1
|
Chiu CY, Willis-Owen SAG, Wong KCC, Farrow SN, Cookson WOC, Moffatt MF, Zhang Y. MAP3K8 is a potential therapeutic target in airway epithelial inflammation. J Inflamm (Lond) 2024; 21:27. [PMID: 39030600 PMCID: PMC11264520 DOI: 10.1186/s12950-024-00400-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/10/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND We have previously discovered clusters of sequentially negative and positive modulators of acute inflammation during cytokine stimulation in epithelial cells and identified potential targets for therapy within these clusters. MAP3K8 is a druggable kinase that we found to be a hub of a principal interaction network. We describe here the results of MAP3K8 knockdown in the A549 lung cancer cell line, the BEAS-2B epithelial cell line and normal human bronchial epithelial (NHBE) cells following IL-1β stimulation. We analysed signalling transduction and global gene expression after IL-1β stimulation with and without MAP3K8 knockdown, quantifying levels of the inflammatory cytokines IL-6, IL-8 and RANTES levels by qPCRs and/or by ELISAs. We also examined potential small molecule inhibitors for MAP3K8 in the same models. RESULTS IL-1β significantly and consistently increased MAP3K8 expression after 2 h in A549, BEAS-2B and NHBE cells. Phosphorylation of MAP3K8 occurred at 20 min after IL-1β stimulation and MAP3K8 protein was degraded at 30 min. MAP3K8 knockdown significantly reduced IL-6, IL-8 levels after IL-1β stimulation and yielded a 10-fold enhancement of the anti-inflammatory effects of dexamethasone. Phosphorylation of ERK1/2 (P-ERK1/2) and phosphorylation of SAPK/JNK (P-SAPK/JNK) decreased at 30 min after IL-1β stimulation with MAP3K8 knockdown. The combination of dexamethasone and MAP3K8 knockdown resulted in greater inhibition of phosphorylated ERK1/2 and SAPK/JNK. Nineteen genes including MMP1, MMP3, MMP10, ITGB8, LAMC2 and PLAT (P corrected < 0.01 respectively) demonstrated a distinct altered temporal response to IL-1β following suppression of MAP3K8. However, putative MAP3K8 inhibitors including Tpl2-1, Tpl2-2 and GSK2222867A only showed inhibition of IL-6 and IL-8 production at a high dose. CONCLUSIONS These results confirm that MAP3K8 is a key mediator of the early inflammatory response and that it is a potential target in inflammatory diseases. However, current tool compounds do not effectively inhibit its effects.
Collapse
Affiliation(s)
- Chih-Yung Chiu
- National Heart and Lung Institute, Imperial College London, SW3 6LY, London, UK
- Division of Paediatric Pulmonology, Chang Gung Memorial Hospital Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | | - Kenny C C Wong
- National Heart and Lung Institute, Imperial College London, SW3 6LY, London, UK
| | - Stuart N Farrow
- Cancer Research Horizons, Babraham campus, Cambridge, CB22 3AT, UK
| | - William O C Cookson
- National Heart and Lung Institute, Imperial College London, SW3 6LY, London, UK
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, SW3 6LY, London, UK
| | - Youming Zhang
- National Heart and Lung Institute, Imperial College London, SW3 6LY, London, UK.
| |
Collapse
|
2
|
Zhang X, Wang X, Chen J, Chen M, Lu X, Ning J, Liu H, Liu G, Xu X, Qu X, Yu K, Xu H, Wang C, Liu B. Functional analyses of TRAF6 gene in Argopecten scallops. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109443. [PMID: 38354964 DOI: 10.1016/j.fsi.2024.109443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The tumor necrosis factor (TNF) receptor-associated factor (TRAF) family has been reported to be involved in many immune pathways. In a previous study, we identified 5 TRAF genes, including TRAF2, 3, 4, 6, and 7, in the bay scallop (Argopecten irradians, Air) and the Peruvian scallop (Argopecten purpuratus, Apu). Since TRAF6 is a key molecular link in the TNF superfamily, we conducted a series of studies targeting the TRAF6 gene in the Air and Apu scallops as well as their hybrid progeny, Aip (Air ♀ × Apu ♂) and Api (Apu ♀ × Air ♂). Subcellular localization assay showed that the Air-, Aip-, and Api-TRAF6 were widely distributed in the cytoplasm of the human embryonic kidney cell line (HEK293T). Additionally, dual-luciferase reporter assay revealed that among TRAF3, TRAF4, and TRAF6, only the overexpression of TRAF6 significantly activated NF-κB activity in the HEK293T cells in a dose-dependent manner. These results suggest a crucial role of TRAF6 in the immune response in Argopecten scallops. To investigate the specific immune mechanism of TRAF6 in Argopecten scallops, we conducted TRAF6 knockdown using RNA interference. Transcriptomic analyses of the TRAF6 RNAi and control groups identified 1194, 2403, and 1099 differentially expressed genes (DEGs) in the Air, Aip, and Api scallops, respectively. KEGG enrichment analyses revealed that these DEGs were primarily enriched in transport and catabolism, amino acid metabolism, peroxisome, lysosome, and phagosome pathways. Expression profiles of 28 key DEGs were confirmed by qRT-PCR assays. The results of this study may provide insights into the immune mechanisms of TRAF in Argopecten scallops and ultimately benefit scallop breeding.
