1
|
Yu Y, Rong K, Yao D, Zhang Q, Cao X, Rao B, Xia Y, Lu Y, Shen Y, Yao Y, Xu H, Ma P, Cao Y, Qin A. The structural pathology for hypophosphatasia caused by malfunctional tissue non-specific alkaline phosphatase. Nat Commun 2023; 14:4048. [PMID: 37422472 PMCID: PMC10329691 DOI: 10.1038/s41467-023-39833-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/30/2023] [Indexed: 07/10/2023] Open
Abstract
Hypophosphatasia (HPP) is a metabolic bone disease that manifests as developmental abnormalities in bone and dental tissues. HPP patients exhibit hypo-mineralization and osteopenia due to the deficiency or malfunction of tissue non-specific alkaline phosphatase (TNAP), which catalyzes the hydrolysis of phosphate-containing molecules outside the cells, promoting the deposition of hydroxyapatite in the extracellular matrix. Despite the identification of hundreds of pathogenic TNAP mutations, the detailed molecular pathology of HPP remains unclear. Here, to address this issue, we determine the crystal structures of human TNAP at near-atomic resolution and map the major pathogenic mutations onto the structure. Our study reveals an unexpected octameric architecture for TNAP, which is generated by the tetramerization of dimeric TNAPs, potentially stabilizing the TNAPs in the extracellular environments. Moreover, we use cryo-electron microscopy to demonstrate that the TNAP agonist antibody (JTALP001) forms a stable complex with TNAP by binding to the octameric interface. The administration of JTALP001 enhances osteoblast mineralization and promoted recombinant TNAP-rescued mineralization in TNAP knockout osteoblasts. Our findings elucidate the structural pathology of HPP and highlight the therapeutic potential of the TNAP agonist antibody for osteoblast-associated bone disorders.
Collapse
Affiliation(s)
- Yating Yu
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Kewei Rong
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Deqiang Yao
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qing Zhang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Xiankun Cao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Bing Rao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Ying Xia
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Yi Lu
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Yafeng Shen
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Ying Yao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Peixiang Ma
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yu Cao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China.
| | - An Qin
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
2
|
Abstract
Hypophosphatasia (HPP) is due to deficient activity of the tissue-nonspecific isoenzyme of alkaline phosphatase (TNAP). This enzyme cleaves extracellular substrates inorganic pyrophosphates (PPi), pyridoxal-5'-phosphate (PLP), phosphoethanolamine (PEA) and nucleotides, and probably other substrates not yet identified. During the last 15 years the role of TNAP in mineralization, and to a less degree in brain, has been investigated, providing hypotheses and explanations for both bone and neuronal HPP phenotypes. ALPL, the gene encoding TNAP, is subject to many mutations, mostly missense mutations. A few number of mutations are recurrently found and may be quite frequent in particular populations. This reflects founder effects. The great variety of mutations results in a great number of compound heterozygous genotypes and in highly variable clinical expressivity. A good correlation was observed between the severity of the disease and in vitro enzymatic activity of the mutant protein measured after site-directed mutagenesis. Many missense mutations found in severe hypophosphatasia produced a mutant protein that failed to reach the cell membrane , was accumulated in the cis-Golgi and was subsequently degraded in the proteasome. Missense mutations located in the catalytic site or in the homodimer interface were often shown by site-directed mutagenesis to have a dominant negative effect. Currently molecular diagnosis of HPP is based on the sequencing of the coding sequence of ALPL that allows detection of approximately 95 % of mutations in severe cases. In addition, other genes, especially genes encoding proteins involved in the regulation of extracellular PPi concentration, could modify the phenotype (modifier genes).
Collapse
|
3
|
|
4
|
Identification of the Mutations in the Tissue-nonspecific Alkaline Phosphatase Gene in Two Chinese Families with Hypophosphatasia. Arch Med Res 2012; 43:21-30. [DOI: 10.1016/j.arcmed.2012.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 01/10/2012] [Indexed: 11/24/2022]
|
5
|
Mornet E, Yvard A, Taillandier A, Fauvert D, Simon-Bouy B. A Molecular-Based Estimation of the Prevalence of Hypophosphatasia in the European Population. Ann Hum Genet 2011; 75:439-45. [DOI: 10.1111/j.1469-1809.2011.00642.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Liu H, Li J, Lei H, Zhu T, Gan Y, Ge L. Genetic Etiology and Dental Pulp Cell Deficiency of Hypophosphatasia. J Dent Res 2010; 89:1373-7. [PMID: 20924064 DOI: 10.1177/0022034510379017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hypophosphatasia is caused by mutations of the tissue-non-specific alkaline phosphatase ( TNSALP) gene with deficiency of dentin structure. The aim of this study was to examine whether TNSALP mutation in dental pulp cells contributes to dentin dysplasia in hypophosphatasia. Mutation analysis showed that compound heterozygous mutations of TNSALP were identified in three hypophosphatasia patients, including 3 novel mutation sites. Exfoliated teeth from the patients showed abnormal dentin mineralization and loss of cementum, as assessed by ground sections and scanning electron microscope analysis. Dental pulp cells isolated from one of the patients showed a significantly reduced TNSALP activity and mineralization capacity when compared with those in dental pulp cells from the unaffected individuals. Our results suggested that dentin dysplasia in hypophosphatasia may be associated with the decreased mineralization ability of dental pulp cells.
