition, STAT3 and ERBB2 interact with each other. In the present study, it was hypothesized that signal transducer and activator of transcription 3 (STAT3) and erbB-2 receptor tyrosine kinase 2 (ERBB2) may be involved in the regulation of hypoxia-induced VEGF in the retina. Cells of the retinal pigment epithelium (RPE) are an important source of VEGF. Therefore, the RPE-derived human cell line ARPE-19 was exposed to hypoxia. Hypoxia-induced phosphorylation of STAT3 and ERBB2 in ARPE-19 cells was decreased by AG490, an inhibitor of Janus kinase 2, as were hypoxia-induced VEGF release and tube formation in human umbilical vein endothelial cells. Thus, phosphorylation of ERBB2 and STAT3 regulates hypoxia-induced VEGF release in ARPE-19 cells. The results of the present study suggested that inhibition of ERBB2 and STAT3-mediated pathways under hypoxia may represent a new strategy for treating retinal vascular disease.
Collapse
Affiliation(s)
- Soohyun Hwang
- Department of Anatomy and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Hyemin Seong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Jinhyun Ryu
- Department of Anatomy and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Joo Yeon Jeong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Tae Seen Kang
- Department of Ophthalmology, Gyeongsang National University Changwon Hospital, Changwon, Gyeongsangnam‑do 51472, Republic of Korea
| | - Ki Yup Nam
- Department of Ophthalmology, Gyeongsang National University Changwon Hospital, Changwon, Gyeongsangnam‑do 51472, Republic of Korea
| | - Seong Wook Seo
- Department of Ophthalmology, College of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Seong Jae Kim
- Department of Ophthalmology, College of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Yong Seop Han
- Department of Ophthalmology, Gyeongsang National University Changwon Hospital, Changwon, Gyeongsangnam‑do 51472, Republic of Korea
| |
Collapse
|
3
|
Larionov AA. Current Therapies for Human Epidermal Growth Factor Receptor 2-Positive Metastatic Breast Cancer Patients. Front Oncol 2018; 8:89. [PMID: 29670855 PMCID: PMC5894159 DOI: 10.3389/fonc.2018.00089] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/14/2018] [Indexed: 01/01/2023] Open
Abstract
The median survival of patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (MBC) has more than doubled, since the discovery of HER2-targeted treatments: it rose from less than 2 years in 2001 (prior introduction of trastuzumab) to more than 4 years in 2017. The initial generation of HER2-targeted therapies included trastuzumab with taxanes in the first line, followed by the addition of lapatinib and by a switch to another cytotoxic agent after progression. Results of CLEOPATRA, EMILIA, and TH3RESA trials have changed this clinical practice. The current consensus includes horizontal dual blockade (trastuzumab + pertuzumab) with taxanes or vinorelbine in the first line, followed by trastuzumab-emtansine (T-DM1) in the second line, with addition of lapatinib in the later lines of treatment. However, the fast and simultaneous development of new drugs led to a relative shortage of clinical evidence to support this sequence. Triple-positive breast cancers (TPBC), which express both hormonal receptors and HER2, constitute nearly half of HER2-positive cases. For these tumors, the current consensus is to add endocrine therapy after completion of cytotoxic treatment. Again, this consensus is not fully evidence-based. In view of the recent progress in treatment of estrogen-receptor positive breast cancers, a series of trials is evaluating addition of CDK4/6 inhibitors, aromatase inhibitors or fulvestrant to HER2-targeted and cytotoxic chemotherapy in TPBC patients. Despite the remarkable progress in treatment of HER2-positive breast cancer, metastatic disease is still incurable in the majority of patients. A wide range of novel therapies are under development to prevent and overcome resistance to current HER2-targeted agents. This review discusses pivotal clinical trials that have shaped current clinical practices, the current consensus recommendations, and the new experimental treatments in metastatic HER2-positive breast cancer.
