1
|
Davydova A, Kurochkina Y, Goncharova V, Vorobyeva M, Korolev M. The Interleukine-17 Cytokine Family: Role in Development and Progression of Spondyloarthritis, Current and Potential Therapeutic Inhibitors. Biomedicines 2023; 11:1328. [PMID: 37238999 PMCID: PMC10216275 DOI: 10.3390/biomedicines11051328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Spondyloarthritis (SpA) encompasses a group of chronic inflammatory rheumatic diseases with a predilection for the spinal and sacroiliac joints, which include axial spondyloarthritis, psoriatic arthritis, reactive arthritis, arthritis associated with chronic inflammatory bowel disease, and undifferentiated spondyloarthritis. The prevalence of SpA in the population varies from 0.5 to 2%, most commonly affecting young people. Spondyloarthritis pathogenesis is related to the hyperproduction of proinflammatory cytokines (TNFα, IL-17A, IL-23, etc.). IL-17A plays a key role in the pathogenesis of spondyloarthritis (inflammation maintenance, syndesmophites formation and radiographic progression, enthesites and anterior uveitis development, etc.). Targeted anti-IL17 therapies have established themselves as the most efficient therapies in SpA treatment. The present review summarizes literature data on the role of the IL-17 family in the pathogenesis of SpA and analyzes existing therapeutic strategies for IL-17 suppression with monoclonal antibodies and Janus kinase inhibitors. We also consider alternative targeted strategies, such as the use of other small-molecule inhibitors, therapeutic nucleic acids, or affibodies. We discuss advantages and pitfalls of these approaches and the future prospects of each method.
Collapse
Affiliation(s)
- Anna Davydova
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Yuliya Kurochkina
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
| | - Veronika Goncharova
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
| | - Mariya Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Maksim Korolev
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
| |
Collapse
|
2
|
IL-17B/IL-17RB signaling cascade contributes to self-renewal and tumorigenesis of cancer stem cells by regulating Beclin-1 ubiquitination. Oncogene 2021; 40:2200-2216. [PMID: 33649532 PMCID: PMC7994204 DOI: 10.1038/s41388-021-01699-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) are characterized by robust self-renewal and tumorigenesis and are responsible for metastasis, drug resistance, and angiogenesis. However, the molecular mechanisms for the regulation of CSC homeostasis are incompletely understood. This study demonstrated that the interleukin-17 (IL-17)B/IL-17RB signaling cascade promotes the self-renewal and tumorigenesis of CSCs by inducing Beclin-1 ubiquitination. We found that IL-17RB expression was significantly upregulated in spheroid cells and Lgr5-positive cells from the same tumor tissues of patients with gastric cancer (GC), which was closely correlated with the degree of cancer cell differentiation. Recombinant IL-17B (rIL-17B) promoted the sphere-formation ability of CSCs in vitro and enhanced tumor growth and metastasis in vivo. Interestingly, IL-17B induced autophagosome formation and cleavage-mediated transformation of LC3 in CSCs and 293T cells. Furthermore, inhibition of autophagy activation by ATG7 knockdown reversed rIL-17B-induced self-renewal of GC cells. In addition, we showed that IL-17B also promoted K63-mediated ubiquitination of Beclin-1 by mediating the binding of tumor necrosis factor receptor-associated factor 6 to Beclin-1. Silencing IL-17RB expression abrogated the effects of IL-17B on Beclin-1 ubiquitination and autophagy activation in GC cells. Finally, we showed that IL-17B level in the serum of GC patients was positively correlated with IL-17RB expression in GC tissues, and IL-17B could induce IL-17RB expression in GC cells. Overall, the results elucidate the novel functions of IL-17B for CSCs and suggest that the intervention of the IL-17B/IL-17RB signaling pathway may provide new therapeutic targets for the treatment of cancer.
