1
|
Ray AP, Thakur N, Pour NG, Eddy MT. Dual mechanisms of cholesterol-GPCR interactions that depend on membrane phospholipid composition. Structure 2023; 31:836-847.e6. [PMID: 37236187 PMCID: PMC10330489 DOI: 10.1016/j.str.2023.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
Cholesterol is a critical component of mammalian cell membranes and an allosteric modulator of G protein-coupled receptors (GPCRs), but divergent views exist on the mechanisms by which cholesterol influences receptor functions. Leveraging the benefits of lipid nanodiscs, i.e., quantitative control of lipid composition, we observe distinct impacts of cholesterol in the presence and absence of anionic phospholipids on the function-related conformational dynamics of the human A2A adenosine receptor (A2AAR). Direct receptor-cholesterol interactions drive activation of agonist-bound A2AAR in membranes containing zwitterionic phospholipids. Intriguingly, the presence of anionic lipids attenuates cholesterol's impact through direct interactions with the receptor, highlighting a more complex role for cholesterol that depends on membrane phospholipid composition. Targeted amino acid replacements at two frequently predicted cholesterol interaction sites showed distinct impacts of cholesterol at different receptor locations, demonstrating the ability to delineate different roles of cholesterol in modulating receptor signaling and maintaining receptor structural integrity.
Collapse
Affiliation(s)
- Arka Prabha Ray
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Naveen Thakur
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Niloofar Gopal Pour
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Matthew T Eddy
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
McGraw C, Koretz KS, Oseid D, Lyman E, Robinson AS. Cholesterol Dependent Activity of the Adenosine A 2A Receptor Is Modulated via the Cholesterol Consensus Motif. Molecules 2022; 27:molecules27113529. [PMID: 35684466 PMCID: PMC9182133 DOI: 10.3390/molecules27113529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Membrane cholesterol dysregulation has been shown to alter the activity of the adenosine A2A receptor (A2AR), a G protein-coupled receptor, thereby implicating cholesterol levels in diseases such as Alzheimer's and Parkinson's. A limited number of A2AR crystal structures show the receptor interacting with cholesterol, as such molecular simulations are often used to predict cholesterol interaction sites. METHODS Here, we use experimental methods to determine whether a specific interaction between amino acid side chains in the cholesterol consensus motif (CCM) of full length, wild-type human A2AR, and cholesterol modulates activity of the receptor by testing the effects of mutational changes on functional consequences, including ligand binding, G protein coupling, and downstream activation of cyclic AMP. RESULTS AND CONCLUSIONS Our data, taken with previously published studies, support a model of receptor state-dependent binding between cholesterol and the CCM, whereby cholesterol facilitates both G protein coupling and downstream signaling of A2AR.
Collapse
Affiliation(s)
- Claire McGraw
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA; (C.M.); (D.O.)
| | - Kirsten Swonger Koretz
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Daniel Oseid
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA; (C.M.); (D.O.)
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19711, USA;
| | - Anne Skaja Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
- Correspondence: ; Tel.: +1-(412)-268-7673
| |
Collapse
|
3
|
Juhl AD, Wüstner D. Pathways and Mechanisms of Cellular Cholesterol Efflux-Insight From Imaging. Front Cell Dev Biol 2022; 10:834408. [PMID: 35300409 PMCID: PMC8920967 DOI: 10.3389/fcell.2022.834408] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
Cholesterol is an essential molecule in cellular membranes, but too much cholesterol can be toxic. Therefore, mammalian cells have developed complex mechanisms to remove excess cholesterol. In this review article, we discuss what is known about such efflux pathways including a discussion of reverse cholesterol transport and formation of high-density lipoprotein, the function of ABC transporters and other sterol efflux proteins, and we highlight their role in human diseases. Attention is paid to the biophysical principles governing efflux of sterols from cells. We also discuss recent evidence for cholesterol efflux by the release of exosomes, microvesicles, and migrasomes. The role of the endo-lysosomal network, lipophagy, and selected lysosomal transporters, such as Niemann Pick type C proteins in cholesterol export from cells is elucidated. Since oxysterols are important regulators of cellular cholesterol efflux, their formation, trafficking, and secretion are described briefly. In addition to discussing results obtained with traditional biochemical methods, focus is on studies that use established and novel bioimaging approaches to obtain insight into cholesterol efflux pathways, including fluorescence and electron microscopy, atomic force microscopy, X-ray tomography as well as mass spectrometry imaging.
Collapse
Affiliation(s)
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
Jakubík J, El-Fakahany EE. Allosteric Modulation of GPCRs of Class A by Cholesterol. Int J Mol Sci 2021; 22:1953. [PMID: 33669406 PMCID: PMC7920425 DOI: 10.3390/ijms22041953] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are membrane proteins that convey extracellular signals to the cellular milieu. They represent a target for more than 30% of currently marketed drugs. Here we review the effects of membrane cholesterol on the function of GPCRs of Class A. We review both the specific effects of cholesterol mediated via its direct high-affinity binding to the receptor and non-specific effects mediated by cholesterol-induced changes in the properties of the membrane. Cholesterol binds to many GPCRs at both canonical and non-canonical binding sites. It allosterically affects ligand binding to and activation of GPCRs. Additionally, it changes the oligomerization state of GPCRs. In this review, we consider a perspective of the potential for the development of new therapies that are targeted at manipulating the level of membrane cholesterol or modulating cholesterol binding sites on to GPCRs.
