1
|
Ferro D, Bakiu R, Pucciarelli S, Miceli C, Vallesi A, Irato P, Santovito G. Molecular Characterization, Protein-Protein Interaction Network, and Evolution of Four Glutathione Peroxidases from Tetrahymena thermophila. Antioxidants (Basel) 2020; 9:antiox9100949. [PMID: 33023127 PMCID: PMC7600574 DOI: 10.3390/antiox9100949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 11/23/2022] Open
Abstract
Glutathione peroxidases (GPxs) form a broad family of antioxidant proteins essential for maintaining redox homeostasis in eukaryotic cells. In this study, we used an integrative approach that combines bioinformatics, molecular biology, and biochemistry to investigate the role of GPxs in reactive oxygen species detoxification in the unicellular eukaryotic model organism Tetrahymena thermophila. Both phylogenetic and mechanistic empirical model analyses provided indications about the evolutionary relationships among the GPXs of Tetrahymena and the orthologous enzymes of phylogenetically related species. In-silico gene characterization and text mining were used to predict the functional relationships between GPxs and other physiologically-relevant processes. The GPx genes contain conserved transcriptional regulatory elements in the promoter region, which suggest that transcription is under tight control of specialized signaling pathways. The bioinformatic findings were next experimentally validated by studying the time course of gene transcription and enzymatic activity after copper (Cu) exposure. Results emphasize the role of GPxs in the detoxification pathways that, by complex regulation of GPx gene expression, enable Tethraymena to survive in high Cu concentrations and the associated redox environment.
Collapse
Affiliation(s)
- Diana Ferro
- BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA;
- Department of Pediatrics, Children’s Mercy Hospital and Clinics, Kansas City, MO 64108, USA
| | - Rigers Bakiu
- Department of Aquaculture and Fisheries, Agricultural University of Tirana, 1000 Tiranë, Albania;
| | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (S.P.); (C.M.); (A.V.)
| | - Cristina Miceli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (S.P.); (C.M.); (A.V.)
| | - Adriana Vallesi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (S.P.); (C.M.); (A.V.)
| | - Paola Irato
- Department of Biology, University of Padova, 35131 Padova, Italy;
| | - Gianfranco Santovito
- Department of Biology, University of Padova, 35131 Padova, Italy;
- Correspondence:
| |
Collapse
|
2
|
Cubas-Gaona LL, de Francisco P, Martín-González A, Gutiérrez JC. Tetrahymena Glutathione Peroxidase Family: A Comparative Analysis of These Antioxidant Enzymes and Differential Gene Expression to Metals and Oxidizing Agents. Microorganisms 2020; 8:microorganisms8071008. [PMID: 32635666 PMCID: PMC7409322 DOI: 10.3390/microorganisms8071008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/21/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
In the present work, an extensive analysis of the putative glutathione peroxidases (GPx) of the eukaryotic microorganism model Tetrahymena thermophila is carried out. A comparative analysis with GPx present in other Tetrahymena species and other very taxonomically diverse ciliates is also performed. A majority of ciliate GPx have replaced the selenocysteine (Sec) by Cys in its catalytic center, so they can be considered as phospholipid hydroperoxide glutathione peroxidases (PHGPx). Selenocysteine insertion sequence (SECIS) elements have been detected in several ciliate GPx that do not incorporate Sec in their amino acid sequences, and conversely, in other ciliate GPx with Sec, no SECIS elements are detected. These anomalies are analyzed and discussed. From the phylogenetic analysis using the ciliate GPx amino acid sequences, the existence of extensive intra- and interspecific gene duplications that produced multiple GPx isoforms in each species is inferred. The ancestral character of the selenoproteins is also corroborated. The analysis by qRT-PCR of six selected T. thermophila GPx genes has shown a quantitative differential expression between them, depending on the stressor (oxidizing agents, apoptotic inducer or metals) and the time of exposure.
