1
|
Fouad FA, Youssef DG, Shahat FM, Abd El-Ghany MN. Role of Microorganisms in Biodegradation of Pollutants. HANDBOOK OF BIODEGRADABLE MATERIALS 2023:221-260. [DOI: 10.1007/978-3-031-09710-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
2
|
Basarkar V, Govardhane S, Shende P. Multifaceted applications of genetically modified microorganisms: A biotechnological revolution. Curr Pharm Des 2022; 28:1833-1842. [PMID: 35088657 DOI: 10.2174/1381612828666220128102823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Genetically modified microorganisms specifically bacteria, viruses, algae and fungi are the novel approaches used in field of healthcare due to more efficacious and targeted delivery in comparison to conventional approaches. OBJECTIVE This review article focuses on applications of genetically modified microorganisms such as bacteria, virus, fungi, virus, etc. in treatment of cancer, obesity, and HIV. Gut microbiome is used to cause metabolic disorders but use of genetically-modified bacteria alters the gut microbiota and delivers the therapeutically effective drug in the treatment of obesity. METHODS To enhance the activity of different microorganisms for treatment, they are genetically modified by incorporating a fragment into the fungi filaments, integrating a strain into the bacteria, engineer a live-virus with a peptide using methods such as amelioration of NAPE synthesis, silica immobilization, polyadenylation, electrochemical, etc. Results: The development of newer microbial strains using genetic modifications offers higher precision, enhance the molecular multiplicity, prevent the degradation of microbes in atmospheric temperature and reduce the concerned side-effect for therapeutic application. Other side genetically modified microorganisms are used in non-healthcare based sector like generation of electricity, purification of water, bioremediation process etc. Conclusions: The bio-engineered micro-organisms with genetic modification prove the advantage over the treatment of various diseases like cancer, diabetes, malaria, organ regeneration, inflammatory bowel disease, etc. The article provides the insights of various applications of genetically modified microbes in various arena with its implementation for the regulatory approval.
Collapse
Affiliation(s)
- Vasavi Basarkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Sharayu Govardhane
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
3
|
Fouad FA, Youssef DG, Shahat FM, Abd El-Ghany MN. Role of Microorganisms in Biodegradation of Pollutants. HANDBOOK OF BIODEGRADABLE MATERIALS 2022:1-40. [DOI: 10.1007/978-3-030-83783-9_11-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/13/2022] [Indexed: 09/01/2023]
|
4
|
Rebello S, Nathan VK, Sindhu R, Binod P, Awasthi MK, Pandey A. Bioengineered Microbes for Soil Health Restoration - Present Status and Future. Bioengineered 2021; 12:12839-12853. [PMID: 34775906 PMCID: PMC8810056 DOI: 10.1080/21655979.2021.2004645] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
According to the United Nations Environment Programme (UNEP), soil health is declining over the decades and it has an adverse impact on human health and food security. Hence, soil health restoration is a need of the hour. It is known that microorganisms play a vital role in remediation of soil pollutants like heavy metals, pesticides, hydrocarbons, etc. However, the indigenous microbes have a limited capacity to degrade these pollutants and it will be a slow process. Genetically modified organisms (GMOs) can catalyze the degradation process as their altered metabolic pathways lead to hypersecretions of various biomolecules that favor the bioremediation process. This review provides an overview on the application of bioengineered microorganisms for the restoration of soil health by degradation of various pollutants. It also sheds light on the challenges of using GMOs in environmental application as their introduction may affect the normal microbial community in soil. Since soil health also refers to the potential of native organisms to survive, the possible changes in the native microbial community with the introduction of GMOs are also discussed. Finally, the future prospects of using bioengineered microorganisms in environmental engineering applications to make the soil fertile and healthy have been deciphered. With the alarming rates of soil health loss, the treatment of soil and soil health restoration need to be fastened to a greater pace and the combinatorial efforts unifying GMOs, plant growth-promoting rhizobacteria, and other soil amendments will provide an effective solution to soil heath restoration ten years ahead.