Collapse
Affiliation(s)
- Xiaotong Zhang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xia Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Jieyu Chen
- Qingdao No. 9 High School, Qingdao, Shandong, 266426, China
| | - Min Chen
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Xia Lu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Junhao Ning
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Haijun Liu
- Yantai Spring-Sea AquaSeed, Co., Ltd., Yantai, 264006, China
| | - Guilong Liu
- Yantai Spring-Sea AquaSeed, Co., Ltd., Yantai, 264006, China
| | - Xin Xu
- Yantai Spring-Sea AquaSeed, Co., Ltd., Yantai, 264006, China
| | - Xiaoxu Qu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Kai Yu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - He Xu
- Jiangsu Baoyuan Biotechnology Co., Ltd., Lianyungang, 222144, China; Jiangsu Haitai MariTech Co., Ltd., Lianyungang, 222144, China
| | - Chunde Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China.
| | - Bo Liu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
3
|
Njunge LW, Estania AP, Guo Y, Liu W, Yang L. Tumor progression locus 2 (TPL2) in tumor-promoting Inflammation, Tumorigenesis and Tumor Immunity. Am J Cancer Res 2020; 10:8343-8364. [PMID: 32724474 PMCID: PMC7381748 DOI: 10.7150/thno.45848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Over the years, tumor progression locus 2 (TPL2) has been identified as an essential modulator of immune responses that conveys inflammatory signals to downstream effectors, subsequently modulating the generation and function of inflammatory cells. TPL2 is also differentially expressed and activated in several cancers, where it is associated with increased inflammation, malignant transformation, angiogenesis, metastasis, poor prognosis and therapy resistance. However, the relationship between TPL2-driven inflammation, tumorigenesis and tumor immunity has not been addressed. Here, we reconcile the function of TPL2-driven inflammation to oncogenic functions such as inflammation, proliferation, apoptosis resistance, angiogenesis, metastasis, immunosuppression and immune evasion. We also address the controversies reported on TPL2 function in tumor-promoting inflammation and tumorigenesis, and highlight the potential role of the TPL2 adaptor function in regulating the mechanisms leading to pro-tumorigenic inflammation and tumor progression. We discuss the therapeutic implications and limitations of targeting TPL2 for cancer treatment. The ideas presented here provide some new insight into cancer pathophysiology that might contribute to the development of more integrative and specific anti-inflammatory and anti-cancer therapeutics.
Collapse
|
4
|
A central role of IKK2 and TPL2 in JNK activation and viral B-cell transformation. Nat Commun 2020; 11:685. [PMID: 32019925 PMCID: PMC7000802 DOI: 10.1038/s41467-020-14502-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
IκB kinase 2 (IKK2) is well known for its pivotal role as a mediator of the canonical NF-κB pathway, which has important functions in inflammation and immunity, but also in cancer. Here we identify a novel and critical function of IKK2 and its co-factor NEMO in the activation of oncogenic c-Jun N-terminal kinase (JNK) signaling, induced by the latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV). Independent of its kinase activity, the TGFβ-activated kinase 1 (TAK1) mediates LMP1 signaling complex formation, NEMO ubiquitination and subsequent IKK2 activation. The tumor progression locus 2 (TPL2) kinase is induced by LMP1 via IKK2 and transmits JNK activation signals downstream of IKK2. The IKK2-TPL2-JNK axis is specific for LMP1 and differs from TNFα, Interleukin-1 and CD40 signaling. This pathway mediates essential LMP1 survival signals in EBV-transformed human B cells and post-transplant lymphoma, and thus qualifies as a target for treatment of EBV-induced cancer.