Collapse
|
3
|
Cao Y, Yang S, Feng C, Zhan W, Zheng Z, Wang Q, Deng Y, Jiao Y, Du X. Evolution and function analysis of interleukin-17 gene from Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2019; 88:102-110. [PMID: 30802631 DOI: 10.1016/j.fsi.2019.02.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Interleukin-17 (IL-17) is a proinflammatory cytokine that plays an important role in immune responses. In this study, we identified 57 IL-17 genes from the genomes of six marine invertebrates, including Pinctada fucata martensii, Crassostrea gigas, Lottia gigantea, Capitella teleta, Mizuhopecten yessoensis, and Mytilus galloprovincialis. Phylogenetic analysis showed that all invertebrate IL-17 genes were clustered into one group, implying that invertebrate IL-17 evolved from one common ancestral gene. From the extron-intron analysis, we found many intronless IL-17 genes in mollusks, which may be caused by retroposition. Tissue and development transcriptomic analysis showed that the expression of PmIL-17 was tissue and developmental stage-specific. Moreover, we cloned the full length of the IL-17-2 gene from P. f. martensii (PmIL-17-2) and explored its function in the immune response. The full-length cDNA of PmIL-17-2 is 719 bp, containing an open reading frame of 564 bp, a 5' -untranslated region (UTR) of 31 bp, and a 3' -UTR of 124 bp with a 30 bp poly (A) tail. PmIL-17-2 had a strong response to lipopolysaccharide (LPS), indicating that the PmIL-17-2 participates in innate immune responses. In situ hybridization of hemocytes showed that PmIL-17-2 was mainly produced by granulosa cells, and the number of the stained granulosa increased after LPS stimulation. These results lay the foundation for the research of IL-17 family in marine invertebrates.
Collapse
Affiliation(s)
- Yanfei Cao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Shuai Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Chuzhang Feng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Waner Zhan
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Qingheng Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China.
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China.
| |
Collapse
|
4
|
Monin L, Gaffen SL. Interleukin 17 Family Cytokines: Signaling Mechanisms, Biological Activities, and Therapeutic Implications. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028522. [PMID: 28620097 DOI: 10.1101/cshperspect.a028522] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cytokines of the interleukin 17 (IL-17) family play a central role in the control of infections, especially extracellular fungi. Conversely, if unrestrained, these inflammatory cytokines contribute to the pathology of numerous autoimmune and chronic inflammatory conditions. Recent advances have led to the approval of IL-17A-blocking biologics for the treatment of moderate to severe plaque psoriasis, but much remains to be understood about the biological functions, regulation, and signaling pathways downstream of these factors. In this review, we outline the current knowledge of signal transduction and known physiological activities of IL-17 family cytokines. We will highlight in particular the current understanding of these cytokines in the context of skin manifestations of disease.
Collapse
Affiliation(s)
- Leticia Monin
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
5
|
Bie Q, Zhang B, Sun C, Ji X, Barnie PA, Qi C, Peng J, Zhang D, Zheng D, Su Z, Wang S, Xu H. IL-17B activated mesenchymal stem cells enhance proliferation and migration of gastric cancer cells. Oncotarget 2017; 8:18914-18923. [PMID: 28145881 PMCID: PMC5386657 DOI: 10.18632/oncotarget.14835] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/17/2017] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells are important cells in tumor microenvironment. We have previously demonstrated that IL-17B/IL-17RB signal promoted progression of gastric cancer. In this study, we further explored the effect of IL-17B on mesenchymal stem cells in tumor microenvironment and its impact on the tumor progression. The results showed that IL-17B induced the expression of stemness-related genes Nanog, Sox2, and Oct4 in mesenchymal stem cells and enhanced its tumor-promoting effect. The supernatant from cultured mesenchymal stem cells after treating with exogenous rIL-17B promoted the proliferation and migration of MGC-803, therefor suggesting that rIL-17B might promote mesenchymal stem cells to produce soluble factors. In addition, rIL-17B also activated the NF-κΒ, STAT3, β-catenin pathway in mesenchymal stem cells. Our data revealed a new mechanism that IL-17B enhanced the progression of gastric cancer by activating mesenchymal stem cells.
Collapse
Affiliation(s)
- Qingli Bie
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bin Zhang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Caixia Sun
- Department of Anesthesiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaoyun Ji
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Prince Amoah Barnie
- Department of Biomedical and Forensic Sciences, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Chen Qi
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jingjing Peng
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Danyi Zhang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dong Zheng
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhaoliang Su
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shengjun Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huaxi Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
6
|
Roostaeyan O, Kivelevitch D, Menter A. A review article on brodalumab in the treatment of moderate-to-severe plaque psoriasis. Immunotherapy 2017; 9:963-978. [PMID: 28879789 DOI: 10.2217/imt-2017-0077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Psoriasis is a chronic immune-mediated skin disorder affecting approximately 2-3% of the worldwide population. Recent advances in our understanding of the immunopathogenesis of psoriasis have resulted in novel therapeutic agents. IL-17, a pro-inflammatory cytokine, plays a pivotal role in psoriasis. Therapeutic agents targeting this cytokine have shown clinical effectiveness in the treatment of moderate-to-severe plaque psoriasis. Brodalumab, a human antibody against IL-17 receptor A, has been approved by the US FDA in February 2017, by the Japanese Pharmaceuticals and Medical Devices Agency in July 2016 and by the EMA in July 2017 for the treatment of moderate-to-severe psoriasis. This article reviews the published data relating to brodalumab for the treatment of moderate-to-severe plaque psoriasis.