Collapse
Affiliation(s)
- Alexey A Larionov
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Zardavas D, Fouad TM, Piccart M. Optimal adjuvant treatment for patients with HER2-positive breast cancer in 2015. Breast 2015; 24 Suppl 2:S143-8. [PMID: 26255196 DOI: 10.1016/j.breast.2015.07.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The introduction of trastuzumab as adjuvant treatment for patients with HER2-positive breast cancer changed the natural course of early-stage disease. Currently, one year of trastuzumab given concurrently with a taxane and following an anthracycline regimen is the preferred standard of care in Europe. The first attempt to escalate this approach, though the implementation of dual HER2 blockade with lapatinib added to trastuzumab, as assessed by the ALTTO trial, failed to improve further clinical outcomes; clinical assessment of the adjuvant trastuzumab/pertuzumab regimen is still ongoing in the APHINITY trial. Negative results were also reported for the addition of bevacizumab to adjuvant trastuzumab treatment within the context of the BETH study. Similarly, efforts to de-escalate through shortening the duration of adjuvant trastuzumab treatment failed (the PHARE trial), whereas others are still ongoing. Of note, evidence supports the use of lighter chemotherapy regimens with one year of adjuvant trastuzumab as backbone, for women with small HER2-positive breast tumors, where the omission of anthracyclines did not compromise the clinical outcome. Despite the successes achieved so far, a proportion of women with early-stage HER2-positive breast cancer, will still experience disease recurrence. The identification of these women is urgently needed, as well as the identification of predictive biomarkers to dictate the optimal treatment strategy. So far, HER2 expression status has been the only validated predictive biomarker for this patient population. Despite the clear association of pCR achieved through neoadjuvant trastuzumab-based chemotherapy with clinical outcome, results from neoadjuvant trials have not been always consistent with what was seen in the adjuvant setting. Similarly, inconsistent results have been reported for the predictive ability of alterations affecting the PI3K signaling pathway or the quantification of tumor infiltrating lymphocytes. In the era of personalized oncology, rigorous translational and clinical collaborative efforts are needed to further advance the field of treatment of patients with HER2-positive breast cancer.
Collapse
Affiliation(s)
| | - Tamer M Fouad
- Breast European Adjuvant Studies Team (BrEAST), Brussels, Belgium
| | - Martine Piccart
- Institut Jules Bordet, Université Libre des Bruxelles, Brussels, Belgium.
| |
Collapse
|
5
|
Gianni L, Romieu GH, Lichinitser M, Serrano SV, Mansutti M, Pivot X, Mariani P, Andre F, Chan A, Lipatov O, Chan S, Wardley A, Greil R, Moore N, Prot S, Pallaud C, Semiglazov V. AVEREL: a randomized phase III Trial evaluating bevacizumab in combination with docetaxel and trastuzumab as first-line therapy for HER2-positive locally recurrent/metastatic breast cancer. J Clin Oncol 2013; 31:1719-25. [PMID: 23569311 DOI: 10.1200/jco.2012.44.7912] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PURPOSE The AVEREL trial [A Study of Avastin (Bevacizumab) in Combination With Herceptin (Trastuzumab)/Docetaxel in Patients With HER2-Positive Metastatic Breast Cancer] evaluated first-line bevacizumab-containing therapy for human epidermal growth factor receptor 2 (HER2) -positive locally recurrent/metastatic breast cancer (LR/MBC). PATIENTS AND METHODS Patients with measurable/evaluable HER2-positive LR/MBC who had not received trastuzumab or chemotherapy for LR/MBC were stratified by prior adjuvant trastuzumab, prior (neo)adjuvant taxane, hormone receptor status, and measurable disease and were randomly assigned to receive docetaxel 100 mg/m(2) plus trastuzumab 8 mg/kg loading dose followed by 6 mg/kg either with bevacizumab 15 mg/kg or without bevacizumab, all administered every 3 weeks. The primary end point was progression-free survival (PFS). Additional end points included overall survival, response rate (RR), safety, quality of life, and translational research. Results Baseline characteristics of the 424 patients were balanced between treatment arms. Most patients had visceral metastases, 43% had a disease-free interval less than 12 months, and 85% had measurable disease. Median follow-up was 26 months. The hazard ratio for investigator-assessed PFS was 0.82 (95% CI, 0.65 to 1.02; P = .0775; median PFS, 13.7 v 16.5 months in the non-bevacizumab and bevacizumab arms, respectively; PFS events in 72%). The Independent Review Committee-assessed PFS hazard ratio was 0.72 (95% CI, 0.54 to 0.94; P = .0162; median PFS, 13.9 v 16.8 months, respectively; PFS events in 53%). The RR was 70% versus 74%, respectively (P = .3492). Grade ≥ 3 febrile neutropenia and hypertension were more common with bevacizumab-containing therapy. High baseline plasma vascular endothelial growth factor A (VEGF-A) concentrations were associated with greater bevacizumab benefit (not statistically significant). CONCLUSION Combining bevacizumab with docetaxel and trastuzumab did not significantly improve investigator-assessed PFS. The potential predictive value of plasma VEGF-A is consistent with findings in HER2-negative LR/MBC, warranting prospective evaluation.