Collapse
|
5
|
Lee JH, Lee JH, Lee SH, Do SI, Cho SD, Forslund O, Inn KS, Lee JS, Deng FM, Melamed J, Jung JU, Jeong JH. TPL2 Is an Oncogenic Driver in Keratocanthoma and Squamous Cell Carcinoma. Cancer Res 2016; 76:6712-6722. [DOI: 10.1158/0008-5472.can-15-3274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/09/2016] [Accepted: 06/27/2016] [Indexed: 11/16/2022]
|
6
|
Shinohara H, Kurosaki T. Comprehending the complex connection between PKCbeta, TAK1, and IKK in BCR signaling. Immunol Rev 2010; 232:300-18. [PMID: 19909372 DOI: 10.1111/j.1600-065x.2009.00836.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) contributes to many events in the immune system. Characterization of NF-kappaB has facilitated our understanding of immune cell differentiation, survival, proliferation, and effector functions. Intense research continues to elucidate the role of NF-kappaB, which is shared in several receptor signaling pathways, such as Toll-like receptors, the tumor necrosis factor receptor, and antigen receptors. The specificity of cellular responses emanating from stimulation of these receptors is determined by post-translational modification, or 'fine tuning', which regulates spatiotemporal dynamics of downstream signaling. Understanding the fine tuning mechanisms of NF-kappaB activation is crucial for insights into biological regulation and for understanding how cellular signaling pathways are tightly regulated to guide different cell fates. In this review, we focus on recent advances that illuminate the fine tuning mechanisms of NF-kappaB activation by BCR signaling and have increased our comprehension of complex signal systems.
Collapse
Affiliation(s)
- Hisaaki Shinohara
- Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan.
| | | |
Collapse
|
7
|
Shi R, Re D, Dudl E, Cuddy M, Okolotowicz KJ, Dahl R, Su Y, Hurder A, Kitada S, Peddibhotla S, Roth GP, Smith LH, Kipps TJ, Cosford N, Cashman J, Reed JC. Chemical biology strategy reveals pathway-selective inhibitor of NF-kappaB activation induced by protein kinase C. ACS Chem Biol 2010; 5:287-99. [PMID: 20141195 DOI: 10.1021/cb9003089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dysregulation of NF-kappaB activity contributes to many autoimmune and inflammatory diseases. At least nine pathways for NF-kappaB activation have been identified, most of which converge on the IkappaB kinases (IKKs). Although IKKs represent logical targets for potential drug discovery, chemical inhibitors of IKKs suppress all known NF-kappaB activation pathways and thus lack the selectivity required for safe use. A unique NF-kappaB activation pathway is initiated by protein kinase C (PKC) that is stimulated by antigen receptors and many growth factor receptors. Using a cell-based high-throughput screening (HTS) assay and chemical biology strategy, we identified a 2-aminobenzimidazole compound, CID-2858522, which selectively inhibits the NF-kappaB pathway induced by PKC, operating downstream of PKC but upstream of IKKbeta, without inhibiting other NF-kappaB activation pathways. In human B cells stimulated through surface immunoglobulin, CID-2858522 inhibited NF-kappaB DNA-binding activity and expression of endogenous NF-kappaB-dependent target gene, TRAF1. Altogether, as a selective chemical inhibitor of the NF-kappaB pathway induced by PKC, CID-2858522 serves as a powerful research tool and may reveal new paths toward therapeutically useful NF-kappaB inhibitors.