Collapse
Affiliation(s)
- Omid Roostaeyan
- University of Oklahoma College of Medicine, Oklahoma City, OK 73019, USA
| | - Dario Kivelevitch
- Division of Dermatology, Baylor Scott & White, Dallas, TX 75246, USA
| | - Alan Menter
- Division of Dermatology, Baylor Scott & White, Dallas, TX 75246, USA
| |
Collapse
|
7
|
IL-17B: A new area of study in the IL-17 family. Mol Immunol 2017; 90:50-56. [PMID: 28704706 DOI: 10.1016/j.molimm.2017.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/11/2017] [Accepted: 07/01/2017] [Indexed: 01/21/2023]
Abstract
The interleukin (IL)-17 superfamily, a relatively new family of cytokines, consists of six ligands (from IL-17A to IL-17F), which bind to five receptor subtypes (from IL-17RA to IL-17RE) and induce downstream signaling. IL-17A, a prototype member of this family, has been reported to be involved in the pathogenesis of allergies, autoimmune diseases, allograft transplantations, and malignancies. Unlike IL-17A, which is mainly produced by T helper 17 cells, IL-17B is widely expressed in various tissues. Recently, the biological function of IL-17B in diseases, particularly tumors, has attracted the attention of researchers. We previously reported that the expression of IL-17RB increased in gastric cancer tissues and demonstrated that IL-17B/IL-17RB signaling plays a critical role in gastric tumor progression. However, studies on IL-17B are scant. In this review, we detail the structural characteristics, expression patterns, and biological activities of IL-17B and its potential role in the pathogenesis of diseases.
Collapse
|
8
|
Alinejad V, Dolati S, Motallebnezhad M, Yousefi M. The role of IL17B-IL17RB signaling pathway in breast cancer. Biomed Pharmacother 2017; 88:795-803. [DOI: 10.1016/j.biopha.2017.01.120] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 12/20/2022] Open
|
9
|
Reynolds JM, Lee YH, Shi Y, Wang X, Angkasekwinai P, Nallaparaju KC, Flaherty S, Chang SH, Watarai H, Dong C. Interleukin-17B Antagonizes Interleukin-25-Mediated Mucosal Inflammation. Immunity 2015; 42:692-703. [PMID: 25888259 DOI: 10.1016/j.immuni.2015.03.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/22/2014] [Accepted: 03/20/2015] [Indexed: 12/25/2022]
Abstract
The interleukin-17 (IL-17) family of cytokines has emerged as a critical player in inflammatory diseases. Among them, IL-25 has been shown to be important in allergic inflammation and protection against parasitic infection. Here we have demonstrated that IL-17B, a poorly understood cytokine, functions to inhibit IL-25-driven inflammation. IL-17B and IL-25, both binding to the interleukin-17 receptor B (IL-17RB), were upregulated in their expression after acute colonic inflammation. Individual inhibition of these cytokines revealed opposing functions in colon inflammation: IL-25 was pathogenic but IL-17B was protective. Similarly opposing phenotypes were observed in Citrobacter rodentium infection and allergic asthma. Moreover, IL-25 was found to promote IL-6 production from colon epithelial cells, which was inhibited by IL-17B. Therefore, our data demonstrate that IL-17B is an anti-inflammatory cytokine in the IL-17 family.