Collapse
Affiliation(s)
- Luca Gianni
- Department of Medical Oncology, San Raffaele Hospital, Via Olgettina 60, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Transcriptional repression of VEGF by ZNF24: mechanistic studies and vascular consequences in vivo. Blood 2012; 121:707-15. [PMID: 23212515 DOI: 10.1182/blood-2012-05-433045] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
VEGF is a key regulator of normal and pathologic angiogenesis. Although many trans-activating factors of VEGF have been described, the transcriptional repression of VEGF remains much less understood. We have previously reported the identification of a SCAN domain-containing C2H2 zinc finger protein, ZNF24, that represses the transcription of VEGF. In the present study, we identify the mechanism by which ZNF24 represses VEGF transcription. Using reporter gene and electrophoretic mobility shift assays, we identify an 11-bp fragment of the proximal VEGF promoter as the ZNF24-binding site that is essential for ZNF24-mediated repression. We demonstrate in 2 in vivo models the potent inhibitory effect of ZNF24 on the vasculature. Expression of human ZNF24 induced in vivo vascular defects consistent with those induced by VEGF knockdown using a transgenic zebrafish model. These defects could be rescued by VEGF overexpression. Overexpression of ZNF24 in human breast cancer cells also inhibited tumor angiogenesis in an in vivo tumor model. Analyses of human breast cancer tissues showed that ZNF24 and VEGF levels were inversely correlated in malignant compared with normal tissues. These data demonstrate that ZNF24 represses VEGF transcription through direct binding to an 11-bp fragment of the VEGF proximal promoter and that it functions as a negative regulator of tumor growth by inhibiting angiogenesis.
Collapse
|
7
|
Peroxiredoxin 1 stimulates endothelial cell expression of VEGF via TLR4 dependent activation of HIF-1α. PLoS One 2012. [PMID: 23185615 PMCID: PMC3503895 DOI: 10.1371/journal.pone.0050394] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chronic inflammation leads to the formation of a pro-tumorigenic microenvironment that can promote tumor development, growth and differentiation through augmentation of tumor angiogenesis. Prostate cancer (CaP) risk and prognosis are adversely correlated with a number of inflammatory and angiogenic mediators, including Toll-like receptors (TLRs), NF-κB and vascular endothelial growth factor (VEGF). Peroxiredoxin 1 (Prx1) was recently identified as an endogenous ligand for TLR4 that is secreted from CaP cells and promotes inflammation. Inhibition of Prx1 by CaP cells resulted in reduced expression of VEGF, diminished tumor vasculature and retarded tumor growth. The mechanism by which Prx1 regulates VEGF expression in normoxic conditions was investigated in the current study. Our results show that incubation of mouse vascular endothelial cells with recombinant Prx1 caused increases in VEGF expression that was dependent upon TLR4 and required hypoxia inducible factor-1 (HIF-1) interaction with the VEGF promoter. The induction of VEGF was also dependent upon NF-κB; however, NF-κB interaction with the VEGF promoter was not required for Prx1 induction of VEGF suggesting that NF-κB was acting indirectly to induce VEGF expression. The results presented here show that Prx1 stimulation increased NF-κB interaction with the HIF-1α promoter, leading to enhanced promoter activity and increases in HIF-1α mRNA levels, as well as augmented HIF-1 activity that resulted in VEGF expression. Prx1 induced HIF-1 also promoted NF-κB activity, suggesting the presence of a positive feedback loop that has the potential to perpetuate Prx1 induction of angiogenesis. Strikingly, inhibition of Prx1 expression in CaP was accompanied with reduced expression of HIF-1α. The combined findings of the current study and our previous study suggest that Prx1 interaction with TLR4 promotes CaP growth potentially through chronic activation of tumor angiogenesis.
Collapse
|
8
|
Hedhli N, Dobrucki LW, Kalinowski A, Zhuang ZW, Wu X, Russell RR, Sinusas AJ, Russell KS. Endothelial-derived neuregulin is an important mediator of ischaemia-induced angiogenesis and arteriogenesis. Cardiovasc Res 2011; 93:516-24. [PMID: 22200588 DOI: 10.1093/cvr/cvr352] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Neuregulins (NRG) are growth factors that are synthesized by endothelial cells (ECs) and bind to erbB receptors. We have shown previously that NRG is proangiogenic in vitro, and that NRG/erbB signalling is important for autocrine endothelial angiogenic signalling in vitro. However, the role of NRG in the angiogenic response to ischaemia is unknown. We hypothesized that endothelial NRG is required for ischaemia-induced angiogenesis in vivo and that exogenous administration of NRG will enhance angiogenic responses after ischaemic insult. METHODS AND RESULTS An endothelial-selective inducible NRG knockout mouse was created and subjected to femoral artery ligation. Endothelial NRG deletion significantly decreased blood flow recovery (by 40%, P < 0.05), capillary density, α(v)β(3) integrin activation, and arteriogenesis after ischaemic injury. Isolated ECs from knockout mice demonstrated significantly impaired cord formation in vitro, suggesting that NRG signalling performs an important cell autonomous function. Recombinant human NRG (rNRG) has not only reversed the angiogenic defect in knockout mice but also accelerated blood flow recovery in wild-type mice. CONCLUSION Endothelial production of NRG is required for angiogenesis and arteriogenesis induced by ischaemic injury. Furthermore, exogenous administration of rNRG can enhance this process, suggesting a potential role for NRG in vascular disease.