Collapse
Affiliation(s)
- Ranxin Shi
- Sanford-Burnham Medical Research Institute, La Jolla, San Diego, California 92037
| | - Daniel Re
- Sanford-Burnham Medical Research Institute, La Jolla, San Diego, California 92037
| | - Eric Dudl
- Sanford-Burnham Medical Research Institute, La Jolla, San Diego, California 92037
| | - Michael Cuddy
- Sanford-Burnham Medical Research Institute, La Jolla, San Diego, California 92037
| | | | - Russell Dahl
- Sanford-Burnham Medical Research Institute, La Jolla, San Diego, California 92037
- Conrad Prebys Center for Chemical Genomics, La Jolla, San Diego, California 92037 and Lake Nona, Orlando, Florida 32819
| | - Ying Su
- Sanford-Burnham Medical Research Institute, La Jolla, San Diego, California 92037
- Conrad Prebys Center for Chemical Genomics, La Jolla, San Diego, California 92037 and Lake Nona, Orlando, Florida 32819
| | - Andrew Hurder
- Sanford-Burnham Medical Research Institute, La Jolla, San Diego, California 92037
- Conrad Prebys Center for Chemical Genomics, La Jolla, San Diego, California 92037 and Lake Nona, Orlando, Florida 32819
| | - Shinichi Kitada
- Sanford-Burnham Medical Research Institute, La Jolla, San Diego, California 92037
| | | | - Gregory P. Roth
- Lake Nona, Orlando, Florida 32819
- Conrad Prebys Center for Chemical Genomics, La Jolla, San Diego, California 92037 and Lake Nona, Orlando, Florida 32819
| | - Layton H. Smith
- Lake Nona, Orlando, Florida 32819
- Conrad Prebys Center for Chemical Genomics, La Jolla, San Diego, California 92037 and Lake Nona, Orlando, Florida 32819
| | - Thomas J. Kipps
- University of California, San Diego, La Jolla, California 92093
| | - Nicholas Cosford
- Sanford-Burnham Medical Research Institute, La Jolla, San Diego, California 92037
- Conrad Prebys Center for Chemical Genomics, La Jolla, San Diego, California 92037 and Lake Nona, Orlando, Florida 32819
| | - John Cashman
- Human Biomolecular Research Institute, San Diego, California 92121
| | - John C. Reed
- Sanford-Burnham Medical Research Institute, La Jolla, San Diego, California 92037
- Conrad Prebys Center for Chemical Genomics, La Jolla, San Diego, California 92037 and Lake Nona, Orlando, Florida 32819
| |
Collapse
|
8
|
Jager J, Grémeaux T, Gonzalez T, Bonnafous S, Debard C, Laville M, Vidal H, Tran A, Gual P, Le Marchand-Brustel Y, Cormont M, Tanti JF. Tpl2 kinase is upregulated in adipose tissue in obesity and may mediate interleukin-1beta and tumor necrosis factor-{alpha} effects on extracellular signal-regulated kinase activation and lipolysis. Diabetes 2010; 59:61-70. [PMID: 19808894 PMCID: PMC2797946 DOI: 10.2337/db09-0470] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Activation of extracellular signal-regulated kinase-(ERK)-1/2 by cytokines in adipocytes is involved in the alterations of adipose tissue functions participating in insulin resistance. This study aims at identifying proteins regulating ERK1/2 activity, specifically in response to inflammatory cytokines, to provide new insights into mechanisms leading to abnormal adipose tissue function. RESEARCH DESIGN AND METHODS Kinase activities were inhibited with pharmacological inhibitors or siRNA. Lipolysis was monitored through glycerol production. Gene expression in adipocytes and adipose tissue of obese mice and subjects was measured by real-time PCR. RESULTS IkappaB kinase-(IKK)-beta inhibition prevented mitogen-activated protein (MAP) kinase kinase (MEK)/ERK1/2 activation in response to interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha but not insulin in 3T3-L1 and human adipocytes, suggesting that IKKbeta regulated a MAP kinase kinase kinase (MAP3K) involved in ERK1/2 activation induced by inflammatory cytokines. We show that the MAP3K8 called Tpl2 was expressed in adipocytes and that IL-1beta and TNF-alpha activated Tpl2 and regulated its expression through an IKKbeta pathway. Pharmacological inhibition or silencing of Tpl2 prevented MEK/ERK1/2 activation by these cytokines but not by insulin, demonstrating its involvement in ERK1/2 activation specifically in response to inflammatory stimuli. Importantly, Tpl2 was implicated in cytokine-induced lipolysis and in insulin receptor substrate-1 serine phosphorylation. Tpl2 mRNA expression was upregulated in adipose tissue of obese mice and patients and correlated with TNF-alpha expression. CONCLUSIONS Tpl2 is selectively involved in inflammatory cytokine-induced ERK1/2 activation in adipocytes and is implicated in their deleterious effects on adipocyte functions. The deregulated expression of Tpl2 in adipose tissue suggests that Tpl2 may be a new actor in adipose tissue dysfunction in obesity.