Collapse
Affiliation(s)
- Joseph M Reynolds
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Young-Hee Lee
- Department of Immunology and Center for Inflammation and Cancer, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yun Shi
- Department of Immunology and Center for Inflammation and Cancer, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Xiaohu Wang
- Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand
| | - Kalyan C Nallaparaju
- Department of Immunology and Center for Inflammation and Cancer, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Stephanie Flaherty
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Seon Hee Chang
- Department of Immunology and Center for Inflammation and Cancer, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Hiroshi Watarai
- Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Chen Dong
- Institute for Immunology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Pappu R, Ramirez-Carrozzi V, Sambandam A. The interleukin-17 cytokine family: critical players in host defence and inflammatory diseases. Immunology 2011; 134:8-16. [PMID: 21726218 DOI: 10.1111/j.1365-2567.2011.03465.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The interleukin-17 (IL-17) cytokines, IL-17A to IL-17F, are emerging as critical players in host defence responses and inflammatory diseases. Substantial data support the role of these proteins in innate and adaptive immunity. Of these family members, IL-17A, IL-17F and IL-17E have been the best studied. Both IL-17A and IL-17F contribute to the host response to extracellular bacteria and fungi, and IL-17E has been shown to play a role in parasitic infections. In addition, numerous pre-clinical and clinical studies link these proteins to the pathogenesis of inflammatory diseases, and a number of therapeutic programmes targeting these family members are in clinical development. This review will highlight the cellular sources, receptors/target cells, and role in inflammation of these and the less-characterized family members, IL-17B, IL-17C and IL-17D.
Collapse
Affiliation(s)
- Rajita Pappu
- Department of Immunology, Genentech Inc., South San Francisco, CA, USA.
| | | | | |
Collapse
|
11
|
Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, Klunker S, Meyer N, O'Mahony L, Palomares O, Rhyner C, Ouaked N, Quaked N, Schaffartzik A, Van De Veen W, Zeller S, Zimmermann M, Akdis CA. Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol 2011; 127:701-21.e1-70. [PMID: 21377040 DOI: 10.1016/j.jaci.2010.11.050] [Citation(s) in RCA: 558] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 12/17/2022]
Abstract
Advancing our understanding of mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections could lead to effective and targeted therapies. Subsets of immune and inflammatory cells interact via ILs and IFNs; reciprocal regulation and counter balance among T(h) and regulatory T cells, as well as subsets of B cells, offer opportunities for immune interventions. Here, we review current knowledge about ILs 1 to 37 and IFN-γ. Our understanding of the effects of ILs has greatly increased since the discoveries of monocyte IL (called IL-1) and lymphocyte IL (called IL-2); more than 40 cytokines are now designated as ILs. Studies of transgenic or knockout mice with altered expression of these cytokines or their receptors and analyses of mutations and polymorphisms in human genes that encode these products have provided important information about IL and IFN functions. We discuss their signaling pathways, cellular sources, targets, roles in immune regulation and cellular networks, roles in allergy and asthma, and roles in defense against infections.
Collapse
Affiliation(s)
- Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang Q, Cigan AD, Marrero L, Lopreore C, Liu S, Ge D, Savoie FH, You Z. Expression of doublecortin reveals articular chondrocyte lineage in mouse embryonic limbs. Genesis 2011; 49:75-82. [PMID: 21162077 DOI: 10.1002/dvg.20702] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/06/2010] [Accepted: 12/08/2010] [Indexed: 11/11/2022]
Abstract
The doublecortin (Dcx) gene encodes a microtubule-binding protein that was originally found in immature neurons. In this study, we used two mouse strains that express reporter genes (LacZ and enhanced green fluorescence protein, respectively) driven by the endogenous Dcx promoter. We found that Dcx was expressed in the mesenchymal cells in the mouse embryonic limb buds. A population of the mesenchymal cells continued Dcx expression after they differentiated into joint interzone cells and then articular chondrocytes. In contrast, the endochondral chondrocytes lost Dcx expression when the mesenchymal cells differentiated into endochondral chondrocytes. These data support a concept that the articular and endochondral chondrocytes originate from the same mesenchymal cells that express Dcx. In contrast to the notion that articular chondrocytes are derived from de-differentiated endochondral chondrocytes, our findings demonstrate that the lineages of articular and endochondral chondrocytes bifurcate at the stage of endochondral chondrogenesis.