Collapse
Affiliation(s)
| | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum - 695 019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum - 695 019, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, North West A & F University, Yangling, Shaanxi - 712 100, China
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research, Lucknow - 226 001, India.,Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India
| |
Collapse
|
5
|
Sharma B, Shukla P. Futuristic avenues of metabolic engineering techniques in bioremediation. Biotechnol Appl Biochem 2020; 69:51-60. [PMID: 33242354 DOI: 10.1002/bab.2080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022]
Abstract
Bioremediation is a promising technology for the treatment of environmental contaminants and paving new avenues for the betterment of the environment. Over the last some years, several approaches have been employed to optimize the genetic machinery of microorganisms relevant to bioremediation. Metabolic engineering is one of them that provides a new insight for bioremediation. This review envisages the critical role of these techniques toward exploring the possibilities of the creation of a new pathway, leading to pathway expansion to new substrates by assembling of catabolic modules from different origins in the same microbial cell. The recombinant DNA technology and gene editing tools were also explored for the construction of metabolically engineered microbial strains for the degradation of complex pollutants. Moreover, the importance of CRISPR-Cas system for knock-in and knock-out of genes was described by using recent studies. Further, the idea of the cocultivation of more than one metabolic engineered microbial communities is also discussed, which can be crucial in the bioremediation of multiple and complex pollutants. Finally, this review also elucidates the effective application of metabolic engineering in bioremediation through these techniques and tools.
Collapse
Affiliation(s)
- Babita Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
6
|
Goud BS, Cha HL, Koyyada G, Kim JH. Augmented Biodegradation of Textile Azo Dye Effluents by Plant Endophytes: A Sustainable, Eco-Friendly Alternative. Curr Microbiol 2020; 77:3240-3255. [PMID: 32951066 DOI: 10.1007/s00284-020-02202-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/04/2020] [Indexed: 01/02/2023]
Abstract
Textile industry consumes a large proportion of available water and releases huge amounts of toxic azo dye effluents, leading to an inevitable situation of acute environmental pollution that has been a significant threat to mankind. Decolorization or detoxification of harmful azo dyes has become a global priority to overcome the disastrous consequences and salvage the ecosystem. Biodegradation of textile azo dyes by endophytes stands to be a lucrative and viable alternative over conventional physico-chemical methods, owing to their eco-friendliness, cost-competitive and non-toxic nature. Especially, plant endophytic microbes exhibit promising biodegradation potential which has wired up the effective removal of textile azo dyes, attributing to their ability to produce dye degrading enzymes, laccases, peroxidases and azoreductases. Although both bacterial and fungal endophytes have been tried for azo dye degradation, endophytic fungi find broader application over bacteria. Despite of the advancements made in microbe-mediated biodegradation, there is still a need to fill the gap in lab to in situ translation of biodegradation research. This review concisely accentuates the xenobiotics of textile azo dyes and microbial mechanisms of biodegradation of textile azo dyes, positing plant endophytic community, especially bacterial and fungal endophytes as the potential dye degraders, highlighting currently reported dye degrading endophytic species.
Collapse
Affiliation(s)
- Burragoni Sravanthi Goud
- Department of Biotechnology, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, 712-749, Gyeongbuk, Korea.
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, 712-749, Gyeongbuk, Korea.
| | - Ha Lim Cha
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, 712-749, Gyeongbuk, Korea
| | - Ganesh Koyyada
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, 712-749, Gyeongbuk, Korea.
| | - Jae Hong Kim
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, 712-749, Gyeongbuk, Korea.
| |
Collapse
|
7
|
Microbial biofilm ecology, in silico study of quorum sensing receptor-ligand interactions and biofilm mediated bioremediation. Arch Microbiol 2020; 203:13-30. [PMID: 32785735 DOI: 10.1007/s00203-020-02012-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022]
Abstract
Biofilms are structured microbial communities of single or multiple populations in which microbial cells adhere to a surface and get embedded in extracellular polymeric substances (EPS). This review attempts to explain biofilm architecture, development phases, and forces that drive bacteria to promote biofilm mode of growth. Bacterial chemical communication, also known as Quorum sensing (QS), which involves the production, detection, and response to small molecules called autoinducers, is highlighted. The review also provides a brief outline of interspecies and intraspecies cell-cell communication. Additionally, we have performed docking studies using Discovery Studio 4.0, which has enabled our understanding of the prominent interactions between autoinducers and their receptors in different bacterial species while also scoring their interaction energies. Receptors, such as LuxN (Phosphoreceiver domain and RecA domain), LuxP, and LuxR, interacted with their ligands (AI-1, AI-2, and AHL) with a CDocker interaction energy of - 31.6083 kcal/mole; - 34.5821 kcal/mole, - 48.2226 kcal/mole and - 41.5885 kcal/mole, respectively. Since biofilms are ideal for the remediation of contaminants due to their high microbial biomass and their potential to immobilize pollutants, this article also provides an overview of biofilm-mediated bioremediation.