Collapse
Affiliation(s)
- Nadia Hedhli
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Nejatollahi F, Asgharpour M, Jaberipour M. Down-regulation of vascular endothelial growth factor expression by anti-Her2/neu single chain antibodies. Med Oncol 2011; 29:378-83. [PMID: 21267676 DOI: 10.1007/s12032-010-9796-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 12/20/2010] [Indexed: 01/17/2023]
Abstract
HER-2/neu is overexpressed in 25-30% of breast tumors. Signaling through HER-2/neu leads to an increase in the production of vascular endothelial growth factor (VEGF) and enhances angiogenesis. We evaluated the effects of three specific anti-HER2/neu single chain-Fv (scFv) antibodies on the expression level of VEGF in HER2/neu-expressing breast cancer cell lines. A nonimmunized human scFv library was panned against three epitopes of HER2/neu. BT-474 human breast cancer cell line was treated with three specific anti-HER2/neu scFv antibodies and the amount of VEGF gene transcript was determined by quantitative real-time PCR. The expression of VEGF protein was analyzed by western blot. All three scFv antibodies along with their combination inhibited VEGF expression at both the gene and protein levels. Our results show that anti-HER2/neu recombinant antibodies can be considered as anti-angiogenic agents in HER2/neu-positive breast cancers.
Collapse
Affiliation(s)
- Foroogh Nejatollahi
- Recombinant Antibody Laboratory, Department of Immunology, Graduate School for Advanced Biomedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
10
|
Hawthorne VS, Huang WC, Neal CL, Tseng LM, Hung MC, Yu D. ErbB2-mediated Src and signal transducer and activator of transcription 3 activation leads to transcriptional up-regulation of p21Cip1 and chemoresistance in breast cancer cells. Mol Cancer Res 2009; 7:592-600. [PMID: 19372587 DOI: 10.1158/1541-7786.mcr-08-0316] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Overexpression of the ErbB2 receptor tyrosine kinase is prevalent in approximately 30% of human breast cancers and confers Taxol resistance. Our previous work has shown that ErbB2 inhibits Taxol-induced apoptosis in breast cancer cells by transcriptionally up-regulating p21(Cip1). However, the mechanism of ErbB2-mediated p21(Cip1) up-regulation is unclear. Here, we show that ErbB2 up-regulates p21(Cip1) transcription through increased Src activity in ErbB2-overexpressing cells. Src activation further activated signal transducer and activator of transcription 3 (STAT3) that recognizes a SIE binding site on the p21(Cip1) promoter required for ErbB2-mediated p21(Cip1) transcriptional up-regulation. Both Src and STAT3 inhibitors restored Taxol sensitivity in resistant ErbB2-overexpressing breast cancer cells. Our data suggest that ErbB2 overexpression can activate STAT3 through Src leading to transcriptional up-regulation of p21(Cip1) that confers Taxol resistance of breast cancer cells. Our study suggests a potential clinical application of Src and STAT3 inhibitors in Taxol sensitization of ErbB2-overexpressing breast cancers.
Collapse
Affiliation(s)
- Valerie S Hawthorne
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
11
|
Le XF, Mao W, Lu C, Thornton A, Heymach JV, Sood AK, Bast RC. Specific blockade of VEGF and HER2 pathways results in greater growth inhibition of breast cancer xenografts that overexpress HER2. Cell Cycle 2008; 7:3747-58. [PMID: 19029832 DOI: 10.4161/cc.7.23.7212] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have previously reported that breast cancer cells which overexpress HER2 produce higher levels of VEGF than cells with low levels of HER2. This study tested the hypothesis that dual targeting of the VEGF (with VEGF-Trap) and HER2 (with trastuzumab) pathways would result in greater growth inhibition of HER2-overexpressing breast cancer xenografts than either agent alone. In this study we found that human and murine endothelial cells expressed high levels of VEGF receptors (VEGFR1, VEGFR2, & VEGFR3). VEGF-Trap decreased levels of secreted VEGF derived from both human and murine cells and effectively blocked VEGF-induced tyrosine phosphorylation of VEGFR2. VEGF-Trap as a single treatment inhibited tumor microvessel density (MVD), tumor vasculature, cell proliferation and tumor growth of BT474 xenografts in a dose-dependent manner from 2.5 mg/kg to 25 mg/kg. VEGF-Trap decreased levels of both human VEGF and PlGF protein in vivo. Trastuzumab as a single agent effectively inhibited BT474 tumor growth in a dose-dependent manner, associated with a decrease in human VEGF, tumor MVD and tumor cell proliferation. Treatment with a combination of VEGF-Trap (2.5-10 mg/kg) and trastuzumab (1 mg/kg) produced significantly greater inhibition of BT474 tumor growth than either individual agent, associated with greater inhibition of tumor MVD and tumor cell proliferation. Thus, VEGF-Trap in combination with trastuzumab produces superior growth inhibition of tumor xenografts which overexpress HER2, which may result from inhibition of both tumor angiogenesis and proliferation. Similar mechanisms may contribute to the clinical anti-tumor activity of trastuzumab in combination with inhibitors of VEGF signaling pathway in women with breast cancers which overexpress HER2.
