1
|
Nieto-Garai JA, Contreras FX, Arboleya A, Lorizate M. Role of Protein-Lipid Interactions in Viral Entry. Adv Biol (Weinh) 2022; 6:e2101264. [PMID: 35119227 DOI: 10.1002/adbi.202101264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Indexed: 12/25/2022]
Abstract
The viral entry consists of several sequential events that ensure the attachment of the virus to the host cell and the introduction of its genetic material for the continuation of the replication cycle. Both cellular and viral lipids have gained a wider focus in recent years in the field of viral entry, as they are found to play key roles in different steps of the process. The specific role is summarized that lipids and lipid membrane nanostructures play in viral attachment, fusion, and immune evasion and how they can be targeted with antiviral therapies. Finally, some of the limitations of techniques commonly used for protein-lipid interactions studies are discussed, and new emerging tools are reviewed that can be applied to this field.
Collapse
Affiliation(s)
- Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain
| | - Francesc-Xabier Contreras
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Aroa Arboleya
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Barrio Sarriena s/n, Leioa, E-48940, Spain
| | - Maier Lorizate
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
| |
Collapse
|
2
|
Mishra S, Pandey A, Manvati S. Coumarin: An emerging antiviral agent. Heliyon 2020; 6:e03217. [PMID: 32042967 PMCID: PMC7002824 DOI: 10.1016/j.heliyon.2020.e03217] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/08/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Viral infections are responsible for many illnesses, and recent outbreaks have raised public health concerns. Despite the availability of many antiviral drugs, they are often unsuccessful due to the generation of viral mutants and less effective against their target virus. Identifying novel antiviral drugs is therefore of critical importance and natural products are an excellent source for such discoveries. Coumarin is one such natural compound that is a potential drug candidate owing to its properties of stability, solubility, and low toxicity. There are numerous evidences showing its inhibitory role against infection of various viruses such as HIV, Influenza, Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16). The mechanisms involve either inhibition of proteins essential for viral entry, replication and infection or regulation of cellular pathways such as Akt-Mtor (mammalian target of rapamycin), NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), and anti-oxidative pathway including NrF-2 (The nuclear factor erythroid 2 (NFE2)-related factor 2). This review summarizes the present state of understanding with a focus on coumarin's antiviral effect and their possible molecular mechanisms against Influenza virus, HIV, Hepatitis virus, Dengue virus and Chikungunya virus.
Collapse
Affiliation(s)
| | | | - Siddharth Manvati
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Feizpour A, Stelter D, Wong C, Akiyama H, Gummuluru S, Keyes T, Reinhard BM. Membrane Fluidity Sensing on the Single Virus Particle Level with Plasmonic Nanoparticle Transducers. ACS Sens 2017; 2:1415-1423. [PMID: 28933537 DOI: 10.1021/acssensors.7b00226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Viral membranes are nanomaterials whose fluidity depends on their composition, in particular, the cholesterol (chol) content. As differences in the membrane composition of individual virus particles can lead to different intracellular fates, biophysical tools capable of sensing the membrane fluidity on the single-virus level are required. In this manuscript, we demonstrate that fluctuations in the polarization of light scattered off gold or silver nanoparticle (NP)-labeled virus-like-particles (VLPs) encode information about the membrane fluidity of individual VLPs. We developed plasmonic polarization fluctuation tracking microscopy (PFTM) which facilitated the investigation of the effect of chol content on the membrane fluidity and its dependence on temperature, for the first time on the single-VLP level. Chol extraction studies with different methyl-β-cyclodextrin (MβCD) concentrations yielded a gradual decrease in polarization fluctuations as a function of time. The rate of chol extraction for individual VLPs showed a broad spread, presumably due to differences in the membrane composition for the individual VLPs, and this heterogeneity increased with decreasing MβCD concentration.
Collapse
Affiliation(s)
| | | | | | - Hisashi Akiyama
- Department
of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Suryaram Gummuluru
- Department
of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | | | | |
Collapse
|
4
|
Dumas F, Haanappel E. Lipids in infectious diseases - The case of AIDS and tuberculosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1636-1647. [PMID: 28535936 DOI: 10.1016/j.bbamem.2017.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/11/2017] [Accepted: 05/14/2017] [Indexed: 02/07/2023]
Abstract
Lipids play a central role in many infectious diseases. AIDS (Acquired Immune Deficiency Syndrome) and tuberculosis are two of the deadliest infectious diseases to have struck mankind. The pathogens responsible for these diseases, Human Immunodeficiency Virus-1 and Mycobacterium tuberculosis, rely on lipids and on lipid membrane properties to gain access to their host cells, to persist in them and ultimately to egress from their hosts. In this Review, we discuss the life cycles of these pathogens and the roles played by lipids and membranes. We then give an overview of therapies that target lipid metabolism, modulate host membrane properties or implement lipid-based drug delivery systems. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Fabrice Dumas
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France.