Collapse
Affiliation(s)
- Jan Jakubík
- Department of Neurochemistry, Institute of Physiology Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Esam E. El-Fakahany
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Oakes V, Domene C. Influence of Cholesterol and Its Stereoisomers on Members of the Serotonin Receptor Family. J Mol Biol 2019; 431:1633-1649. [PMID: 30857969 DOI: 10.1016/j.jmb.2019.02.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 01/24/2023]
Abstract
Despite the ubiquity of cholesterol within the cell membrane, the mechanism by which it influences embedded proteins remains elusive. Numerous G-protein coupled receptors exhibit dramatic responses to membrane cholesterol with regard to the ligand-binding affinity and functional properties, including the 5-HT receptor family. Here, we use over 25 μs of unbiased atomistic molecular dynamics simulations to identify cholesterol interaction sites in the 5-HT1B and 5-HT2B receptors and evaluate their impact on receptor structure. Susceptibility to membrane cholesterol is shown to be subtype dependent and determined by the quality of interactions between the extracellular loops. Charged residues are essential for maintaining the arrangement of the extracellular surface in 5-HT2B; in the absence of such interactions, the extracellular surface of the 5-HT1B is malleable, populating a number of distinct conformations. Elevated cholesterol density near transmembrane helix 4 is considered to be conducive to the conformation of extracellular loop 2. Occupation of this site is also shown to be stereospecific, illustrated by differential behavior of nat-cholesterol isomers, ent- and epi-cholesterol. In simulations containing the endogenous agonist, serotonin, cholesterol binding at transmembrane helix 4 biases bound serotonin molecules toward an unexpected binding mode in the extended binding pocket. The results highlight the capability of membrane cholesterol to influence the mobility of the extracellular surface in the 5-HT1 receptor family and manipulate the architecture of the extracellular ligand-binding pocket.
Collapse
Affiliation(s)
- Victoria Oakes
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK; Department of Chemistry, University of Oxford, Oxford, OX1 3TA, Oxford, UK.
| |
Collapse
|
6
|
A Critical Analysis of Molecular Mechanisms Underlying Membrane Cholesterol Sensitivity of GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:21-52. [PMID: 30649754 DOI: 10.1007/978-3-030-04278-3_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and a diverse family of proteins involved in signal transduction across biological membranes. GPCRs mediate a wide range of physiological processes and have emerged as major targets for the development of novel drug candidates in all clinical areas. Since GPCRs are integral membrane proteins, regulation of their organization, dynamics, and function by membrane lipids, in particular membrane cholesterol, has emerged as an exciting area of research. Cholesterol sensitivity of GPCRs could be due to direct interaction of cholesterol with the receptor (specific effect). Alternately, GPCR function could be influenced by the effect of cholesterol on membrane physical properties (general effect). In this review, we critically analyze the specific and general mechanisms of the modulation of GPCR function by membrane cholesterol, taking examples from representative GPCRs. While evidence for both the proposed mechanisms exists, there appears to be no clear-cut distinction between these two mechanisms, and a combination of these mechanisms cannot be ruled out in many cases. We conclude that classifying the mechanism underlying cholesterol sensitivity of GPCR function merely into these two mutually exclusive classes could be somewhat arbitrary. A more holistic approach could be suitable for analyzing GPCR-cholesterol interaction.
Collapse
|
7
|
Bonvicini A, Reinholdt P, Tognetti V, Joubert L, Wüstner D, Kongsted J. Rational design of novel fluorescent analogues of cholesterol: a “step-by-step” computational study. Phys Chem Chem Phys 2019; 21:15487-15503. [DOI: 10.1039/c9cp01902b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
State-of-the-art quantum chemical and molecular dynamics simulations are used as guidelines in design of novel fluorescent analogues of cholesterol.
Collapse
Affiliation(s)
- Andrea Bonvicini
- Normandy Univ. COBRA UMR 6014 & FR 3038
- Université de Rouen
- INSA Rouen
- CNRS
- 76821 Mont Saint Aignan
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy
- University of Southern Denmark
- Odense M
- Denmark
| | - Vincent Tognetti
- Normandy Univ. COBRA UMR 6014 & FR 3038
- Université de Rouen
- INSA Rouen
- CNRS
- 76821 Mont Saint Aignan
| | - Laurent Joubert
- Normandy Univ. COBRA UMR 6014 & FR 3038
- Université de Rouen
- INSA Rouen
- CNRS
- 76821 Mont Saint Aignan
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology
- University of Southern Denmark
- DK-5230 Odense
- Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy
- University of Southern Denmark
- Odense M
- Denmark
| |
Collapse
|
8
|
Solubilization of the serotonin 1A receptor monitored utilizing membrane dipole potential. Chem Phys Lipids 2017; 209:54-60. [DOI: 10.1016/j.chemphyslip.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022]
|
9
|
Membrane cholesterol oxidation in live cells enhances the function of serotonin 1A receptors. Chem Phys Lipids 2017; 203:71-77. [DOI: 10.1016/j.chemphyslip.2017.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/15/2017] [Accepted: 01/15/2017] [Indexed: 12/14/2022]
|
10
|
Jafurulla M, Chattopadhyay A. Structural Stringency of Cholesterol for Membrane Protein Function Utilizing Stereoisomers as Novel Tools: A Review. Methods Mol Biol 2017; 1583:21-39. [PMID: 28205164 DOI: 10.1007/978-1-4939-6875-6_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cholesterol is an important lipid in the context of membrane protein function. The function of a number of membrane proteins, including G protein-coupled receptors (GPCRs) and ion channels, has been shown to be dependent on membrane cholesterol. However, the molecular mechanism underlying such regulation is still being explored. In some cases, specific interaction between cholesterol and the protein has been implicated. In other cases, the effect of cholesterol on the membrane properties has been attributed for the regulation of protein function. In this article, we have provided an overview of experimental approaches that are useful for determining the degree of structural stringency of cholesterol for membrane protein function. In the process, we have highlighted the role of immediate precursors in cholesterol biosynthetic pathway in the function of membrane proteins. Special emphasis has been given to the application of stereoisomers of cholesterol in deciphering the structural stringency required for regulation of membrane protein function. A comprehensive examination of these processes would help in understanding the molecular basis of cholesterol regulation of membrane proteins in subtle details.