Collapse
Affiliation(s)
- Xiao-Feng Le
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Tortora G, Ciardiello F, Gasparini G. Combined targeting of EGFR-dependent and VEGF-dependent pathways: rationale, preclinical studies and clinical applications. ACTA ACUST UNITED AC 2008; 5:521-30. [PMID: 18594498 DOI: 10.1038/ncponc1161] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 12/10/2007] [Indexed: 11/09/2022]
Abstract
Cellular heterogeneity, redundancy of molecular pathways and effects of the microenvironment contribute to the survival, motility and metastasis of cells in solid tumors. It is unlikely that tumors are entirely dependent on only one abnormally activated signaling pathway; consequently, treatment with an agent that interferes with a single target may be insufficient. Combined blockade of functionally linked and relevant multiple targets has become an attractive therapeutic strategy. The EGFR and ERBB2 (HER2) pathways and VEGF-dependent angiogenesis have a pivotal role in cancer pathogenesis and progression. Robust experimental evidence has shown that these pathways are functionally linked and has demonstrated a suggested role for VEGF in the acquired resistance to anti-ERBB drugs when these receptors are pharmacologically blocked. Combined inhibition of ERBB and VEGF signaling interferes with a molecular feedback loop responsible for acquired resistance to anti-ERBB agents and promotes apoptosis while ablating tumor-induced angiogenesis. To this aim, either two agents highly selective against VEGF and ERBB respectively, or, alternatively, a single multitargeted agent, can be used. Preclinical studies have proven the efficacy of both these approaches and early clinical studies have provided encouraging results. This Review discusses the experimental rationale for, preclinical studies of and clinical trials on combined blockade of ERBB and VEGF signaling.
Collapse
Affiliation(s)
- Giampaolo Tortora
- Clinical Unit and Laboratories of Molecular Therapy at the University of Naples Federico II, Naples, Italy.
| | | | | |
Collapse
|
13
|
Bryan BA, Walshe TE, Mitchell DC, Havumaki JS, Saint-Geniez M, Maharaj AS, Maldonado AE, D'Amore PA. Coordinated vascular endothelial growth factor expression and signaling during skeletal myogenic differentiation. Mol Biol Cell 2007; 19:994-1006. [PMID: 18094043 DOI: 10.1091/mbc.e07-09-0856] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Angiogenesis is largely controlled by hypoxia-driven transcriptional up-regulation and secretion of vascular endothelial growth factor (VEGF) and its binding to the endothelial cell tyrosine receptor kinases, VEGFR1 and VEGFR2. Recent expression analysis suggests that VEGF is expressed in a cell-specific manner in normoxic adult tissue; however, the transcriptional regulation and role of VEGF in these tissues remains fundamentally unknown. In this report we demonstrate that VEGF is coordinately up-regulated during terminal skeletal muscle differentiation. We reveal that this regulation is mediated in part by MyoD homo- and hetero-dimeric transcriptional mechanisms. Serial deletions of the VEGF promoter elucidated a region containing three tandem CANNTG consensus MyoD sites serving as essential sites of direct interaction for MyoD-mediated up-regulation of VEGF transcription. VEGF-null embryonic stem (ES) cells exhibited reduced myogenic differentiation compared with wild-type ES cells, suggesting that VEGF may serve a role in skeletal muscle differentiation. We demonstrate that VEGFR1 and VEGFR2 are expressed at low levels in myogenic precursor cells and are robustly activated upon VEGF stimulation and that their expression is coordinately regulated during skeletal muscle differentiation. VEGF stimulation of differentiating C2C12 cells promoted myotube hypertrophy and increased myogenic differentiation, whereas addition of sFlt1, a VEGF inhibitor, resulted in myotube hypotrophy and inhibited myogenic differentiation. We further provide evidence indicating VEGF-mediated myogenic marker expression, mitogenic activity, migration, and prosurvival functions may contribute to increased myogenesis. These data suggest a novel mechanism whereby VEGF is coordinately regulated as part of the myogenic differentiation program and serves an autocrine function regulating skeletal myogenesis.