Collapse
Affiliation(s)
- Qiuyang Zhang
- Department of Structural and Cellular Biology, Tulane Cancer Center, LCRC, Tulane Center for Aging, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Reynolds JM, Angkasekwinai P, Dong C. IL-17 family member cytokines: regulation and function in innate immunity. Cytokine Growth Factor Rev 2010; 21:413-23. [PMID: 21074482 DOI: 10.1016/j.cytogfr.2010.10.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recently, the IL-17 family member cytokines have become prominent subjects of investigation. IL-17 (IL-17A) is the best-described member of this family where its production has been mainly attributed to a specialized T helper subset of the adaptive immune response termed Th17. However, recent research on this and other Th17 cytokines has revealed new sources and functions of IL-17 family members in the innate immune response. This review will highlight recent advances in the field of IL-17 family member cytokines and will predominantly focus on the innate regulation and function of IL-17, IL-17F, and IL-25.
Collapse
Affiliation(s)
- Joseph M Reynolds
- Department of Immunology and Center for Inflammation and Cancer, M.D. Anderson Cancer Center, Houston, TX 77054, USA
| | | | | |
Collapse
|
14
|
CHEN HUNGAN, CHEN CHUNHSIUNG, LIN YEONGJANG, CHEN PEICHIH, CHEN WEISHENG, LU CHINLI, CHOU CHUNGTEI. Association of Bone Morphogenetic Proteins with Spinal Fusion in Ankylosing Spondylitis. J Rheumatol 2010; 37:2126-32. [DOI: 10.3899/jrheum.100200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective.To measure serum concentrations of bone morphogenetic proteins (BMP) in patients with ankylosing spondylitis (AS), and to investigate the relationship between BMP and clinical manifestations and radiographic changes.Methods.We studied 60 consecutive AS patients with and 60 patients without spinal fusion. Spinal radiographs were assessed using the Bath Ankylosing Spondylitis Radiology Index (BASRI) and the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS). Spinal fusion was defined as the presence of total bony bridging between 2 adjacent vertebral bodies in either the lumbar or cervical spine. Serum levels of BMP were determined by enzyme-linked immunosorbent assay.Results.Patients with spinal fusion had higher serum levels of BMP-2 and BMP-4 than either the healthy controls or patients without spinal fusion (p < 0.001), but there was no difference between the latter 2 groups. Serum BMP-7, erythrocyte sedimentation rate, and C-reactive protein (CRP) levels were elevated in patients with spinal fusion compared with those without (p < 0.05). Serum BMP-4 and BMP-7 levels were higher in patients with hip involvement than in those without (p < 0.05). BMP-2 and BMP-4 levels had a significant correlation with spinal radiograph scores, especially for BASRI of the lumbar spine (r = 0.356 and 0.348, respectively, p < 0.001). CRP showed a significant correlation with spine BASRI and mSASSS scores (r = 0.261 and 0.260, respectively, p < 0.05).Conclusion.Rising levels of BMP in AS patients with spinal fusion and the positive correlation between BMP and spinal radiograph scores indicate that BMP may play a role in the process of spinal ankylosis. Serum levels of BMP may reflect radiographic progression of the spine and hip joints.
Collapse
|
15
|
Pappu R, Ramirez-Carrozzi V, Ota N, Ouyang W, Hu Y. The IL-17 family cytokines in immunity and disease. J Clin Immunol 2010; 30:185-95. [PMID: 20177959 DOI: 10.1007/s10875-010-9369-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 01/07/2010] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Accumulating evidence suggests that the interleukin (IL)-17 cytokines are major players in the immune response to foreign pathogens. In addition, the pathogeneses of a number of inflammatory diseases have been linked to uncontrolled expression of these cytokine pathways. DISCUSSION Genetic and biochemical analyses have elucidated the cellular and molecular events triggered by these proteins during an inflammatory response. While significant efforts have been placed on understanding the functions of IL-17A, IL-17F, and IL-17E, the significance of the other family members, IL-17B-D, in inflammation remains to be determined. CONCLUSION This review will focus on the cellular sources, target cell/receptors that are utilized by these cytokines to control pathogenesis, and the therapeutic potential of targeting these pathways to treat inflammatory disorders.