Collapse
Affiliation(s)
| | - Patricia de Francisco
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain;
| | - Ana Martín-González
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología. C/. José Antonio Nováis, 12. Universidad Complutense (UCM), 28040 Madrid, Spain;
| | - Juan Carlos Gutiérrez
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología. C/. José Antonio Nováis, 12. Universidad Complutense (UCM), 28040 Madrid, Spain;
- Correspondence:
| |
Collapse
|
3
|
Serrão VHB, Silva IR, da Silva MTA, Scortecci JF, de Freitas Fernandes A, Thiemann OH. The unique tRNASec and its role in selenocysteine biosynthesis. Amino Acids 2018; 50:1145-1167. [DOI: 10.1007/s00726-018-2595-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/26/2018] [Indexed: 12/26/2022]
|
4
|
Liu CB, Zhang L, Wu Q, Qu GB, Yin YG, Hu LG, Shi JB, Jiang GB. Mutual detoxification of mercury and selenium in unicellular Tetrahymena. J Environ Sci (China) 2018; 68:143-150. [PMID: 29908733 DOI: 10.1016/j.jes.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Selenium (Se) is commonly recognized as a protective element with an antagonistic effect against mercury (Hg) toxicity. However, the mechanisms of this Hg-Se antagonism are complex and remain controversial. To gain insight into the Hg-Se antagonism, a type of unicellular eukaryotic protozoa (Tetrahymena malaccensis, T. malaccensis) was selected and individually or jointly exposed to two Hg and three Se species. We found that Se species showed different toxic effects on the proliferation of T. malaccensis with the toxicity following the order: selenite (Se(IV))>selenomethionine (SeMeth)>selenate (Se(VI)). The Hg-Se antagonism in Tetrahymena was observed because the joint toxicity significantly decreased under co-exposure to highly toxic dosages of Hg and Se versus individual toxicity. Unlike Se(IV) and Se(VI), non-toxic dosage of SeMeth significantly decreased the Hg toxicity, revealing the influence of the Se species and dosages on the Hg-Se antagonism. Unexpectedly, inorganic divalent Hg (Hg2+) and monomethylmercury (MeHg) also displayed detoxification towards extremely highly toxic dosages of Se, although their detoxifying efficiency was discrepant. These results suggested mutual Hg-Se detoxification in T. malaccensis, which was highly dependent on the dosages and species of both elements. As compared to other species, SeMeth and MeHg promoted the Hg-Se joint effects to a higher degree. Additionally, the Hg contents decreased for all the Hg-Se co-exposed groups, revealing a sequestering effect of Se towards Hg in T. malaccensis.
Collapse
Affiliation(s)
- Cheng-Bin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Bo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Gang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Bo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Gui-Bin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Selenocysteine tRNA [Ser]Sec, the Central Component of Selenoprotein Biosynthesis: Isolation, Identification, Modification, and Sequencing. Methods Mol Biol 2018; 1661:43-60. [PMID: 28917036 DOI: 10.1007/978-1-4939-7258-6_4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The selenocysteine (Sec) tRNA[Ser]Sec population consists of two isoforms that differ from each other by a single 2'-O-methylribosyl moiety at position 34 (Um34). These two isoforms, which are encoded in a single gene, Trsp, and modified posttranscriptionally, are involved individually in the synthesis of two subclasses of selenoproteins, designated housekeeping and stress-related selenoproteins. Techniques used in obtaining these isoforms for their characterization include extraction of RNA from mammalian cells and tissues, purifying the tRNA[Ser]Sec population by one or more procedures, and finally resolving the two isoforms from each other. Since some of the older techniques for isolating tRNA[Ser]Sec and resolving the isoforms are used in only a few laboratories, these procedures will be discussed briefly and references provided for more detailed information, while the more recently developed procedures are discussed in detail. In addition, a novel technique that was developed in sequencing tRNA[Ser]Sec for identifying their occurrence in other organisms is also presented.