Collapse
Affiliation(s)
- Brad A Bryan
- Schepens Eye Research Institute, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Madson JG, Hansen LA. Multiple mechanisms of Erbb2 action after ultraviolet irradiation of the skin. Mol Carcinog 2007; 46:624-8. [PMID: 17477367 DOI: 10.1002/mc.20335] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ultraviolet (UV) irradiation causes multiple pathologic changes in the skin including inflammation, immune suppression, photoaging, and cancer. Effects of UV irradiation include the activation of numerous signal transduction pathways, including the mitogen-activated protein kinases (MAPK), and the activation of transcription factors such as nuclear factor kappa B (NFkappaB). These responses alter gene expression in a manner that resembles the response to growth factors known as the "UV response". The UV response alters the kinetics of cell division and cell death allowing the skin to recover from the DNA damage caused by UV exposure. UV irradiation also rapidly activates epidermal growth factor receptor (EGFR) family members, including Erbb2 (human epithelial growth factor receptor 2 (HER2)/neu), through the generation of reactive oxygen species. Erbb2, a protooncogene that is activated in many types of cancer and associated with aggressive and chemotherapeutic-resistant disease, is expressed in both follicular and epidermal keratinocytes within the skin. However, the physiological functions of Erbb2 in the skin and its role in the UV response are largely unknown. In this review, evidence that Erbb2 is influential in modulating the response of the skin to UV will be presented. Erbb2 alters the expression of regulatory genes controlling inflammation, angiogenesis, cell division, apoptosis, cell adhesion, and migration following UV irradiation. In addition, Erbb2 dampens UV-induced S-phase arrest, augments inflammation in response to UV irradiation, and suppresses UV-induced apoptosis. In summary, the evidence presented herein links UV-induced Erbb2 activation to many of the effects of UV and implicates Erbb2 in UV-induced carcinogenesis.
Collapse
Affiliation(s)
- Justin G Madson
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178, USA
| | | |
Collapse
|
15
|
Harper J, Yan L, Loureiro RM, Wu I, Fang J, D'Amore PA, Moses MA. Repression of Vascular Endothelial Growth Factor Expression by the Zinc Finger Transcription Factor ZNF24. Cancer Res 2007; 67:8736-41. [PMID: 17875714 DOI: 10.1158/0008-5472.can-07-1617] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a potent stimulator of angiogenesis. Although many positive regulators of VEGF have been identified, relatively little is known regarding the negative regulation of VEGF expression. We identified a zinc finger transcription factor, ZNF24, that may repress VEGF transcription. An inverse correlation between expression of VEGF and ZNF24 was observed in a series of independent studies. ZNF24 was up-regulated in angiogenic tumor nodules where VEGF expression is significantly decreased compared with preangiogenic nodules. In human breast carcinoma cells cultured under normoxic conditions, ZNF24 levels were significantly up-regulated whereas VEGF levels were low. In contrast, VEGF was significantly increased in hypoxic cells whereas ZNF24 was down-regulated. The same inverse correlation between ZNF24 and VEGF was also observed in 70% of matched cDNA pairs of normal and malignant tissues from human colon and breast biopsies. Overexpression of ZNF24 resulted in a significant down-regulation of VEGF, whereas silencing of ZNF24 with small interfering RNA led to increased VEGF expression. Cotransfection of ZNF24 and a VEGF promoter luciferase reporter construct in MDA-MB-231 cells resulted in a significant decrease in VEGF promoter activity. Taken together, these data suggest that ZNF24 is involved in negative regulation of VEGF and may represent a novel repressor of VEGF transcription.
Collapse
Affiliation(s)
- Jay Harper
- Vascular Biology Program, Children's Hospital Boston, Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 2007; 26:6469-87. [PMID: 17471238 PMCID: PMC3021475 DOI: 10.1038/sj.onc.1210477] [Citation(s) in RCA: 801] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The year 2007 marks exactly two decades since Human Epidermal Growth Factor Receptor-2 (HER2) was functionally implicated in the pathogenesis of human breast cancer. This finding established the HER2 oncogene hypothesis for the development of some human cancers. The subsequent two decades have brought about an explosion of information about the biology of HER2 and the HER family. An abundance of experimental evidence now solidly supports the HER2 oncogene hypothesis and etiologically links amplification of the HER2 gene locus with human cancer pathogenesis. The molecular mechanisms underlying HER2 tumorigenesis appear to be complex and a unified mechanistic model of HER2-induced transformation has not emerged. Numerous hypotheses implicating diverse transforming pathways have been proposed and are individually supported by experimental models and HER2 may indeed induce cell transformation through multiple mechanisms. Here I review the evidence supporting the oncogenic function of HER2, the mechanisms that are felt to mediate its oncogenic functions, and the evidence that links the experimental evidence with human cancer pathogenesis.
Collapse
Affiliation(s)
- M M Moasser
- Department of Medicine and Comprehensive Cancer Center, University of California, San Francisco, CA 94143-0875, USA.
| |
Collapse
|
17
|
Maharaj AS, D’Amore PA. Roles for VEGF in the adult. Microvasc Res 2007; 74:100-13. [PMID: 17532010 PMCID: PMC2128714 DOI: 10.1016/j.mvr.2007.03.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 03/29/2007] [Accepted: 03/30/2007] [Indexed: 12/17/2022]
Abstract
The role of VEGF during development and in pathology is well known, but its function in normal adult tissues is poorly understood. Adverse effects associated with the use of anti-angiogenic therapies targeting VEGF in human pathologies have begun to reveal potential functions of VEGF in quiescent vasculature. Further clues from expression studies of VEGF and its receptors in the adult, from the disease preeclampsia, and from experimental neutralization studies, have suggested that VEGF is involved in endothelial cell survival and fenestration, as well as in the signaling and maintenance of non-endothelial cells. The various biochemical properties of VEGF, and its interaction with other growth factors, may be an important point in determining whether VEGF functions as a maintenance factor versus an angiogenic factor. A thorough understanding of the function of VEGF in the adult may lead to more efficacious pro- and anti-angiogenic therapies.