Collapse
Affiliation(s)
- Md Jafurulla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
11
|
Imaging approaches for analysis of cholesterol distribution and dynamics in the plasma membrane. Chem Phys Lipids 2016; 199:106-135. [PMID: 27016337 DOI: 10.1016/j.chemphyslip.2016.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/04/2016] [Indexed: 11/21/2022]
Abstract
Cholesterol is an important lipid component of the plasma membrane (PM) of mammalian cells, where it is involved in control of many physiological processes, such as endocytosis, cell migration, cell signalling and surface ruffling. In an attempt to explain these functions of cholesterol, several models have been put forward about cholesterol's lateral and transbilayer organization in the PM. In this article, we review imaging techniques developed over the last two decades for assessing the distribution and dynamics of cholesterol in the PM of mammalian cells. Particular focus is on fluorescence techniques to study the lateral and inter-leaflet distribution of suitable cholesterol analogues in the PM of living cells. We describe also several methods for determining lateral cholesterol dynamics in the PM including fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), single particle tracking (SPT) and spot variation FCS coupled to stimulated emission depletion (STED) microscopy. For proper interpretation of such measurements, we provide some background in probe photophysics and diffusion phenomena occurring in cell membranes. In particular, we show the equivalence of the reaction-diffusion approach, as used in FRAP and FCS, and continuous time random walk (CTRW) models, as often invoked in SPT studies. We also discuss mass spectrometry (MS) based imaging of cholesterol in the PM of fixed cells and compare this method with fluorescence imaging of sterols. We conclude that evidence from many experimental techniques converges towards a model of a homogeneous distribution of cholesterol with largely free and unhindered diffusion in both leaflets of the PM.
Collapse
|
12
|
Noordam R, Aarts N, de Keyser CE, Hofman A, Stricker BH, Visser LE. Antidepressants with a high serotonin reuptake transporter affinity and serum lipid levels in a population-based study in older adults. J Psychopharmacol 2015; 29:1112-8. [PMID: 26152323 DOI: 10.1177/0269881115592340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE We aimed to investigate the association between antidepressants and serum lipid levels in a population-based study in older adults. METHODS We included participants from the prospective Rotterdam Study with data on lipid levels (total, low-density lipoprotein (LDL) and high-density lipoprotein cholesterol, and triglycerides). We classified antidepressants based on binding affinity to the serotonin transporter (low/intermediate- and high-affinity antidepressants). We compared lipid levels in users of these groups of antidepressants with lipid levels in non-users. Furthermore, we studied effect modification by the 102 C>T polymorphism (HTR2A gene), which is associated with antidepressant drug response and metabolic outcomes. RESULTS Compared with non-users (N = 6438), LDL cholesterol level was higher (2.9 versus 3.1 mmol/L, respectively; p = 0.05) in users of high-affinity antidepressants (N = 89). Similar levels of the other lipids were observed between the groups for the other lipids. The mean difference in serum LDL cholesterol level between non-users and users of high-affinity antidepressants was largest in participants with the CC genotype compared with the other genotypes (notably 0.47 mmol/L), indicative of effect modification (p-value for interaction = 0.03). CONCLUSION Antidepressants with a high serotonin reuptake transporter affinity were associated with higher LDL cholesterol levels, which were modified by a common genetic variation in the HTR2A gene.
Collapse
Affiliation(s)
- Raymond Noordam
- Department of Internal Medicine, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nikkie Aarts
- Department of Internal Medicine, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Catherine E de Keyser
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands The Health Care Inspectorate, The Hague, the Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bruno H Stricker
- Department of Internal Medicine, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands The Health Care Inspectorate, The Hague, the Netherlands
| | - Loes E Visser
- Department of Internal Medicine, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands Apotheek Haagse Ziekenhuizen - HAGA, The Hague, the Netherlands
| |
Collapse
|
13
|
Chattopadhyay A, Rao BD, Jafurulla M. Solubilization of G Protein-Coupled Receptors. Methods Enzymol 2015; 557:117-34. [DOI: 10.1016/bs.mie.2015.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Jafurulla M, Rao BD, Sreedevi S, Ruysschaert JM, Covey DF, Chattopadhyay A. Stereospecific requirement of cholesterol in the function of the serotonin1A receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:158-63. [PMID: 24008092 DOI: 10.1016/j.bbamem.2013.08.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/16/2013] [Accepted: 08/23/2013] [Indexed: 01/04/2023]
Abstract
The serotonin1A receptor is an important member of the G protein-coupled receptor (GPCR) family. It is involved in the generation and modulation of a variety of cognitive and behavioral functions and serves as a drug target. Previous work from our laboratory has established the sensitivity of the function of the serotonin1A receptor to membrane cholesterol. Solubilization of the hippocampal serotonin1A receptor utilizing the zwitterionic detergent CHAPS is accompanied by loss of cholesterol and results in reduction in specific ligand binding. Replenishment of cholesterol to solubilized membranes restores specific ligand binding to the receptor. We utilized this strategy of sterol replenishment of solubilized membranes to explore the stereospecific stringency of cholesterol for receptor function. We used two stereoisomers of cholesterol, ent-cholesterol (enantiomer of cholesterol) and epi-cholesterol (a diastereomer of cholesterol), for this purpose. Importantly, we show here that while ent-cholesterol could replace cholesterol in supporting receptor function, epi-cholesterol could not. These results imply that the requirement of membrane cholesterol for the serotonin1A receptor function is diastereospecific, yet not enantiospecific. Our results extend and help define specificity of the interaction of membrane cholesterol with the serotonin1A receptor, and represent the first report utilizing ent-cholesterol to examine stereospecificity of GPCR-cholesterol interaction.