Collapse
Affiliation(s)
- Rajita Pappu
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080, USA.
| | | | | | | | | |
Collapse
|
16
|
Ge D, You Z. Expression of interleukin-17RC protein in normal human tissues. Int Arch Med 2008; 1:19. [PMID: 18928529 PMCID: PMC2596096 DOI: 10.1186/1755-7682-1-19] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 10/17/2008] [Indexed: 12/23/2022] Open
Abstract
Background Interleukin-17 (IL-17) cytokines and receptors play an important role in many autoimmune and inflammatory diseases. IL-17 receptors IL-17RA and IL-17RC have been found to form a heterodimer for mediating the signals of IL-17A and IL-17F cytokines. While the function and signaling pathway of IL-17RA has been revealed, IL-17RC has not been well characterized. The function and signaling pathway of IL-17RC remain largely unknown. The purpose of the present study was to systematically examine IL-17RC protein expression in 53 human tissues. Results IL-17RC expression in 51 normal human tissues and two benign tumors (i.e., lymphangioma and parathyroid adenoma) on the tissue microarrays was determined by immunohistochemical staining, using two polyclonal antibodies against IL-17RC. IL-17RC protein was expressed in many cell types including the myocardial cells, vascular and lymphatic endothelial cells, glandular cells (of the adrenal, parathyroid, pituitary, thyroid, pancreas, parotid salivary, and subepidermal glands), epithelial cells (of the esophagus, stomach, intestine, anus, renal tubule, breast, cervix, Fallopian tube, epididymis, seminal vesicle, prostate, gallbladder, bronchus, lung, and skin), oocytes in the ovary, Sertoli cells in the testis, motor neurons in the spinal cord, autonomic ganglia and nerves in the intestine, skeletal muscle cells, adipocytes, articular chondrocytes, and synovial cells. High levels of IL-17RC protein expression were observed in most vascular and lymphatic endothelium and squamous epithelium. The epithelium of the breast, cervix, Fallopian tube, kidney, bladder and bronchus also expressed high levels of IL-17RC, so did the glandular cells in the adrenal cortex, parotid salivary and subepidermal glands. In contrast, IL-17RC protein was not detectable in the smooth muscle cells, fibroblasts, antral mucosa of the stomach, mucosa of the colon, endometrium of the uterus, neurons of the brain, hepatocytes, or lymphocytes. Nevertheless, IL-17RC protein was expressed in the vascular endothelium within the tissues where the IL-17RC-negative cells resided. Conclusion IL-17RC protein is expressed in most human tissues, the function of which warrants further investigation.
Collapse
Affiliation(s)
- Dongxia Ge
- Department of Structural and Cellular Biology, 1430 Tulane Avenue SL-49, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|
17
|
You Z, Dong Y, Kong X, Beckett LA, Gandour-Edwards R, Melamed J. Midkine is a NF-kappaB-inducible gene that supports prostate cancer cell survival. BMC Med Genomics 2008; 1:6. [PMID: 18275606 PMCID: PMC2254643 DOI: 10.1186/1755-8794-1-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Accepted: 02/14/2008] [Indexed: 02/04/2023] Open
Abstract
Background Midkine is a heparin-binding growth factor that is over-expressed in various human cancers and plays important roles in cell transformation, growth, survival, migration, and angiogenesis. However, little is known about the upstream factors and signaling mechanisms that regulate midkine gene expression. Methods Two prostate cancer cell lines LNCaP and PC3 were studied for their expression of midkine. Induction of midkine expression in LNCaP cells by serum, growth factors and cytokines was determined by Western blot analysis and/or real-time quantitative reverse-transcription – polymerase chain reaction (RT-PCR). The cell viability was determined by the trypan blue exclusion assay when the LNCaP cells were treated with tumor necrosis factor alpha (TNFα) and/or recombinant midkine. When the LNCaP cells were treated with recombinant midkine, activation of intracellular signalling pathways was determined by Western blot analysis. Prostate tissue microarray slides containing 129 cases (18 normal prostate tissues, 40 early stage cancers, and 71 late stage cancers) were assessed for midkine expression by immunohistochemical staining. Results We identified that fetal bovine serum, some growth factors (epidermal growth factor, androgen, insulin-like growth factor-I, and hepatocyte growth factor) and cytokines (TNFα and interleukin-1beta) induced midkine expression in a human prostate cancer cell line LNCaP cells. TNFα also induced midkine expression in PC3 cells. TNFα was the strongest inducer of midkine expression via nuclear factor-kappa B pathway. Midkine partially inhibited TNFα-induced apoptosis in LNCaP cells. Knockdown of endogenous midkine expression by small interfering RNA enhanced TNFα-induced apoptosis in LNCaP cells. Midkine activated extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase pathways in LNCaP cells. Furthermore, midkine expression was significantly increased in late stage prostate cancer, which coincides with previously reported high serum levels of TNFα in advanced prostate cancer. Conclusion These findings provide the first demonstration that midkine expression is induced by certain growth factors and cytokines, particularly TNFα, which offers new insight into understanding how midkine expression is increased in the late stage prostate cancer.