Collapse
Affiliation(s)
- Arindel S.R. Maharaj
- Schepens Eye Research Institute
- Program in Biological and Biomedical Sciences
- Harvard Medical School, Boston, MA 02114
| | - Patricia A. D’Amore
- Schepens Eye Research Institute
- Program in Biological and Biomedical Sciences
- Harvard Medical School, Boston, MA 02114
- Departments of Ophthalmology and Pathology
| |
Collapse
|
18
|
Abstract
Our understanding of the regulation of vascular development has exploded over the past decade. Prior to this time, our knowledge of vascular development was primarily based on classic descriptive studies. The identification of stem cells, lineage markers, specific growth factors and their receptors, and signalling pathways has facilitated a rapid expansion in information regarding details of the mechanisms that govern development of the vascular system.
Collapse
Affiliation(s)
- A M Suburo
- Facultad de Ciencias Biomédicas, Universidad Austral, B1629AHJ Buenos Aires, Argentina
| | | |
Collapse
|
19
|
Wen XF, Yang G, Mao W, Thornton A, Liu J, Bast RC, Le XF. HER2 signaling modulates the equilibrium between pro- and antiangiogenic factors via distinct pathways: implications for HER2-targeted antibody therapy. Oncogene 2006; 25:6986-96. [PMID: 16715132 DOI: 10.1038/sj.onc.1209685] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We determined the impact of HER2 signaling on two proangiogenic factors, vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8), and on an antiangiogenic factor, thrombospondin-1 (TSP-1). Re-expression of HER2 in MCF-7 and T-47D breast cancer cells that endogenously express low levels of HER2 resulted in elevated expression of VEGF and IL-8 and decreased expression of TSP-1. Inhibition of HER2 with a humanized anti-HER2 antibody (trastuzumab, or Herceptin) or a retrovirus-mediated small interfering RNA against HER2 (siHER2) decreased VEGF and IL-8 expression, but increased TSP-1 expression in BT474 breast cancer cells that express high levels of HER2. These in vitro results were further evaluated by treatment of BT474 xenografts in immunosuppressed mice with trastuzumab. Trastuzumab inhibited growth of BT474 xenografts and decreased microvascular density associated with downregulation of VEGF and IL-8 and with upregulation of TSP-1 expression. Inhibiting the PI3K-AKT pathway decreased VEGF and IL-8 expression. AKT1 overexpession increased VEGF and IL-8 expression, but did not increase TSP-1 expression. A p38 kinase inhibitor, SB203580, instead blocked TSP-1 expression and a p38 activator, MKK6, increased TSP-1 expression. Trastuzumab stimulated sustained p38 activation and SB203580 attenuated the TSP-1 upregulation induced by trastuzumab. HER2 signaling therefore influences the equilibrium between pro- and antiangiogenic factors via distinct signaling pathways. Trastuzumab inhibits angiogenesis and tumor growth, at least in part, through activation of the HER2-p38-TSP-1 pathway and inhibition of the HER2-PI3K-AKT-VEGF/IL-8 pathway.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Antineoplastic Agents/pharmacology
- Blotting, Western
- Female
- Humans
- Immunohistochemistry
- Interleukin-8/metabolism
- Mammary Neoplasms, Experimental/blood supply
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/metabolism
- Mice
- Mice, Nude
- Neovascularization, Pathologic/metabolism
- Oncogene Protein v-akt/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Thrombospondin 1/metabolism
- Transfection
- Trastuzumab
- Vascular Endothelial Growth Factor A/metabolism
- p38 Mitogen-Activated Protein Kinases/drug effects
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- X-F Wen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Okano JI, Matsumoto K, Nagahara T, Murawaki Y. Gefitinib and the modulation of the signaling pathways downstream of epidermal growth factor receptor in human liver cancer cells. J Gastroenterol 2006; 41:166-76. [PMID: 16568376 DOI: 10.1007/s00535-005-1736-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 10/28/2005] [Indexed: 02/04/2023]
Abstract
BACKGROUND The transforming growth factor-alpha (TGF-alpha)/epidermal growth factor receptor (EGFR) signaling pathway has been demonstrated to have a pivotal role in hepatocarcinogenesis. We examined whether abrogation of the TGF-alpha/EGFR signaling pathway with a selective EGFR tyrosine kinase inhibitor, gefitinib, could inhibit the proliferation of human hepatocellular carcinoma (HCC) cells. METHODS Cellular growth was monitored by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Cell-cycle distribution was analyzed by flow cytometric analysis. Activities of signaling molecules were evaluated by Western blot analysis. RESULTS HCC cells expressed EGFR at variable levels; however, extracellular signal-regulated kinase (ERK)1/2 and AKT, key signaling molecules downstream of EGFR, were not constitutively active in the cells. When HCC cells were treated with TGF-alpha, cellular growth was accelerated in a manner dependent on activation of ERK1/2 and AKT. When the cells were co-treated with gefitinib and TGF-alpha, enhanced proliferation and activation of ERK1/2 and AKT were canceled, and the cell-cycle promotion by TGF-alpha was inhibited by co-treatment with gefitinib and TGF-alpha, independently of expression levels of EGFR. In contrast, gefitinib did not show an antiproliferative effect on HCC cells cultivated under the 10% serum condition. CONCLUSIONS The present data demonstrated that gefitinib exerted an antiproliferative action on HCC cells under a limited condition when signaling pathways downstream of EGFR were activated by TGF-alpha.