Collapse
Affiliation(s)
- Md Jafurulla
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India
| | | | | | | | | | | |
Collapse
|
15
|
Zafeiriou DI, Ververi A, Dafoulis V, Kalyva E, Vargiami E. Autism spectrum disorders: the quest for genetic syndromes. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:327-66. [PMID: 23650212 DOI: 10.1002/ajmg.b.32152] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 03/01/2013] [Indexed: 11/10/2022]
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disabilities with various etiologies, but with a heritability estimate of more than 90%. Although the strong correlation between autism and genetic factors has been long established, the exact genetic background of ASD remains unclear. A number of genetic syndromes manifest ASD at higher than expected frequencies compared to the general population. These syndromes account for more than 10% of all ASD cases and include tuberous sclerosis, fragile X, Down, neurofibromatosis, Angelman, Prader-Willi, Williams, Duchenne, etc. Clinicians are increasingly required to recognize genetic disorders in individuals with ASD, in terms of providing proper care and prognosis to the patient, as well as genetic counseling to the family. Vice versa, it is equally essential to identify ASD in patients with genetic syndromes, in order to ensure correct management and appropriate educational placement. During investigation of genetic syndromes, a number of issues emerge: impact of intellectual disability in ASD diagnoses, identification of autistic subphenotypes and differences from idiopathic autism, validity of assessment tools designed for idiopathic autism, possible mechanisms for the association with ASD, etc. Findings from the study of genetic syndromes are incorporated into the ongoing research on autism etiology and pathogenesis; different syndromes converge upon common biological backgrounds (such as disrupted molecular pathways and brain circuitries), which probably account for their comorbidity with autism. This review paper critically examines the prevalence and characteristics of the main genetic syndromes, as well as the possible mechanisms for their association with ASD.
Collapse
|
16
|
Cholesterol depletion of hepatoma cells impairs hepatitis B virus envelopment by altering the topology of the large envelope protein. J Virol 2011; 85:13373-83. [PMID: 21994451 DOI: 10.1128/jvi.05423-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous reports have shown that cholesterol depletion of the membrane envelope of the hepatitis B virus (HBV) impairs viral infection of target cells. A potential function of this lipid in later steps of the viral life cycle remained controversial, with secretion of virions and subviral particles (SVP) being either inhibited or not affected, depending on the experimental approach employed to decrease the intracellular cholesterol level. This work addressed the role of host cell cholesterol on HBV replication, assembly, and secretion, using an alternative method to inhibition of the enzymes involved in the biosynthesis pathway. Growing HBV-producing cells with lipoprotein-depleted serum (LPDS) resulted in an important reduction of the amount of cholesterol within 24 h of treatment (about 40%). Cell exposure to chlorpromazine, an inhibitor of the clathrin-mediated pathway used by the low-density lipoprotein receptor for endocytosis, also impacted the cholesterol level; however, this level of inhibition was not achievable when the synthesis inhibitor lovastatin was used. HBV secretion was significantly inhibited in cholesterol-depleted cells (by ∼80%), while SVP release remained unaffected. The viral DNA genome accumulated in LPDS-treated cells in a time-dependent manner. Specific immunoprecipitation of nucleocapsids and mature virions revealed an increased amount of naked nucleocapsids, while synthesis of the envelope proteins occurred as normally. Following analysis of the large envelope protein conformation in purified microsomes, we concluded that cholesterol is important in maintaining the dual topology of this polypeptide, which is critical for viral envelopment.
Collapse
|
17
|
Singh P, Jafurulla M, Paila YD, Chattopadhyay A. Desmosterol replaces cholesterol for ligand binding function of the serotonin(1A) receptor in solubilized hippocampal membranes: support for nonannular binding sites for cholesterol? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2428-34. [PMID: 21763272 DOI: 10.1016/j.bbamem.2011.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/25/2011] [Accepted: 06/27/2011] [Indexed: 01/07/2023]
Abstract
The serotonin(1A) receptor is an important member of the G-protein coupled receptor family, and is involved in the generation and modulation of a variety of cognitive and behavioral functions. Solubilization of the hippocampal serotonin(1A) receptor by CHAPS is accompanied by loss of cholesterol that results in a reduction in specific agonist binding activity. Replenishment of cholesterol to solubilized membranes restores membrane cholesterol content and significantly recovers specific agonist binding. In order to test the stringency of cholesterol requirement, we solubilized native hippocampal membranes followed by replenishment with desmosterol. Desmosterol is the immediate biosynthetic precursor of cholesterol in the Bloch pathway differing only in a double bond at the 24th position. Our results show that replenishment with desmosterol restores ligand binding of serotonin(1A) receptors. This is consistent with earlier results showing that desmosterol can replace cholesterol in a large number of cases. However, these results appear to be contradictory to our earlier findings, performed by sterol manipulation utilizing methyl-β-cyclodextrin, in which we observed that replacing cholesterol with desmosterol is unable to restore specific ligand binding of the hippocampal serotonin(1A) receptor. We discuss the possible molecular mechanism, in terms of nonannular lipid binding sites around the receptor, giving rise to these differences.
Collapse
|
18
|
Paila YD, Chattopadhyay A. Membrane cholesterol in the function and organization of G-protein coupled receptors. Subcell Biochem 2010; 51:439-66. [PMID: 20213554 DOI: 10.1007/978-90-481-8622-8_16] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cholesterol is an essential component of higher eukaryotic membranes and plays a crucial role in membrane organization, dynamics and function. The G-protein coupled receptors (GPCRs) are the largest class of molecules involved in signal transduction across membranes, and represent major targets in the development of novel drug candidates in all clinical areas. Membrane cholesterol has been reported to have a modulatory role in the function of a number of GPCRs. Two possible mechanisms have been previously suggested by which membrane cholesterol could influence the structure and function of GPCRs (i) through a direct/specific interaction with GPCRs, or (ii) through an indirect way by altering membrane physical properties in which the receptor is embedded, or due to a combination of both. Recently reported crystal structures of GPCRs have shown structural evidence of cholesterol binding sites. Against this backdrop, we recently proposed a novel mechanism by which membrane cholesterol could affect structure and function of GPCRs. According to our hypothesis, cholesterol binding sites in GPCRs could represent 'nonannular' binding sites. Interestingly, previous work from our laboratory has demonstrated that membrane cholesterol is required for the function of the serotonin(1A) receptor (a representative GPCR), which could be due to specific interaction of the receptor with cholesterol. Based on these results, we envisage that there could be specific/nonannular cholesterol binding site(s) in the serotonin(1A) receptor. We have analyzed putative cholesterol binding sites from protein databases in the serotonin(1A) receptor. Our analysis shows that cholesterol binding sites are inherent characteristic features of serotonin(1A) receptors and are conserved through natural evolution. Progress in deciphering molecular details of the GPCR-cholesterol interaction in the membrane would lead to better insight into our overall understanding of GPCR function in health and disease, thereby enhancing our ability to design better therapeutic strategies to combat diseases related to malfunctioning of GPCRs.