Collapse
Affiliation(s)
- Jennifer Jager
- Institut National de la Santé et de la Recherche Médicale (INSERM), U895, Mediterranean Center of Molecular Medicine, Team 7 “Molecular and Cellular Physiopathology of Obesity and Diabetes,” Nice, France
- University of Nice Sophia-Antipolis, Faculty of Medicine, Nice, France
| | - Thierry Grémeaux
- Institut National de la Santé et de la Recherche Médicale (INSERM), U895, Mediterranean Center of Molecular Medicine, Team 7 “Molecular and Cellular Physiopathology of Obesity and Diabetes,” Nice, France
- University of Nice Sophia-Antipolis, Faculty of Medicine, Nice, France
| | - Teresa Gonzalez
- Institut National de la Santé et de la Recherche Médicale (INSERM), U895, Mediterranean Center of Molecular Medicine, Team 7 “Molecular and Cellular Physiopathology of Obesity and Diabetes,” Nice, France
- University of Nice Sophia-Antipolis, Faculty of Medicine, Nice, France
| | - Stéphanie Bonnafous
- University of Nice Sophia-Antipolis, Faculty of Medicine, Nice, France
- INSERM, U895, Team 8 “Hepatic Complications in Obesity,” Nice, France
- Centre Hospitalier Universitaire of Nice, Digestive Center, Nice, France
| | - Cyrille Debard
- INSERM, U870-INRA U1235, “Metabolic Regulations, Nutrition, and Diabetes,” Lyon, France
| | - Martine Laville
- INSERM, U870-INRA U1235, “Metabolic Regulations, Nutrition, and Diabetes,” Lyon, France
| | - Hubert Vidal
- INSERM, U870-INRA U1235, “Metabolic Regulations, Nutrition, and Diabetes,” Lyon, France
| | - Albert Tran
- University of Nice Sophia-Antipolis, Faculty of Medicine, Nice, France
- INSERM, U895, Team 8 “Hepatic Complications in Obesity,” Nice, France
- Centre Hospitalier Universitaire of Nice, Digestive Center, Nice, France
| | - Philippe Gual
- University of Nice Sophia-Antipolis, Faculty of Medicine, Nice, France
- INSERM, U895, Team 8 “Hepatic Complications in Obesity,” Nice, France
- Centre Hospitalier Universitaire of Nice, Digestive Center, Nice, France
| | - Yannick Le Marchand-Brustel
- Institut National de la Santé et de la Recherche Médicale (INSERM), U895, Mediterranean Center of Molecular Medicine, Team 7 “Molecular and Cellular Physiopathology of Obesity and Diabetes,” Nice, France
- University of Nice Sophia-Antipolis, Faculty of Medicine, Nice, France
- Centre Hospitalier Universitaire of Nice, Digestive Center, Nice, France
| | - Mireille Cormont
- Institut National de la Santé et de la Recherche Médicale (INSERM), U895, Mediterranean Center of Molecular Medicine, Team 7 “Molecular and Cellular Physiopathology of Obesity and Diabetes,” Nice, France
- University of Nice Sophia-Antipolis, Faculty of Medicine, Nice, France
| | - Jean-François Tanti
- Institut National de la Santé et de la Recherche Médicale (INSERM), U895, Mediterranean Center of Molecular Medicine, Team 7 “Molecular and Cellular Physiopathology of Obesity and Diabetes,” Nice, France
- University of Nice Sophia-Antipolis, Faculty of Medicine, Nice, France
- Corresponding author: Jean-François Tanti,
| |
Collapse
|
9
|
CD154 and its receptors in inflammatory vascular pathologies. Trends Immunol 2009; 30:165-72. [DOI: 10.1016/j.it.2009.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 11/19/2022]
|
10
|
Krcova Z, Ehrmann J, Krejci V, Eliopoulos A, Kolar Z. Tpl-2/Cot and COX-2 in breast cancer. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2008; 152:21-5. [PMID: 18795070 DOI: 10.5507/bp.2008.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer is the most common cancer in women worldwide and although mortality (129,000/year) stagnates, incidence (370,000/year) is increasing. In addition to histological type, grade, stage, hormonal and c-erbB2 status there is therefore a strong need for new and reliable prognostic and predictive factors. METHODS AND RESULTS This minireview focuses on two potential prognostic and predictive candidates Tpl2/Cot and COX-2 and summarise information about them. CONCLUSION Tumor progression locus 2 (Tpl2/Cot) is a serine/threonine protein kinase belonging to the family of MAP3 kinases. Activated Tpl2/Cot leads to induction of ERK1/2, JNK, NF-kappaB and p38MAPK pathways. The first study on Tpl2/Cot mRNA in breast cancer showed its increase in 40 % of cases of breast cancer but no available data exist on protein expression. Cyclo-oxygenase 2 (COX-2) is inducible by growth and inflammatory factors and contributes to the development of various tumours. Expression of COX-2 in breast cancer varied from 5-100 % in reviewed papers with significantly higher values in poorly differentiated tumours. Tpl2/Cot and COX-2 have their importance in different intracellular pathways and some of these are involved in cancer development. Briefly, the results from recent studies suggest that Tpl2/Cot and COX-2 could be prognostic factors in breast cancer.