Collapse
|
6
|
Lukashenko NP. Expanding genetic code: Amino acids 21 and 22, selenocysteine and pyrrolysine. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410080016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Chen CL, Zhou H, Liao JY, Qu LH, Amar L. Genome-wide evolutionary analysis of the noncoding RNA genes and noncoding DNA of Paramecium tetraurelia. RNA (NEW YORK, N.Y.) 2009; 15:503-14. [PMID: 19218550 PMCID: PMC2661823 DOI: 10.1261/rna.1306009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The compact genome of the unicellular eukaryote Paramecium tetraurelia contains noncoding DNA (ncDNA) distributed into >39,000 intergenic sequences and >90,000 introns of 390 base pairs (bp) and 25 bp on average, respectively. Here we analyzed the molecular features of the ncRNA genes, introns, and intergenic sequences of this genome. We mainly used computational programs and comparative genomics possible because the P. tetraurelia genome had formed throughout whole-genome duplications (WGDs). We characterized 417 5S rRNA, snRNA, snoRNA, SRP RNA, and tRNA putative genes, 415 of which map within intergenic sequences, and two, within introns. The evolution of these ncRNA genes appears to have mainly involved purifying selection and gene deletion. We then compared the introns that interrupt the protein-coding gene duplicates arisen from the recent WGD and identified a population of a few thousands of introns having evolved under most stringent constraints (>95% of identity). We also showed that low nucleotide substitution levels characterize the 50 and 80-115 base pairs flanking, respectively, the stop and start codons of the protein-coding genes. Lower substitution levels mark the base pairs flanking the highly transcribed genes, or the start codons of the genes of the sets with a high number of WGD-related sequences. Finally, adjacent to protein-coding genes, we characterized 32 DNA motifs able to encode stable and evolutionary conserved RNA secondary structures and defining putative expression controlling elements. Fourteen DNA motifs with similar properties map distant from protein-coding genes and may encode regulatory ncRNAs.
Collapse
Affiliation(s)
- Chun-Long Chen
- Institut de Biologie Animale Intégrative et Cellulaire, Université Paris Sud, Orsay, France
| | | | | | | | | |
Collapse
|
8
|
Microarray analyses of gene expression during the Tetrahymena thermophila life cycle. PLoS One 2009; 4:e4429. [PMID: 19204800 PMCID: PMC2636879 DOI: 10.1371/journal.pone.0004429] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 12/18/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The model eukaryote, Tetrahymena thermophila, is the first ciliated protozoan whose genome has been sequenced, enabling genome-wide analysis of gene expression. METHODOLOGY/PRINCIPAL FINDINGS A genome-wide microarray platform containing the predicted coding sequences (putative genes) for T. thermophila is described, validated and used to study gene expression during the three major stages of the organism's life cycle: growth, starvation and conjugation. CONCLUSIONS/SIGNIFICANCE Of the approximately 27,000 predicted open reading frames, transcripts homologous to only approximately 5900 are not detectable in any of these life cycle stages, indicating that this single-celled organism does indeed contain a large number of functional genes. Transcripts from over 5000 predicted genes are expressed at levels >5x corrected background and 95 genes are expressed at >250x corrected background in all stages. Transcripts homologous to 91 predicted genes are specifically expressed and 155 more are highly up-regulated in growing cells, while 90 are specifically expressed and 616 are up-regulated during starvation. Strikingly, transcripts homologous to 1068 predicted genes are specifically expressed and 1753 are significantly up-regulated during conjugation. The patterns of gene expression during conjugation correlate well with the developmental stages of meiosis, nuclear differentiation and DNA elimination. The relationship between gene expression and chromosome fragmentation is analyzed. Genes encoding proteins known to interact or to function in complexes show similar expression patterns, indicating that co-ordinate expression with putative genes of known function can identify genes with related functions. New candidate genes associated with the RNAi-like process of DNA elimination and with meiosis are identified and the late stages of conjugation are shown to be characterized by specific expression of an unexpectedly large and diverse number of genes not involved in nuclear functions.