Collapse
Affiliation(s)
- Yamuna Devi Paila
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, 500 007, India
| | | |
Collapse
|
19
|
Paila YD, Pucadyil TJ, Chattopadhyay A. The cholesterol-complexing agent digitonin modulates ligand binding of the bovine hippocampal serotonin1Areceptor. Mol Membr Biol 2009; 22:241-9. [PMID: 16096266 DOI: 10.1080/09687860500093453] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The serotonin(1A) (5-HT(1A)) receptor is an important member of the superfamily of seven transmembrane domain G-protein-coupled receptors. We have examined the modulatory role of cholesterol on the ligand binding of the bovine hippocampal 5-HT(1A) receptor by cholesterol complexation in native membranes using digitonin. Complexation of cholesterol from bovine hippocampal membranes using digitonin results in a concentration-dependent reduction in specific binding of the agonist 8-OH-DPAT and antagonist p-MPPF to 5-HT(1A) receptors. The corresponding changes in membrane order were monitored by analysis of fluorescence polarization data of the membrane depth-specific probes, DPH and TMA-DPH. Taken together, our results point out the important role of membrane cholesterol in maintaining the function of the 5-HT(1A) receptor. An important aspect of these results is that non-availability of free cholesterol in the membrane due to complexation with digitonin rather than physical depletion is sufficient to significantly reduce the 5-HT(1A) receptor function. These results provide a comprehensive understanding of the effects of the sterol-complexing agent digitonin in particular, and the role of membrane cholesterol in general, on the 5-HT(1A) receptor function.
Collapse
Affiliation(s)
- Yamuna Devi Paila
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | |
Collapse
|
20
|
Chong PLG, Zhu W, Venegas B. On the lateral structure of model membranes containing cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2-11. [DOI: 10.1016/j.bbamem.2008.10.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 10/18/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022]
|
21
|
Rozner S, Kogan A, Mehta S, Somasundaran P, Aserin A, Garti N, Ottaviani MF. Characterization of Nonionic Microemulsions by EPR. Part II. The Effect of Competitive Solubilization of Cholesterol and Phytosterols on the Nanostructure. J Phys Chem B 2008; 113:700-7. [DOI: 10.1021/jp807163t] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shoshana Rozner
- Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, NSF IUCR Center for Advanced Studies in Novel Surfactants, Columbia University, New York, New York 10027, and Institute of Chemical Sciences, University of Urbino, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Anna Kogan
- Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, NSF IUCR Center for Advanced Studies in Novel Surfactants, Columbia University, New York, New York 10027, and Institute of Chemical Sciences, University of Urbino, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Somil Mehta
- Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, NSF IUCR Center for Advanced Studies in Novel Surfactants, Columbia University, New York, New York 10027, and Institute of Chemical Sciences, University of Urbino, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Ponisseril Somasundaran
- Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, NSF IUCR Center for Advanced Studies in Novel Surfactants, Columbia University, New York, New York 10027, and Institute of Chemical Sciences, University of Urbino, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Abraham Aserin
- Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, NSF IUCR Center for Advanced Studies in Novel Surfactants, Columbia University, New York, New York 10027, and Institute of Chemical Sciences, University of Urbino, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Nissim Garti
- Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, NSF IUCR Center for Advanced Studies in Novel Surfactants, Columbia University, New York, New York 10027, and Institute of Chemical Sciences, University of Urbino, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Maria Francesca Ottaviani
- Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, NSF IUCR Center for Advanced Studies in Novel Surfactants, Columbia University, New York, New York 10027, and Institute of Chemical Sciences, University of Urbino, Piazza Rinascimento 6, 61029 Urbino, Italy
| |
Collapse
|
22
|
Abstract
Cholesterol is essential for neuroactive steroid production, growth of myelin membranes, and normal embryonic and fetal development. It also modulates the oxytocin receptor, ligand activity and G-protein coupling of the serotonin-1A receptor. A deficit of cholesterol may perturb these biological mechanisms and thereby contribute to autism spectrum disorders (ASDs), as observed in Smith-Lemli-Opitz syndrome (SLOS) and some subjects with ASDs in the Autism Genetic Resource Exchange (AGRE). A clinical diagnosis of SLOS can be confirmed by laboratory testing with an elevated plasma 7DHC level relative to the cholesterol level and is treatable by dietary cholesterol supplementation. Individuals with SLOS who have such cholesterol treatment display fewer autistic behaviours, infections, and symptoms of irritability and hyperactivity, with improvements in physical growth, sleep and social interactions. Other behaviours shown to improve with cholesterol supplementation include aggressive behaviours, self-injury, temper outbursts and trichotillomania. Cholesterol ought to be considered as a helpful treatment approach while awaiting an improved understanding of cholesterol metabolism and ASD. There is an increasing recognition that this single-gene disorder of abnormal cholesterol synthesis may be a model for understanding genetic causes of autism and the role of cholesterol in ASD.