Collapse
Affiliation(s)
- Zongbing You
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, CA 95817, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Yamane S, Cheng E, You Z, Reddi AH. Gene expression profiling of mouse articular and growth plate cartilage. ACTA ACUST UNITED AC 2007; 13:2163-73. [PMID: 17518732 DOI: 10.1089/ten.2006.0431] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Articular cartilage is recalcitrant to repair and regeneration. Tissue engineering and regenerative medicine are potential strategies to treat the damage to articular cartilage. A thorough understanding of the gene expression profiles in articular cartilage and growth plate chondrocytes will be an important prerequisite for tissue engineering of cartilage. Regeneration is a recapitulation of embryonic development and morphogenesis. We used laser capture microdissection to capture the surface articular chondrocytes and the resting zone chondrocytes of growth plate from 14-day-old C57BL/6J mice. Total RNA was individually purified, pooled, and amplified by two rounds of in vitro transcription. Labeled cRNA probes were analyzed using the Affymetrix GeneChip Mouse Genome 430 2.0 Array. We identified 107 genes that were highly expressed by the surface articular chondrocytes and 130 genes that were highly expressed by the resting zone chondrocytes of growth plate (> or = fivefold). The expression of major matrix proteins aggrecan and collagen II were similar, while several morphogens and growth factors were differentially expressed by the surface articular chondrocytes and the resting zone chondrocytes of growth plate. The results of this investigation will be of use in the evaluation of tissue engineered cartilage.
Collapse
Affiliation(s)
- Shintaro Yamane
- Lawrence Ellison Center for Tissue Regeneration and Repair, Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, USA
| | | | | | | |
Collapse
|
19
|
You Z, Dong Y, Kong X, Zhang Y, Vessella RL, Melamed J. Differential expression of IL-17RC isoforms in androgen-dependent and androgen-independent prostate cancers. Neoplasia 2007; 9:464-70. [PMID: 17603628 PMCID: PMC1899256 DOI: 10.1593/neo.07109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 04/26/2007] [Accepted: 04/27/2007] [Indexed: 01/11/2023] Open
Abstract
IL-17RC (interleukin-17 receptor-like) gene codes for a transmembrane protein, the full length of which inhibits apoptosis in prostate cancer cells. IL-17RC gene transcribes over a dozen different splice variants of mRNA. However, it is not known whether there are relevant protein isoforms. Here we report that different IL-17RC protein isoforms were detected by two different antibodies. The isoform as detected byanti-IL-17RC intracellular domain antibodies (anti-ICD) was expressed at higher levels in androgen-independent prostate cancer cell lines (PC3 and DU145) than in androgen-dependent prostatic cell lines (RWPE-1, pRNS-1-1, MLC-SV40, and LNCaP). In contrast, several isoforms as detected by anti-IL-17RC extracellular domain antibodies (anti-ECD) were expressed at significantly higher levels in androgen-dependent prostatic cell lines than in androgen-independent ones. Furthermore, immunohistochemical staining of prostate tissue microarrays showed that IL-17RC protein expression was significantly higher in androgen-independent prostate cancers than in androgen-dependent ones when anti-ICD was used, whereas the trend was reversed using anti-ECD. These observations provide evidence that IL-17RC protein isoforms are differentially expressed in prostatic cells and cancer tissues and may play a negative or positive role in the initiation and progression of prostate cancer.