Collapse
|
9
|
Coyne RS, Thiagarajan M, Jones KM, Wortman JR, Tallon LJ, Haas BJ, Cassidy-Hanley DM, Wiley EA, Smith JJ, Collins K, Lee SR, Couvillion MT, Liu Y, Garg J, Pearlman RE, Hamilton EP, Orias E, Eisen JA, Methé BA. Refined annotation and assembly of the Tetrahymena thermophila genome sequence through EST analysis, comparative genomic hybridization, and targeted gap closure. BMC Genomics 2008; 9:562. [PMID: 19036158 PMCID: PMC2612030 DOI: 10.1186/1471-2164-9-562] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 11/26/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tetrahymena thermophila, a widely studied model for cellular and molecular biology, is a binucleated single-celled organism with a germline micronucleus (MIC) and somatic macronucleus (MAC). The recent draft MAC genome assembly revealed low sequence repetitiveness, a result of the epigenetic removal of invasive DNA elements found only in the MIC genome. Such low repetitiveness makes complete closure of the MAC genome a feasible goal, which to achieve would require standard closure methods as well as removal of minor MIC contamination of the MAC genome assembly. Highly accurate preliminary annotation of Tetrahymena's coding potential was hindered by the lack of both comparative genomic sequence information from close relatives and significant amounts of cDNA evidence, thus limiting the value of the genomic information and also leaving unanswered certain questions, such as the frequency of alternative splicing. RESULTS We addressed the problem of MIC contamination using comparative genomic hybridization with purified MIC and MAC DNA probes against a whole genome oligonucleotide microarray, allowing the identification of 763 genome scaffolds likely to contain MIC-limited DNA sequences. We also employed standard genome closure methods to essentially finish over 60% of the MAC genome. For the improvement of annotation, we have sequenced and analyzed over 60,000 verified EST reads from a variety of cellular growth and development conditions. Using this EST evidence, a combination of automated and manual reannotation efforts led to updates that affect 16% of the current protein-coding gene models. By comparing EST abundance, many genes showing apparent differential expression between these conditions were identified. Rare instances of alternative splicing and uses of the non-standard amino acid selenocysteine were also identified. CONCLUSION We report here significant progress in genome closure and reannotation of Tetrahymena thermophila. Our experience to date suggests that complete closure of the MAC genome is attainable. Using the new EST evidence, automated and manual curation has resulted in substantial improvements to the over 24,000 gene models, which will be valuable to researchers studying this model organism as well as for comparative genomics purposes.
Collapse
Affiliation(s)
- Robert S Coyne
- J. Craig Venter Institute (formerly The Institute for Genomic Research), 9704 Medical Center Dr., Rockville, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lobanov AV, Fomenko DE, Zhang Y, Sengupta A, Hatfield DL, Gladyshev VN. Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biol 2008; 8:R198. [PMID: 17880704 PMCID: PMC2375036 DOI: 10.1186/gb-2007-8-9-r198] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 09/18/2007] [Accepted: 09/19/2007] [Indexed: 12/23/2022] Open
Abstract
In silico and metabolic labeling studies of the selenoproteomes of several eukaryotes revealed distinct selenoprotein patterns as well as an ancient origin of selenoproteins and massive, independent losses in land plants, fungi, nematodes, insects and some protists, suggesting that the environment plays an important role in selenoproteome evolution. Background Selenocysteine (Sec) is a selenium-containing amino acid that is co-translationally inserted into nascent polypeptides by recoding UGA codons. Selenoproteins occur in both eukaryotes and prokaryotes, but the selenoprotein content of organisms (selenoproteome) is highly variable and some organisms do not utilize Sec at all. Results We analyzed the selenoproteomes of several model eukaryotes and detected 26 and 29 selenoprotein genes in the green algae Ostreococcus tauri and Ostreococcus lucimarinus, respectively, five in the social amoebae Dictyostelium discoideum, three in the fly Drosophila pseudoobscura, and 16 in the diatom Thalassiosira pseudonana, including several new selenoproteins. Distinct selenoprotein patterns were verified by metabolic labeling of O. tauri and D. discoideum with 75Se. More than half of the selenoprotein families were shared by unicellular eukaryotes and mammals, consistent with their ancient origin. Further analyses identified massive, independent selenoprotein losses in land plants, fungi, nematodes, insects and some protists. Comparative analyses of selenoprotein-rich and -deficient organisms revealed that aquatic organisms generally have large selenoproteomes, whereas several groups of terrestrial organisms reduced their selenoproteomes through loss of selenoprotein genes and replacement of Sec with cysteine. Conclusion Our data suggest many selenoproteins originated at the base of the eukaryotic domain and show that the environment plays an important role in selenoproteome evolution. In particular, aquatic organisms apparently retained and sometimes expanded their selenoproteomes, whereas the selenoproteomes of some terrestrial organisms were reduced or completely lost. These findings suggest a hypothesis that, with the exception of vertebrates, aquatic life supports selenium utilization, whereas terrestrial habitats lead to reduced use of this trace element due to an unknown environmental factor.