Collapse
Affiliation(s)
- Alka Aneja
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, and Department of Psychiatry, Kennedy Krieger Institute, Baltimore, MD 21211, USA.
| | | |
Collapse
|
23
|
Aneja A, Tierney E. Cholesterol Deficit in Autism: Insights from Smith–Lemli–Opitz Syndrome. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2008. [DOI: 10.1007/978-1-60327-489-0_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
24
|
Kalipatnapu S, Chattopadhyay A. Membrane organization and function of the serotonin(1A) receptor. Cell Mol Neurobiol 2007; 27:1097-116. [PMID: 17710529 DOI: 10.1007/s10571-007-9189-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 07/27/2007] [Indexed: 01/02/2023]
Abstract
(1) The serotonin(1A) receptor is a G-protein coupled receptor involved in several cognitive, behavioral, and developmental functions. It binds the neurotransmitter serotonin and signals across the membrane through its interactions with heterotrimeric G-proteins. (2) Lipid-protein interactions in membranes play an important role in the assembly, stability, and function of membrane proteins. The role of membrane environment in serotonin(1A) receptor function is beginning to be addressed by exploring the consequences of lipid manipulations on the ligand binding and G-protein coupling of serotonin(1A) receptors, the ability to functionally solubilize the serotonin(1A) receptor, and the factors influencing the membrane organization of the serotonin(1A) receptor. (3) Recent developments involving the application of detergent-based and detergent-free approaches to understand the membrane organization of the serotonin(1A) receptor under conditions of ligand activation and modulation of membrane lipid content, with an emphasis on membrane cholesterol, are described.
Collapse
Affiliation(s)
- Shanti Kalipatnapu
- Divisionof Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0377, USA
| | | |
Collapse
|
25
|
Rajagopalan L, Greeson JN, Xia A, Liu H, Sturm A, Raphael RM, Davidson AL, Oghalai JS, Pereira FA, Brownell WE. Tuning of the outer hair cell motor by membrane cholesterol. J Biol Chem 2007; 282:36659-70. [PMID: 17933870 DOI: 10.1074/jbc.m705078200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cholesterol affects diverse biological processes, in many cases by modulating the function of integral membrane proteins. We observed that alterations of cochlear cholesterol modulate hearing in mice. Mammalian hearing is powered by outer hair cell (OHC) electromotility, a membrane-based motor mechanism that resides in the OHC lateral wall. We show that membrane cholesterol decreases during maturation of OHCs. To study the effects of cholesterol on hearing at the molecular level, we altered cholesterol levels in the OHC wall, which contains the membrane protein prestin. We show a dynamic and reversible relationship between membrane cholesterol levels and voltage dependence of prestin-associated charge movement in both OHCs and prestin-transfected HEK 293 cells. Cholesterol levels also modulate the distribution of prestin within plasma membrane microdomains and affect prestin self-association in HEK 293 cells. These findings indicate that alterations in membrane cholesterol affect prestin function and functionally tune the outer hair cell.
Collapse
Affiliation(s)
- Lavanya Rajagopalan
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Huffington Center on Aging and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rozner S, Aserin A, Wachtel EJ, Garti N. Competitive solubilization of cholesterol and phytosterols in nonionic microemulsions. J Colloid Interface Sci 2007; 314:718-26. [PMID: 17673247 DOI: 10.1016/j.jcis.2007.05.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 05/29/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
It is well documented that phytosterols inhibit the uptake of exogenic cholesterol and do not interfere with cholesterol synthesis or cause side effects. The mechanism by which phytosterols interfere with cholesterol absorption is not completely clear and there are at least three hypotheses for their beneficial activity. Among these is that of competitive solubilization of phytosterols and cholesterol in dietary mixed micelles. In the present study we investigated the competitive solubilization of phytosterols (approximately 50% beta-sitosterol) and cholesterol in a nonionic microemulsion system constructed as a model for the dietary mixed micelles. We studied the effect of the competitive solubilization of cholesterol and phytosterols on the structural transformations and physical properties of the microemulsion and evaluated the locus of the solubilizates within the nanodroplets of each sterol separately and when they are loaded together at different weight ratios along one dilution line. Our results show that chemical and structural differences between cholesterol and phytosterols significantly influence the solubilization capacity of the nonionic microemulsion. Cholesterol, being more amphiphilic, is solubilized more efficiently at the W/O microemulsion interface, while in the O/W microemulsion phytosterols are dissolved somewhat more efficiently in the droplet core.
Collapse
Affiliation(s)
- Shoshana Rozner
- Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
27
|
Chattopadhyay A, Paila YD, Jafurulla M, Chaudhuri A, Singh P, Murty MRVS, Vairamani M. Differential effects of cholesterol and 7-dehydrocholesterol on ligand binding of solubilized hippocampal serotonin1A receptors: implications in SLOS. Biochem Biophys Res Commun 2007; 363:800-5. [PMID: 17904101 DOI: 10.1016/j.bbrc.2007.09.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 09/12/2007] [Indexed: 11/21/2022]
Abstract
The serotonin1A receptor is an important member of the G-protein coupled receptor family, and is involved in the generation and modulation of a variety of cognitive, behavioral, and developmental functions. Solubilization of the hippocampal serotonin1A receptor by 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) is accompanied by loss of membrane cholesterol which results in a reduction in specific agonist binding activity. Replenishment of cholesterol to solubilized membranes restores the cholesterol content of the membrane and significantly enhances specific agonist binding activity. In order to test the stringency of the requirement of cholesterol in this process, we solubilized native hippocampal membranes followed by replenishment with 7-dehydrocholesterol (7-DHC). 7-DHC is an immediate biosynthetic precursor of cholesterol differing only in a double bond at the 7th position in its sterol ring. Our results show, for the first time, that replenishment of solubilized hippocampal membranes with 7-DHC does not restore ligand binding activity of the serotonin1A receptor, in spite of recovery of the overall membrane order. This observation shows that the requirement for restoration of ligand binding activity is more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane sterols with this important neuronal receptor under pathogenic conditions such as the Smith-Lemli-Opitz syndrome.