Collapse
Affiliation(s)
- Zuzana Krcova
- Laboratory of Molecular Pathology, Department of Pathology, Faculty of Medicine and Dentistry, Palacky University, University Hospital, Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
11
|
Jacobson EM, Huber AK, Akeno N, Sivak M, Li CW, Concepcion E, Ho K, Tomer Y. A CD40 Kozak sequence polymorphism and susceptibility to antibody-mediated autoimmune conditions: the role of CD40 tissue-specific expression. Genes Immun 2007; 8:205-14. [PMID: 17344890 DOI: 10.1038/sj.gene.6364375] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previously, we and others have demonstrated the association of a C/T single nucleotide polymorphism (SNP), in the Kozak sequence of CD40, with Graves' disease (GD). Here, using an expanded data set of patients, we confirm the association of the CD40 SNP with GD (n=210, P=0.002, odds ratio (OR)=1.8). Subset analysis of patients with persistently elevated thyroid peroxidase (TPO) and/or thyroglobulin (Tg) antibodies (Abs), (TPO/Tg Abs), after treatment (n=126), revealed a significantly stronger association of the SNP with disease (P=5.2 x 10(-5), OR=2.5) than in GD patients who were thyroid antibody-negative. However, the CD40 SNP was not associated with TPO/Tg Abs in healthy individuals. Next, we tested the CD40 SNP for association with Myasthenia Gravis (MG), which, like GD is an antibody-mediated autoimmune condition. Analysis of 81 MG patients found no association of the SNP with disease. Functional studies revealed significant expression of CD40 mRNA and protein in the thyroid (target tissue in GD) but not in skeletal muscle (target tissue in MG). Combined, our genetic and tissue expression data suggest that the CD40 Kozak SNP is specific for thyroid antibody production involved in the etiology of GD. Increased thyroidal expression of CD40 driven by the SNP may contribute to this disease specificity.
Collapse
Affiliation(s)
- E M Jacobson
- Division of Endocrinology, University of Cincinnati College of Medicine, Vontz Center of Molecular Medicine, Cincinnati, OH 45267, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Dardick C, Ronald P. Plant and animal pathogen recognition receptors signal through non-RD kinases. PLoS Pathog 2006; 2:e2. [PMID: 16424920 PMCID: PMC1331981 DOI: 10.1371/journal.ppat.0020002] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 12/14/2005] [Indexed: 12/18/2022] Open
Abstract
Plants and animals mediate early steps of the innate immune response through pathogen recognition receptors (PRRs). PRRs commonly associate with or contain members of a monophyletic group of kinases called the interleukin-1 receptor-associated kinase (IRAK) family that include Drosophila Pelle, human IRAKs, rice XA21 and Arabidopsis FLS2. In mammals, PRRs can also associate with members of the receptor-interacting protein (RIP) kinase family, distant relatives to the IRAK family. Some IRAK and RIP family kinases fall into a small functional class of kinases termed non-RD, many of which do not autophosphorylate the activation loop. We surveyed the yeast, fly, worm, human, Arabidopsis, and rice kinomes (3,723 kinases) and found that despite the small number of non-RD kinases in these genomes (9%-29%), 12 of 15 kinases known or predicted to function in PRR signaling fall into the non-RD class. These data indicate that kinases associated with PRRs can largely be predicted by the lack of a single conserved residue and reveal new potential plant PRR subfamilies.
Collapse
Affiliation(s)
- Christopher Dardick
- United States Department of Agriculture, Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, West Virginia, United States of America
- * To whom correspondence should be addressed. E-mail: (CD); (PR)
| | - Pamela Ronald
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- * To whom correspondence should be addressed. E-mail: (CD); (PR)
| |
Collapse
|