Collapse
Affiliation(s)
- Alexey V Lobanov
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Dmitri E Fomenko
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Yan Zhang
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Aniruddha Sengupta
- Section on the Molecular Biology of Selenium, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dolph L Hatfield
- Section on the Molecular Biology of Selenium, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vadim N Gladyshev
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
11
|
Larsson P, Hinas A, Ardell DH, Kirsebom LA, Virtanen A, Söderbom F. De novo search for non-coding RNA genes in the AT-rich genome of Dictyostelium discoideum: performance of Markov-dependent genome feature scoring. Genome Res 2008; 18:888-99. [PMID: 18347326 DOI: 10.1101/gr.069104.107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genome data are increasingly important in the computational identification of novel regulatory non-coding RNAs (ncRNAs). However, most ncRNA gene-finders are either specialized to well-characterized ncRNA gene families or require comparisons of closely related genomes. We developed a method for de novo screening for ncRNA genes with a nucleotide composition that stands out against the background genome based on a partial sum process. We compared the performance when assuming independent and first-order Markov-dependent nucleotides, respectively, and used Karlin-Altschul and Karlin-Dembo statistics to evaluate the significance of hits. We hypothesized that a first-order Markov-dependent process might have better power to detect ncRNA genes since nearest-neighbor models have been shown to be successful in predicting RNA structures. A model based on a first-order partial sum process (analyzing overlapping dinucleotides) had better sensitivity and specificity than a zeroth-order model when applied to the AT-rich genome of the amoeba Dictyostelium discoideum. In this genome, we detected 94% of previously known ncRNA genes (at this sensitivity, the false positive rate was estimated to be 25% in a simulated background). The predictions were further refined by clustering candidate genes according to sequence similarity and/or searching for an ncRNA-associated upstream element. We experimentally verified six out of 10 tested ncRNA gene predictions. We conclude that higher-order models, in combination with other information, are useful for identification of novel ncRNA gene families in single-genome analysis of D. discoideum. Our generalizable approach extends the range of genomic data that can be searched for novel ncRNA genes using well-grounded statistical methods.
Collapse
Affiliation(s)
- Pontus Larsson
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
12
|
Andersson JO, Sjögren ÅM, Horner DS, Murphy CA, Dyal PL, Svärd SG, Logsdon JM, Ragan MA, Hirt RP, Roger AJ. A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC Genomics 2007; 8:51. [PMID: 17298675 PMCID: PMC1805757 DOI: 10.1186/1471-2164-8-51] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 02/14/2007] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Comparative genomic studies of the mitochondrion-lacking protist group Diplomonadida (diplomonads) has been lacking, although Giardia lamblia has been intensively studied. We have performed a sequence survey project resulting in 2341 expressed sequence tags (EST) corresponding to 853 unique clones, 5275 genome survey sequences (GSS), and eleven finished contigs from the diplomonad fish parasite Spironucleus salmonicida (previously described as S. barkhanus). RESULTS The analyses revealed a compact genome with few, if any, introns and very short 3' untranslated regions. Strikingly different patterns of codon usage were observed in genes corresponding to frequently sampled ESTs versus genes poorly sampled, indicating that translational selection is influencing the codon usage of highly expressed genes. Rigorous phylogenomic analyses identified 84 genes--mostly encoding metabolic proteins--that have been acquired by diplomonads or their relatively close ancestors via lateral gene transfer (LGT). Although most acquisitions were from prokaryotes, more than a dozen represent likely transfers of genes between eukaryotic lineages. Many genes that provide novel insights into the genetic basis of the biology and pathogenicity of this parasitic protist were identified including 149 that putatively encode variant-surface cysteine-rich proteins which are candidate virulence factors. A number of genomic properties that distinguish S. salmonicida from its human parasitic relative G. lamblia were identified such as nineteen putative lineage-specific gene acquisitions, distinct mutational biases and codon usage and distinct polyadenylation signals. CONCLUSION Our results highlight the power of comparative genomic studies to yield insights into the biology of parasitic protists and the evolution of their genomes, and suggest that genetic exchange between distantly-related protist lineages may be occurring at an appreciable rate in eukaryote genome evolution.