Collapse
|
28
|
Xiao Z, Schmitz F, Pricolo VE, Biancani P, Behar J. Role of caveolae in the pathogenesis of cholesterol-induced gallbladder muscle hypomotility. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1641-9. [PMID: 17307729 DOI: 10.1152/ajpgi.00495.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Muscle cells from human gallbladders (GB) with cholesterol stones (ChS) exhibit a defective contraction, excess cholesterol (Ch) in the plasma membrane, and lower binding of CCK-1 receptors. These abnormalities improved after muscle cells were incubated with Ch-free liposomes that remove the excess Ch from the plasma membrane. The present studies were designed to investigate the role of caveolin-3 proteins (Cav-3) in the pathogenesis of these abnormalities. Muscle cells from GB with ChS exhibit higher Ch levels in the plasma membrane that were mostly localized in caveolae and associated with parallel increases in the expression of Cav-3 in the caveolae compared with that in GB with pigment stones (PS). The overall number of CCK-1 receptors in the plasma membrane was not different between muscle cells from GB with ChS and PS, but they were increased in the caveolae in muscle cells from GB with ChS. Treatment of muscle cells from GB with ChS with a Galpha(i3) protein fragment increased the total binding of CCK-1 receptors (from 8.3 to 11.2%) and muscle contraction induced by CCK-8 (from 11.2 to 17.3% shortening). However, Galpha(q/11) protein fragment had no such effect. Moreover, neither fragment had any effect on muscle cells from GB with PS. We conclude that the defective contraction of muscle cells with excessive Ch levels in the plasma membrane is due to an increased expression of Cav-3 that results in the sequestration of CCK-1 receptors in the caveolae, probably by inhibiting the functions of Galpha(i3) proteins.
Collapse
Affiliation(s)
- Zuoliang Xiao
- Division of Gastroenterology, APC 406, Rhode Island Hospital/Brown Univ. Medical School, 593 Eddy St., Providence, RI 02903, USA.
| | | | | | | | | |
Collapse
|
29
|
Pucadyil TJ, Chattopadhyay A. Cholesterol depletion induces dynamic confinement of the G-protein coupled serotonin(1A) receptor in the plasma membrane of living cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:655-68. [PMID: 17292852 DOI: 10.1016/j.bbamem.2007.01.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 01/03/2007] [Accepted: 01/04/2007] [Indexed: 12/27/2022]
Abstract
Cholesterol is an essential constituent of eukaryotic membranes and plays a crucial role in membrane organization, dynamics, function, and sorting. It is often found distributed non-randomly in domains or pools in biological and model membranes and is thought to contribute to a segregated distribution of membrane constituents. Signal transduction events mediated by seven transmembrane domain G-protein coupled receptors (GPCRs) are the primary means by which cells communicate with and respond to their external environment. We analyzed the role of cholesterol in the plasma membrane organization of the G-protein coupled serotonin(1A) receptor by fluorescence recovery after photobleaching (FRAP) measurements with varying bleach spot sizes. Our results show that lateral diffusion parameters of serotonin(1A) receptors in normal cells are consistent with models describing diffusion of molecules in a homogenous membrane. Interestingly, these characteristics are altered in cholesterol-depleted cells in a manner that is consistent with dynamic confinement of serotonin(1A) receptors in the plasma membrane. Importantly, analysis of ligand binding and downstream signaling of the serotonin(1A) receptor suggests that receptor function is affected in a significantly different manner when intact cells or isolated membranes are depleted of cholesterol. These results assume significance in the context of interpreting effects of cholesterol depletion on diffusion characteristics of membrane proteins in particular, and cholesterol-dependent cellular processes in general.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
30
|
Rozner S, Garti N. The activity and absorption relationship of cholesterol and phytosterols. Colloids Surf A Physicochem Eng Asp 2006. [DOI: 10.1016/j.colsurfa.2005.12.032] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Chattopadhyay A, Jafurulla M, Pucadyil TJ. Ligand Binding and G-protein Coupling of the Serotonin1A Receptor in Cholesterol-enriched Hippocampal Membranes. Biosci Rep 2006; 26:79-87. [PMID: 16763764 DOI: 10.1007/s10540-006-9009-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The serotonin1A receptor is the most extensively studied member of the family of seven transmembrane domain G-protein coupled serotonin receptors. Since a large portion of such transmembrane receptors remains in contact with the membrane lipid environment, lipid–protein interactions assume importance in the structure-function analysis of such receptors. We have earlier reported the requirement of cholesterol for serotonin1A receptor function in native hippocampal membranes by specific depletion of cholesterol using methyl- β-cyclodextrin. In this paper, we monitored the serotonin1A receptor function in membranes that are enriched in cholesterol using a complex prepared from cholesterol and methyl-β-cyclodextrin. Our results indicate that ligand binding and receptor/G-protein interaction of the serotonin1A receptor do not exhibit significant difference in native and cholesterol-enriched hippocampal membranes indicating that further enrichment of cholesterol has little functional consequence on the serotonin1A receptor function. These results therefore provide new information on the effect of cholesterol enrichment on the hippocampal serotonin1A receptor function.