Collapse
MESH Headings
- Androgens/pharmacology
- Blotting, Western
- Extracellular Matrix/immunology
- Extracellular Matrix/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Male
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Plasmids
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Zongbing You
- The Lawrence Ellison Center for Tissue Regeneration and Repair, Department of Orthopedic Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Wendling D, Cedoz JP, Racadot E, Dumoulin G. Serum IL-17, BMP-7, and bone turnover markers in patients with ankylosing spondylitis. Joint Bone Spine 2007; 74:304-5. [PMID: 17369068 DOI: 10.1016/j.jbspin.2006.11.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Accepted: 11/06/2006] [Indexed: 02/08/2023]
|
21
|
Goetz MP, Suman VJ, Ingle JN, Nibbe AM, Visscher DW, Reynolds CA, Lingle WL, Erlander M, Ma XJ, Sgroi DC, Perez EA, Couch FJ. A two-gene expression ratio of homeobox 13 and interleukin-17B receptor for prediction of recurrence and survival in women receiving adjuvant tamoxifen. Clin Cancer Res 2006; 12:2080-7. [PMID: 16609019 DOI: 10.1158/1078-0432.ccr-05-1263] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE In the adjuvant treatment of estrogen receptor (ER)-positive breast cancer, additional markers are needed to identify women at high risk for recurrence. EXPERIMENTAL DESIGN We examined the association between the ratio of the homeobox 13 (HOXB13) to interleukin-17B receptor (IL-17BR) expression and the clinical outcomes of relapse and survival in women with ER-positive breast cancer enrolled onto a North Central Cancer Treatment Group adjuvant tamoxifen trial (NCCTG 89-30-52). RESULTS Tumor blocks were obtained from 211 of 256 eligible patients, and quantitative reverse transcription-PCR profiles for HOXB13 and IL-17BR were obtained from 206 patients. The cut point for the two-gene log 2(expression ratio) that best discriminated clinical outcome (recurrence and survival) was selected and identified women with significantly worse relapse-free survival (RFS), disease-free survival (DFS), and overall survival (OS), independent of standard prognostic markers. The cut point differed as a function of nodal status [node negative (59th percentile) versus node positive (90th percentile)]. In the node-positive cohort (n = 86), the HOXB13/IL-17BR ratio was not associated with relapse or survival. In contrast, in the node-negative cohort (n = 130), a high HOXB13/IL-17BR ratio was associated with significantly worse RFS [hazard ratio (HR), 1.98; P = 0.031], DFS (HR, 2.03; P = 0.015), and OS (HR, 2.4; P = 0.014), independent of standard prognostic markers. CONCLUSION A high HOXB13/IL-17BR expression ratio is associated with increased relapse and death in patients with resected node-negative, ER-positive breast cancer treated with tamoxifen and may identify patients in whom alternative therapies should be studied.
Collapse
Affiliation(s)
- Matthew P Goetz
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
You Z, Shi XB, DuRaine G, Haudenschild D, Tepper CG, Lo SH, Gandour-Edwards R, de Vere White RW, Reddi AH. Interleukin-17 receptor-like gene is a novel antiapoptotic gene highly expressed in androgen-independent prostate cancer. Cancer Res 2006; 66:175-83. [PMID: 16397230 DOI: 10.1158/0008-5472.can-05-1130] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have recently identified a new gene, interleukin-17 receptor-like (IL-17RL), which is expressed in normal prostate and prostate cancer. This investigation is focused on the role of IL-17RL in prostate cancer. We found that IL-17RL was expressed at significantly higher levels in several androgen-independent prostate cancer cell lines (PC3, DU145, cds1, cds2, and cds3) and tumors compared with the androgen-dependent cell lines (LNCaP and MLC-SV40) and tumors. In an in vivo model of human prostate tumor growth in nude mice (CWR22 xenograft model), IL-17RL expression in tumors was induced by androgen deprivation. The relapsed androgen-independent tumors expressed higher levels of IL-17RL compared with the androgen-dependent tumors. Overexpression of IL-17RL in tumor necrosis factor alpha (TNFalpha)-sensitive LNCaP cells inhibited TNFalpha-induced apoptosis by blocking activation of caspase-3 downstream to caspase-2 and caspase-8. Reciprocally, knocking down IL-17RL expression by small interfering RNA induced apoptosis in all the prostate cancer cell lines studied. Taken together, these results show that IL-17RL is a novel antiapoptotic gene, which may confer partially the property of androgen-independent growth of prostate cancer by promoting cell survival. Thus, IL-17RL is a potential therapeutic target in the treatment of prostate cancer.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Caspase Inhibitors
- Caspases/metabolism
- Cell Adhesion/genetics
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Enzyme Activation
- Extracellular Matrix/genetics
- Extracellular Matrix/metabolism
- Humans
- Isoenzymes
- Male
- Mice
- Mice, Nude
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- RNA, Small Interfering/genetics
- Receptors, Interleukin/antagonists & inhibitors
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin/genetics
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Zongbing You
- Center for Tissue Regeneration and Repair, Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|