Collapse
Affiliation(s)
- Jan O Andersson
- Institute of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Åsa M Sjögren
- The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - David S Horner
- Department of Zoology, The Natural History Museum, London, UK
- Dipartimento di Scienze Biomolecolare e Biotecnologie, University of Milan, Milan, Italy
| | - Colleen A Murphy
- Institute for Marine Biosciences, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | - Patricia L Dyal
- Department of Zoology, The Natural History Museum, London, UK
| | - Staffan G Svärd
- Institute of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - John M Logsdon
- Roy J. Carver Center for Comparative Genomics, Department of Biological Sciences, University of Iowa, Iowa City, USA
| | - Mark A Ragan
- Institute for Marine Biosciences, National Research Council of Canada, Halifax, Nova Scotia, Canada
- ARC Centre in Bioinformatics, and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Robert P Hirt
- Department of Zoology, The Natural History Museum, London, UK
- School of Biology, The Devonshire building, The University of Newcastle upon Tyne, UK
| | - Andrew J Roger
- The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
13
|
Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR, Badger JH, Ren Q, Amedeo P, Jones KM, Tallon LJ, Delcher AL, Salzberg SL, Silva JC, Haas BJ, Majoros WH, Farzad M, Carlton JM, Smith RK, Garg J, Pearlman RE, Karrer KM, Sun L, Manning G, Elde NC, Turkewitz AP, Asai DJ, Wilkes DE, Wang Y, Cai H, Collins K, Stewart BA, Lee SR, Wilamowska K, Weinberg Z, Ruzzo WL, Wloga D, Gaertig J, Frankel J, Tsao CC, Gorovsky MA, Keeling PJ, Waller RF, Patron NJ, Cherry JM, Stover NA, Krieger CJ, del Toro C, Ryder HF, Williamson SC, Barbeau RA, Hamilton EP, Orias E. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 2007; 4:e286. [PMID: 16933976 PMCID: PMC1557398 DOI: 10.1371/journal.pbio.0040286] [Citation(s) in RCA: 549] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 06/23/2006] [Indexed: 01/05/2023] Open
Abstract
The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction. The soma-like macronucleus (MAC), which possesses a genome processed from that of the MIC, is the center of gene expression and does not directly contribute DNA to sexual progeny. We report here the shotgun sequencing, assembly, and analysis of the MAC genome of T. thermophila, which is approximately 104 Mb in length and composed of approximately 225 chromosomes. Overall, the gene set is robust, with more than 27,000 predicted protein-coding genes, 15,000 of which have strong matches to genes in other organisms. The functional diversity encoded by these genes is substantial and reflects the complexity of processes required for a free-living, predatory, single-celled organism. This is highlighted by the abundance of lineage-specific duplications of genes with predicted roles in sensing and responding to environmental conditions (e.g., kinases), using diverse resources (e.g., proteases and transporters), and generating structural complexity (e.g., kinesins and dyneins). In contrast to the other lineages of alveolates (apicomplexans and dinoflagellates), no compelling evidence could be found for plastid-derived genes in the genome. UGA, the only T. thermophila stop codon, is used in some genes to encode selenocysteine, thus making this organism the first known with the potential to translate all 64 codons in nuclear genes into amino acids. We present genomic evidence supporting the hypothesis that the excision of DNA from the MIC to generate the MAC specifically targets foreign DNA as a form of genome self-defense. The combination of the genome sequence, the functional diversity encoded therein, and the presence of some pathways missing from other model organisms makes T. thermophila an ideal model for functional genomic studies to address biological, biomedical, and biotechnological questions of fundamental importance.