Collapse
|
8
|
Dellagnezze BM, Vasconcellos SP, Angelim AL, Melo VMM, Santisi S, Cappello S, Oliveira VM. Bioaugmentation strategy employing a microbial consortium immobilized in chitosan beads for oil degradation in mesocosm scale. MARINE POLLUTION BULLETIN 2016; 107:107-117. [PMID: 27158046 DOI: 10.1016/j.marpolbul.2016.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 05/22/2023]
Abstract
A bacterial consortium composed by four metagenomic clones and Bacillus subtilis strain CBMAI 707, all derived from petroleum reservoirs, was entrapped in chitosan beads and evaluated regarding hydrocarbon degradation capability. Experiments were carried out in mesocosm scale (3000L) with seawater artificially polluted with crude oil. At different time intervals, mesocosms were sampled and subjected to GC-FID and microbiological analyses, as total and heterotrophic culturable bacterial abundance (DAPI and CFU count), biological oxygen demand (BOD) and taxonomic diversity (massive sequencing of 16S rRNA genes). The results obtained showed that degradation of n-alkane hydrocarbons was similar between both treatments. However, aromatic compound degradation was more efficient in bioaugmentation treatment, with biodegradation percentages reaching up to 99% in 30days. Community dynamics was different between treatments and the consortium used in the bioaugmentation treatment contributed to a significant increase in aromatic hydrocarbon degradation.
Collapse
Affiliation(s)
- B M Dellagnezze
- Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP, CP 6171, CEP 13081-970 Campinas, SP, Brazil.
| | - S P Vasconcellos
- Federal University of São Paulo (UNIFESP), Rua Prof. Artur Riedel, 275, CEP 09972-270, Jd. Eldorado, Diadema, SP, Brazil
| | - A L Angelim
- Lembiotech (UFC), Federal University of Ceará, Av. Humberto Monte, 2977, Campus do Pici, Bloco 909, 60455-000, Fortaleza, CE, Brazil
| | - V M M Melo
- Lembiotech (UFC), Federal University of Ceará, Av. Humberto Monte, 2977, Campus do Pici, Bloco 909, 60455-000, Fortaleza, CE, Brazil
| | - S Santisi
- Institute for Coastal Marine Environment (IAMC), Consiglio Nazionale delle Ricerche (CNR) of Messina, Messina, Italy
| | - S Cappello
- Institute for Coastal Marine Environment (IAMC), Consiglio Nazionale delle Ricerche (CNR) of Messina, Messina, Italy
| | - V M Oliveira
- Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP, CP 6171, CEP 13081-970 Campinas, SP, Brazil
| |
Collapse
|
9
|
Nor NM, Hadibarata T, Zubir MMFA, Lazim ZM, Adnan LA, Fulazzaky MA. Mechanism of triphenylmethane Cresol Red degradation by Trichoderma harzianum M06. Bioprocess Biosyst Eng 2015; 38:2167-75. [DOI: 10.1007/s00449-015-1456-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/07/2015] [Indexed: 11/29/2022]
|
10
|
Gogada R, Singh SS, Lunavat SK, Pamarthi MM, Rodrigue A, Vadivelu B, Phanithi PB, Gopala V, Apte SK. Engineered Deinococcus radiodurans R1 with NiCoT genes for bioremoval of trace cobalt from spent decontamination solutions of nuclear power reactors. Appl Microbiol Biotechnol 2015; 99:9203-13. [DOI: 10.1007/s00253-015-6761-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/12/2015] [Accepted: 06/08/2015] [Indexed: 11/30/2022]
|
11
|
Zhou Y, Wei J, Shao N, Wei D. Construction of a genetically engineered microorganism for phenanthrene biodegradation. J Basic Microbiol 2012; 53:188-94. [DOI: 10.1002/jobm.201100322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/12/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biochemistry; East China University of Science and Technology; Shanghai, P.R. China
| | - Jiashi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biochemistry; East China University of Science and Technology; Shanghai, P.R. China
| | - Naimin Shao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biochemistry; East China University of Science and Technology; Shanghai, P.R. China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biochemistry; East China University of Science and Technology; Shanghai, P.R. China
| |
Collapse
|
12
|
Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R. Bioremediation approaches for organic pollutants: a critical perspective. ENVIRONMENT INTERNATIONAL 2011; 37:1362-75. [PMID: 21722961 DOI: 10.1016/j.envint.2011.06.003] [Citation(s) in RCA: 381] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 05/30/2011] [Accepted: 06/07/2011] [Indexed: 05/22/2023]
Abstract
Due to human activities to a greater extent and natural processes to some extent, a large number of organic chemical substances such as petroleum hydrocarbons, halogenated and nitroaromatic compounds, phthalate esters, solvents and pesticides pollute the soil and aquatic environments. Remediation of these polluted sites following the conventional engineering approaches based on physicochemical methods is both technically and economically challenging. Bioremediation that involves the capabilities of microorganisms in the removal of pollutants is the most promising, relatively efficient and cost-effective technology. However, the current bioremediation approaches suffer from a number of limitations which include the poor capabilities of microbial communities in the field, lesser bioavailability of contaminants on spatial and temporal scales, and absence of bench-mark values for efficacy testing of bioremediation for their widespread application in the field. The restoration of all natural functions of some polluted soils remains impractical and, hence, the application of the principle of function-directed remediation may be sufficient to minimize the risks of persistence and spreading of pollutants. This review selectively examines and provides a critical view on the knowledge gaps and limitations in field application strategies, approaches such as composting, electrobioremediation and microbe-assisted phytoremediation, and the use of probes and assays for monitoring and testing the efficacy of bioremediation of polluted sites.