Collapse
Affiliation(s)
- H. Liu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - J. Li
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - H. Lei
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - T. Zhu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y. Gan
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - L. Ge
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
7
|
Fauvert D, Brun-Heath I, Lia-Baldini AS, Bellazi L, Taillandier A, Serre JL, de Mazancourt P, Mornet E. Mild forms of hypophosphatasia mostly result from dominant negative effect of severe alleles or from compound heterozygosity for severe and moderate alleles. BMC MEDICAL GENETICS 2009; 10:51. [PMID: 19500388 PMCID: PMC2702372 DOI: 10.1186/1471-2350-10-51] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 06/06/2009] [Indexed: 11/24/2022]
Abstract
Background Mild hypophosphatasia (HPP) phenotype may result from ALPL gene mutations exhibiting residual alkaline phosphatase activity or from severe heterozygous mutations exhibiting a dominant negative effect. In order to determine the cause of our failure to detect a second mutation by sequencing in patients with mild HPP and carrying on a single heterozygous mutation, we tested the possible dominant effect of 35 mutations carried by these patients. Methods We tested the mutations by site-directed mutagenesis. We also genotyped 8 exonic and intronic ALPL gene polymorphisms in the patients and in a control group in order to detect the possible existence of a recurrent intronic mild mutation. Results We found that most of the tested mutations exhibit a dominant negative effect that may account for the mild HPP phenotype, and that for at least some of the patients, a second mutation in linkage disequilibrium with a particular haplotype could not be ruled out. Conclusion Mild HPP results in part from compound heterozygosity for severe and moderate mutations, but also in a large part from heterozygous mutations with a dominant negative effect.
Collapse
Affiliation(s)
- Delphine Fauvert
- Unité de Pathologie Cellulaire et Génétique EA2493, Université de Versailles-Saint Quentin en Yvelines, 78035 Versailles, France.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Hypophosphatasia is a rare inherited disorder characterized by defective bone and tooth mineralization, and deficiency of serum and bone alkaline phosphatase activity. The frequency of the disease has been estimated to be one in 100 000 for severe forms, but mild forms of hypophosphatasia may be more common. The symptoms are highly variable in their clinical expression, which ranges from stillbirth without mineralized bone to early tooth loss without bone symptoms. The transmission of severe forms is autosomal recessive, while milder forms may be transmitted as dominant or recessive autosomal traits. The diagnosis is based on serum alkaline phosphatase assay and molecular analysis of the liver/bone/kidney alkaline phosphatase gene (ALPL). Currently, there is no treatment for the disease. Over the past 10 years, great progress has been made in understanding the structure of tissue non-specific alkaline phosphatase, its function in bone mineralization, and the effect of ALPL mutations responsible for hypophosphatasia.
Collapse
Affiliation(s)
- Etienne Mornet
- Laboratoire SESEP, Centre Hospitalier de Versailles, Bâtiment EFS, 2 rue Jean-Louis Forain, 78150 Le Chesnay, France.
| |
Collapse
|
9
|
Orimo H, Goseki-Sone M, Hosoi T, Shimada T. Functional assay of the mutant tissue-nonspecific alkaline phosphatase gene using U2OS osteoblast-like cells. Mol Genet Metab 2008; 94:375-81. [PMID: 18455459 DOI: 10.1016/j.ymgme.2008.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 03/25/2008] [Accepted: 03/25/2008] [Indexed: 11/27/2022]
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) plays a key role in mineralization. A defect in the TNAP gene causes hypophosphatasia, which is characteristic of systemic skeletal hypomineralization. To determine the mineralizing ability of the mutant proteins, we developed a functional assay that uses U2OS osteoblast-like cells. Expression plasmids containing TNAP mutant cDNAs were constructed and introduced into U2OS cells, which are derived from a human osteosarcoma and exhibit very low alkaline phosphatase (ALP) activity and disabled mineralization. U2OS cells, in which active TNAP cDNAs were introduced, expressed high ALP activity and mineralized their circumstance when they were cultured with beta-glycerophosphate. The ALP activity in these U2OS cells corresponded to the activity reported for COS cells in which active TNAP cDNA was introduced. An in vitro mineralization assay of U2OS cells transfected with moderate allele cDNAs showed that approximately 35% of TNAP enzymatic activity may be the threshold value for mineralization. In addition, U2OS cells transfected with wild-type TNAP and polymorphism TNAP cDNA showed PHEX (phosphate-regulating gene with homologies to endopeptidases on the X chromosome) induction as in SaOS-2 cells. In summary, the introduction of active TNAP cDNA into U2OS cells allowed these cells to mineralize, and this technique may be a useful functional assay of TNAP mutant proteins.