Collapse
Affiliation(s)
- Jun-Ichi Okano
- Second Department of Internal Medicine, Tottori University School of Medicine, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | | | | | | |
Collapse
|
21
|
Harvell DME, Richer JK, Allred DC, Sartorius CA, Horwitz KB. Estradiol regulates different genes in human breast tumor xenografts compared with the identical cells in culture. Endocrinology 2006; 147:700-13. [PMID: 16239301 DOI: 10.1210/en.2005-0617] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In breast cancers, estrogen receptor (ER) levels are highly correlated with response to endocrine therapies. We sought to define mechanisms of estrogen (E) signaling in a solid breast tumor model using gene expression profiling. ER(+) T47D-Y human breast cancer cells were grown as xenografts in ovariectomized nude mice under four conditions: 1) 17beta-estradiol for 8 wk (E); 2) without E for 8 wk (control); 3) E for 7 wk followed by 1 wk of E withdrawal (Ewd); or 4) E for 8 wk plus tamoxifen for the last week. E-regulated genes were defined as those that differed significantly between control and E and/or between E and Ewd or control and Ewd. These protocols generated 188 in vivo E-regulated genes that showed two major patterns of regulation. Approximately 46% returned to basal states after Ewd (class I genes); 53% did not (class II genes). In addition, more than 70% of class II-regulated genes also failed to reverse in response to tamoxifen. These genes may be interesting for the study of hormone-resistance issues. A subset of in vivo E-regulated genes appears on lists of clinical ER discriminator genes. These may be useful therapeutic targets or markers of E activity. Comparison of in vivo E-regulated genes with those regulated in identical cells in vitro after 6 and 24 h of E treatment demonstrate only 11% overlap. This indicates the extent to which gene expression profiles are uniquely dependent on hormone-treatment times and the cellular microenvironment.
Collapse
Affiliation(s)
- Djuana M E Harvell
- Department of Medicine, University of Colorado Health Sciences Center at Fitzsimons, Aurora, 80045, USA.
| | | | | | | | | |
Collapse
|
22
|
Isaacs JS. Heat-shock protein 90 inhibitors in antineoplastic therapy: is it all wrapped up? Expert Opin Investig Drugs 2005; 14:569-89. [PMID: 16004589 DOI: 10.1517/13543784.14.6.569] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heat-shock protein (Hsp)-90 belongs to the class of molecular chaperone proteins that are capable of sensing cellular stress. Although Hsp90 is essential for viability, the pharmacological inhibition of this chaperone has emerged as an attractive means to inhibit tumorigenesis. This phenomenon is due to a unique property of Hsp90; its 'client proteins' are universally involved in signal transduction pathways commonly dysregulated in, and contributing to, cancer. The natural product geldanamycin, a potent ansamycin Hsp90 inhibitor, has served as a lead compound for the development of several derivatives that are currently undergoing clinical trials. Inhibition of Hsp90 with geldanamycin simultaneously depletes Hsp90-associated clients and impairs numerous signalling cascades that depend on chaperone function. Importantly, tumour cells are exquisitely sensitive to Hsp90 inhibition, lending credence to the feasibility of selectively targeting cancer tissue via the pharmacological modulation of Hsp90 function. Even more remarkably, Hsp90 inhibitors sensitise tumour cells to the cytotoxic effects of a variety of standard therapeutics, and thus, they are likely to have broad utility in combination therapy. Although these are promising developments, much remains to be discovered about client-chaperone biology and the tumour-specific effects of Hsp90 blockade. This information is required to fully grasp the multi-faceted roles of Hsp90 in cancer biology towards the goal of optimising the use of these agents in the clinic. Elucidation of these nuances will undoubtedly lead to better targeting of relevant oncogenic pathways and translate into the development of more effective anticancer regimens.
Collapse
Affiliation(s)
- Jennifer S Isaacs
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|