Collapse
Affiliation(s)
- Jonathan A Eisen
- The Institute for Genomic Research, Rockville, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Allmang C, Krol A. Selenoprotein synthesis: UGA does not end the story. Biochimie 2006; 88:1561-71. [PMID: 16737768 DOI: 10.1016/j.biochi.2006.04.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 04/24/2006] [Indexed: 11/15/2022]
Abstract
It is well established that the beneficial effects of the trace element selenium are mediated by its major biological product, the amino acid selenocysteine, present in the active site of selenoproteins. These fulfill different functions, as varied as oxidation-reduction of metabolites in bacteria, reduction of reactive oxygen species, control of the redox status of the cell or thyroid hormone maturation. This review will focus on the singularities of the selenocysteine biosynthesis pathway and its unique incorporation mechanism into eukaryal selenoproteins. Selenocysteine biosynthesis from serine is achieved on tRNA(Sec) and requires four proteins. As this amino acid is encoded by an in-frame UGA codon, otherwise signaling termination of translation, ribosomes must be told not to stop at this position in the mRNA. Several molecular partners acting in cis or in trans have been identified, but their knowledge has not enabled yet to firmly establish the molecular events underlying this mechanism. Data suggest that other, so far uncharacterized factors might exist. In this survey, we attempted to compile all the data available in the literature and to describe the latest developments in the field.
Collapse
Affiliation(s)
- C Allmang
- Institut de Biologie Moléculaire et Cellulaire, UPR 9002 du CNRS Architecture et Réactivité de l'ARN. Université Louis-Pasteur, 15, rue René-Descartes, 67084 Strasbourg Cedex, France
| | | |
Collapse
|
15
|
Lobanov AV, Delgado C, Rahlfs S, Novoselov SV, Kryukov GV, Gromer S, Hatfield DL, Becker K, Gladyshev VN. The Plasmodium selenoproteome. Nucleic Acids Res 2006; 34:496-505. [PMID: 16428245 PMCID: PMC1342035 DOI: 10.1093/nar/gkj450] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The use of selenocysteine (Sec) as the 21st amino acid in the genetic code has been described in all three major domains of life. However, within eukaryotes, selenoproteins are only known in animals and algae. In this study, we characterized selenoproteomes and Sec insertion systems in protozoan Apicomplexa parasites. We found that among these organisms, Plasmodium and Toxoplasma utilized Sec, whereas Cryptosporidium did not. However, Plasmodium had no homologs of known selenoproteins. By searching computationally for evolutionarily conserved selenocysteine insertion sequence (SECIS) elements, which are RNA structures involved in Sec insertion, we identified four unique Plasmodium falciparum selenoprotein genes. These selenoproteins were incorrectly annotated in PlasmoDB, were conserved in other Plasmodia and had no detectable homologs in other species. We provide evidence that two Plasmodium SECIS elements supported Sec insertion into parasite and endogenous selenoproteins when they were expressed in mammalian cells, demonstrating that the Plasmodium SECIS elements are functional and indicating conservation of Sec insertion between Apicomplexa and animals. Dependence of the plasmodial parasites on selenium suggests possible strategies for antimalarial drug development.
Collapse
Affiliation(s)
- Alexey V. Lobanov
- Department of Biochemistry, University of NebraskaLincoln, NE 68588, USA
| | - Cesar Delgado
- Department of Biochemistry, University of NebraskaLincoln, NE 68588, USA
- Department of Computer Science, University of NebraskaLincoln, NE 68588, USA
| | - Stefan Rahlfs
- Interdisziplinäres Forschungszentrum, Justus-Liebig University GiessenHeinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | - Gregory V. Kryukov
- Department of Biochemistry, University of NebraskaLincoln, NE 68588, USA
| | - Stephan Gromer
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 504D-69120 Heidelberg, Germany
| | - Dolph L. Hatfield
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Katja Becker
- Interdisziplinäres Forschungszentrum, Justus-Liebig University GiessenHeinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Vadim N. Gladyshev
- Department of Biochemistry, University of NebraskaLincoln, NE 68588, USA
- To whom correspondence should be addressed. Tel: +1 402 472 4948; Fax: +1 402 472 7842;
| |
Collapse
|
16
|
Hatfield DL, Carlson BA, Xu XM, Mix H, Gladyshev VN. Selenocysteine Incorporation Machinery and the Role of Selenoproteins in Development and Health. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:97-142. [PMID: 16891170 DOI: 10.1016/s0079-6603(06)81003-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Dolph L Hatfield
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|