Collapse
Affiliation(s)
- Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, SA 5095, Australia
| | | | | | | | | |
Collapse
|
13
|
Singh JS, Abhilash P, Singh H, Singh RP, Singh D. Genetically engineered bacteria: An emerging tool for environmental remediation and future research perspectives. Gene 2011; 480:1-9. [DOI: 10.1016/j.gene.2011.03.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/25/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
|
14
|
Kroll J, Klinter S, Schneider C, Voss I, Steinbüchel A. Plasmid addiction systems: perspectives and applications in biotechnology. Microb Biotechnol 2010; 3:634-57. [PMID: 21255361 PMCID: PMC3815339 DOI: 10.1111/j.1751-7915.2010.00170.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/17/2010] [Indexed: 11/26/2022] Open
Abstract
Biotechnical production processes often operate with plasmid-based expression systems in well-established prokaryotic and eukaryotic hosts such as Escherichia coli or Saccharomyces cerevisiae, respectively. Genetically engineered organisms produce important chemicals, biopolymers, biofuels and high-value proteins like insulin. In those bioprocesses plasmids in recombinant hosts have an essential impact on productivity. Plasmid-free cells lead to losses in the entire product recovery and decrease the profitability of the whole process. Use of antibiotics in industrial fermentations is not an applicable option to maintain plasmid stability. Especially in pharmaceutical or GMP-based fermentation processes, deployed antibiotics must be inactivated and removed. Several plasmid addiction systems (PAS) were described in the literature. However, not every system has reached a full applicable state. This review compares most known addiction systems and is focusing on biotechnical applications.
Collapse
Affiliation(s)
- Jens Kroll
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
15
|
Seetharam C, Soundarajan S, Udas AC, Rao AS, Apte SK. Lyophilized, non-viable, recombinant E. coli cells for cadmium bioprecipitation and recovery. Process Biochem 2009. [DOI: 10.1016/j.procbio.2008.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Urgun-Demirtas M, Stark B, Pagilla K. Use of Genetically Engineered Microorganisms (GEMs) for the Bioremediation of Contaminants. Crit Rev Biotechnol 2008; 26:145-64. [PMID: 16923532 DOI: 10.1080/07388550600842794] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This paper presents a critical review of the literature on the application of genetically engineered microorganisms (GEMs) in bioremediation. The important aspects of using GEMs in bioremediation, such as development of novel strains with desirable properties through pathway construction and the modification of enzyme specificity and affinity, are discussed in detail. Particular attention is given to the genetic engineering of bacteria using bacterial hemoglobin (VHb) for the treatment of aromatic organic compounds under hypoxic conditions. The application of VHb technology may advance treatment of contaminated sites, where oxygen availability limits the growth of aerobic bioremediating bacteria, as well as the functioning of oxygenases required for mineralization of many organic pollutants. Despite the many advantages of GEMs, there are still concerns that their introduction into polluted sites to enhance bioremediation may have adverse environmental effects, such as gene transfer. The extent of horizontal gene transfer from GEMs in the environment, compared to that of native organisms including benefits regarding bacterial bioremediation that may occur as a result of such transfer, is discussed. Recent advances in tracking methods and containment strategies for GEMs, including several biological systems that have been developed to detect the fate of GEMs in the environment, are also summarized in this review. Critical research questions pertaining to the development and implementation of GEMs for enhanced bioremediation have been identified and posed for possible future research.
Collapse
Affiliation(s)
- Meltem Urgun-Demirtas
- Department of Chemical and Environmental Engineering, Illinois Institute of Technology, Chicago, 60616, USA
| | | | | |
Collapse
|