Collapse
|
32
|
Pucadyil TJ, Chattopadhyay A. Role of cholesterol in the function and organization of G-protein coupled receptors. Prog Lipid Res 2006; 45:295-333. [PMID: 16616960 DOI: 10.1016/j.plipres.2006.02.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cholesterol is an essential component of eukaryotic membranes and plays a crucial role in membrane organization, dynamics and function. The modulatory role of cholesterol in the function of a number of membrane proteins is well established. This effect has been proposed to occur either due to a specific molecular interaction between cholesterol and membrane proteins or due to alterations in the membrane physical properties induced by the presence of cholesterol. The contemporary view regarding heterogeneity in cholesterol distribution in membrane domains that sequester certain types of membrane proteins while excluding others has further contributed to its significance in membrane protein function. The seven transmembrane domain G-protein coupled receptors (GPCRs) are among the largest protein families in mammals and represent approximately 2% of the total proteins coded by the human genome. Signal transduction events mediated by this class of proteins are the primary means by which cells communicate with and respond to their external environment. GPCRs therefore represent major targets for the development of novel drug candidates in all clinical areas. In view of their importance in cellular signaling, the interaction of cholesterol with such receptors represents an important determinant in functional studies of such receptors. This review focuses on the effect of cholesterol on the membrane organization and function of GPCRs from a variety of sources, with an emphasis on the more contemporary role of cholesterol in maintaining a domain-like organization of such receptors on the cell surface. Importantly, the recently reported role of cholesterol in the function and organization of the neuronal serotonin(1A) receptor, a representative of the GPCR family which is present endogenously in the hippocampal region of the brain, will be highlighted.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | |
Collapse
|
33
|
Rybaczyk LA, Bashaw MJ, Pathak DR, Moody SM, Gilders RM, Holzschu DL. An overlooked connection: serotonergic mediation of estrogen-related physiology and pathology. BMC WOMENS HEALTH 2005; 5:12. [PMID: 16368009 PMCID: PMC1327664 DOI: 10.1186/1472-6874-5-12] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 12/20/2005] [Indexed: 11/10/2022]
Abstract
BACKGROUND In humans, serotonin has typically been investigated as a neurotransmitter. However, serotonin also functions as a hormone across animal phyla, including those lacking an organized central nervous system. This hormonal action allows serotonin to have physiological consequences in systems outside the central nervous system. Fluctuations in estrogen levels over the lifespan and during ovarian cycles cause predictable changes in serotonin systems in female mammals. DISCUSSION We hypothesize that some of the physiological effects attributed to estrogen may be a consequence of estrogen-related changes in serotonin efficacy and receptor distribution. Here, we integrate data from endocrinology, molecular biology, neuroscience, and epidemiology to propose that serotonin may mediate the effects of estrogen. In the central nervous system, estrogen influences pain transmission, headache, dizziness, nausea, and depression, all of which are known to be a consequence of serotonergic signaling. Outside of the central nervous system, estrogen produces changes in bone density, vascular function, and immune cell self-recognition and activation that are consistent with serotonin's effects. For breast cancer risk, our hypothesis predicts heretofore unexplained observations of the opposing effects of obesity pre- and post-menopause and the increase following treatment with hormone replacement therapy using medroxyprogesterone. SUMMARY Serotonergic mediation of estrogen has important clinical implications and warrants further evaluation.
Collapse
Affiliation(s)
- Leszek A Rybaczyk
- Integrated Biomedical Science Graduate Program, The Ohio State University, 1190 Graves Hall, 333 West 10th Avenue, Columbus, OH, 43210-1218, USA
| | - Meredith J Bashaw
- Department of Psychology, 200 Porter Hall, Ohio University, Athens, OH 45701, USA
| | - Dorothy R Pathak
- Departments of Epidemiology and Family Practice, A641 West Fee Hall, Michigan State University, East Lansing, MI48824, USA
| | - Scott M Moody
- Department of Biological Sciences, 318 Irvine Hall, Ohio University, Athens, OH 45701-2939, USA
| | - Roger M Gilders
- School of Recreation and Sport Sciences, E184 Grover Center, Ohio University, Athens, Ohio 45701, USA
| | - Donald L Holzschu
- Department of Biological Sciences, 239 Life Sciences Building, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
34
|
Mukherjee S, Chattopadhyay A. Monitoring the organization and dynamics of bovine hippocampal membranes utilizing Laurdan generalized polarization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1714:43-55. [PMID: 16042963 DOI: 10.1016/j.bbamem.2005.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 06/23/2005] [Accepted: 06/23/2005] [Indexed: 11/18/2022]
Abstract
Organization and dynamics of cellular membranes in the nervous system are crucial for the function of neuronal membrane receptors. The lipid composition of neuronal cells is unique and has been correlated with the increased complexity in the organization of the nervous system during evolution. Previous work from our laboratory has established bovine hippocampal membranes as a convenient natural source for studying neuronal receptors such as the G-protein coupled serotonin1A receptor. In this paper, we have explored the organization and dynamics of bovine hippocampal membranes using the amphiphilic environment-sensitive fluorescent probe Laurdan. Our results show that the emission spectra of Laurdan display an additional red shifted peak as a function of increasing temperature in native as well as cholesterol-depleted membranes and liposomes made from lipid extracts of the native membrane. Interestingly, wavelength dependence of Laurdan generalized polarization (GP) in native membranes indicates the presence of an ordered gel-like phase at low temperatures, whereas characteristics of the liquid-ordered phase are observed at high temperatures. Similar experiments performed using cholesterol-depleted membranes show fluidization of the membrane with increasing cholesterol depletion. In addition, results from fluorescence polarization of DPH indicate that the hippocampal membrane is fairly ordered even at physiological temperature. The temperature dependence of Laurdan excitation GP provides a measure of the apparent thermal transition temperature and extent of cooperativity in these membranes. Analysis of time-resolved fluorescence measurements of Laurdan shows reduction in mean fluorescence lifetime with increasing temperature due to change in environmental polarity. These results constitute novel information on the dynamics of hippocampal membranes and its modulation by cholesterol depletion monitored using Laurdan fluorescence.
Collapse
Affiliation(s)
- Soumi Mukherjee
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
35
|
Kalipatnapu S, Chattopadhyay A. Membrane Protein Solubilization: Recent Advances and Challenges in Solubilization of Serotonin1A Receptors. IUBMB Life 2005; 57:505-12. [PMID: 16081372 DOI: 10.1080/15216540500167237] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Solubilization of integral membrane proteins is a process in which the proteins and lipids that are held together in native membranes are suitably dissociated in a buffered detergent solution. The controlled dissociation of the membrane results in formation of small protein and lipid clusters that remain dissolved in the aqueous solution. Effective solubilization and purification of membrane proteins, especially heterologously-expressed proteins in mammalian cells in culture, in functionally active forms represent important steps in understanding structure-function relationship of membrane proteins. In this review, critical factors determining functional solubilization of membrane proteins are highlighted with the solubilization of the serotonin 1A receptor taken as a specific example.
Collapse
|