Collapse
Affiliation(s)
- Hideo Orimo
- Division of Molecular Genetics and Nutrition, Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | | | | | | |
Collapse
|
10
|
Abstract
Hypophosphatasia is a rare inherited disorder characterized by defective bone and teeth mineralization, and deficiency of serum and bone alkaline phosphatase activity. The prevalence of severe forms of the disease has been estimated at 1/100 000. The symptoms are highly variable in their clinical expression, which ranges from stillbirth without mineralized bone to early loss of teeth without bone symptoms. Depending on the age at diagnosis, six clinical forms are currently recognized: perinatal (lethal), perinatal benign, infantile, childhood, adult and odontohypophosphatasia. In the lethal perinatal form, the patients show markedly impaired mineralization in utero. In the prenatal benign form these symptoms are spontaneously improved. Clinical symptoms of the infantile form are respiratory complications, premature craniosynostosis, widespread demineralization and rachitic changes in the metaphyses. The childhood form is characterized by skeletal deformities, short stature, and waddling gait, and the adult form by stress fractures, thigh pain, chondrocalcinosis and marked osteoarthropathy. Odontohypophosphatasia is characterized by premature exfoliation of fully rooted primary teeth and/or severe dental caries, often not associated with abnormalities of the skeletal system. The disease is due to mutations in the liver/bone/kidney alkaline phosphatase gene (ALPL; OMIM# 171760) encoding the tissue-nonspecific alkaline phosphatase (TNAP). The diagnosis is based on laboratory assays and DNA sequencing of the ALPL gene. Serum alkaline phosphatase (AP) activity is markedly reduced in hypophosphatasia, while urinary phosphoethanolamine (PEA) is increased. By using sequencing, approximately 95% of mutations are detected in severe (perinatal and infantile) hypophosphatasia. Genetic counseling of the disease is complicated by the variable inheritance pattern (autosomal dominant or autosomal recessive), the existence of the uncommon prenatal benign form, and by incomplete penetrance of the trait. Prenatal assessment of severe hypophosphatasia by mutation analysis of chorionic villus DNA is possible. There is no curative treatment for hypophosphatasia, but symptomatic treatments such as non-steroidal anti-inflammatory drugs or teriparatide have been shown to be of benefit. Enzyme replacement therapy will be certainly the most promising challenge of the next few years.
Collapse
Affiliation(s)
- Etienne Mornet
- Laboratoire SESEP, Centre Hospitalier de Versailles, Bâtiment EFS, 2 rue Jean-Louis Forain, 78150 Le Chesnay, France.
| |
Collapse
|
11
|
Brun-Heath I, Lia-Baldini AS, Maillard S, Taillandier A, Utsch B, Nunes ME, Serre JL, Mornet E. Delayed transport of tissue-nonspecific alkaline phosphatase with missense mutations causing hypophosphatasia. Eur J Med Genet 2007; 50:367-78. [PMID: 17719863 DOI: 10.1016/j.ejmg.2007.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 06/29/2007] [Indexed: 11/16/2022]
Abstract
Hypophosphatasia is a rare genetic disease characterized by diminished bone and tooth mineralization due to deficient activity of tissue-nonspecific alkaline phosphatase (TNSALP). The disease is clinically heterogeneous due to different mutations in the TNSALP gene. In order to determine whether mutated TNSALP proteins may be sequestered, degraded, or subjected to delay in their transport to the cell membrane, we built a plasmid expressing a YFP-TNSALP fluorescent fusion protein allowing the observation of cellular localization in live cells by fluorescence confocal microscopy at different time points after transfection. We studied five mutants (c. 571G>A, c. 653T>C, c. 746G>T, c. 1363G>A and c. 1468A>T) exhibiting various levels of in vitro residual enzymatic activity. While the wild-type protein reached the membrane within the first 24h after transfection, the mutants reached the membrane with delays of 24, 48 or 72 h. For all of the tested mutations, accumulation of the mutated proteins, mainly in the Golgi apparatus, was observed. We concluded that reduced ALP activity of these TNSALP mutants results from structural disturbances and delay in membrane anchoring, and not from compromised catalytic activity.
Collapse
Affiliation(s)
- Isabelle Brun-Heath
- Equipe Structure-Fonction et Génétique, EA 2493, CHU Paris Ile de France Ouest, Université de Versailles-Saint Quentin en Yvelines, France
| | | | | | | | | | | | | | | |
Collapse
|