| | - Evert Haanappel
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
5
|
Smirnov VS, Slita AV, Garshinina AV, Belyaevskaya SV, Anikin AV, Zarubaev VV. [The effect of combination of glycyrrhizic acid with alpha-glutamyl-tryptophan on the experimental adenoviral infection]. Vopr Virusol 2016; 61:125-131. [PMID: 36494946 DOI: 10.18821/0507-4088-2016-61-2-125-131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/12/2020] [Indexed: 12/13/2022]
Abstract
In this work, the activity of glycyrrhizic acid (GL) and dipeptide alpha-glutamyl-tryptophane (EW) as single preparations or in combination (GL+EW) against experimental adenoviral infection in the syrian hamsters was studied. Application of gl and GL+EW was shown to decrease the level of the adenovirus replication in liver tissue by 0.6 - 1.2 lgTCID50 depending on the composition and time point of the post infection. It was also demonstrated that normalization of the structure of the liver tissue was required, which was shown on the level of both optical and electron microscopy. The results obtained in this work suggest that gl and GL+EW may be considered as potential component of the complex therapy of adenoviral infection.
Collapse
|
6
|
Korchowiec B, Gorczyca M, Wojszko K, Janikowska M, Henry M, Rogalska E. Impact of two different saponins on the organization of model lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1963-73. [PMID: 26055895 DOI: 10.1016/j.bbamem.2015.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 11/16/2022]
Abstract
Saponins, naturally occurring plant compounds are known for their biological and pharmacological activity. This activity is strongly related to the amphiphilic character of saponins that allows them to aggregate in aqueous solution and interact with membrane components. In this work, Langmuir monolayer techniques combined with polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and Brewster angle microscopy were used to study the interaction of selected saponins with lipid model membranes. Two structurally different saponins were used: digitonin and a commercial Merck Saponin. Membranes of different composition, namely, cholesterol, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine or 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) were formed at the air/water and air/saponin solution interfaces. The saponin-lipid interaction was characterized by changes in surface pressure, surface potential, surface morphology and PM-IRRAS signal. Both saponins interact with model membranes and change the physical state of membranes by perturbing the lipid acyl chain orientation. The changes in membrane fluidity were more significant upon the interaction with Merck Saponin. A higher affinity of saponins for cholesterol than phosphatidylglycerols was observed. Moreover, our results indicate that digitonin interacts strongly with cholesterol and solubilize the cholesterol monolayer at higher surface pressures. It was shown, that digitonin easily penetrate to the cholesterol monolayer and forms a hydrogen bond with the hydroxyl groups. These findings might be useful in further understanding of the saponin action at the membrane interface and of the mechanism of membrane lysis.
Collapse
Affiliation(s)
- Beata Korchowiec
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland.
| | - Marcelina Gorczyca
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland
| | - Kamila Wojszko
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland; Structure et Réactivité des Systèmes Moléculaires Complexes, BP 239, CNRS/Université de Lorraine, 54506 Vandoeuvre-lès-Nancy cedex, France
| | - Maria Janikowska
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland; Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, ul. S. Lojasiewicza 11, 30-348 Krakow, Poland
| | - Max Henry
- Structure et Réactivité des Systèmes Moléculaires Complexes, BP 239, CNRS/Université de Lorraine, 54506 Vandoeuvre-lès-Nancy cedex, France
| | - Ewa Rogalska
- Structure et Réactivité des Systèmes Moléculaires Complexes, BP 239, CNRS/Université de Lorraine, 54506 Vandoeuvre-lès-Nancy cedex, France.
| |
Collapse
|
7
|
Matsuda K, Hattori S, Kariya R, Komizu Y, Kudo E, Goto H, Taura M, Ueoka R, Kimura S, Okada S. Inhibition of HIV-1 entry by the tricyclic coumarin GUT-70 through the modification of membrane fluidity. Biochem Biophys Res Commun 2015; 457:288-294. [PMID: 25576356 DOI: 10.1016/j.bbrc.2014.12.102] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 12/23/2014] [Indexed: 11/20/2022]
Abstract
Membrane fusion between host cells and HIV-1 is the initial step in HIV-1 infection, and plasma membrane fluidity strongly influences infectivity. In the present study, we demonstrated that GUT-70, a natural product derived from Calophyllum brasiliense, stabilized plasma membrane fluidity, inhibited HIV-1 entry, and down-regulated the expression of CD4, CCR5, and CXCR4. Since GUT-70 also had an inhibitory effect on viral replication through the inhibition of NF-κB, it is expected to be used as a dual functional and viral mutation resistant reagent. Thus, these unique properties of GUT-70 enable the development of novel therapeutic agents against HIV-1 infection.
Collapse
Affiliation(s)
- Kouki Matsuda
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Shinichiro Hattori
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Yuji Komizu
- Division of Applied Life Science, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Eriko Kudo
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroki Goto
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Manabu Taura
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Ryuichi Ueoka
- Division of Applied Life Science, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| |
Collapse
|
8
|
Distinct mechanisms regulate exposure of neutralizing epitopes in the V2 and V3 loops of HIV-1 envelope. J Virol 2014; 88:12853-65. [PMID: 25165106 DOI: 10.1128/jvi.02125-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Broadly neutralizing antibodies targeting the HIV-1 envelope (Env) are key components for protection against HIV-1. However, many cross-reactive epitopes are often occluded. This study investigates the mechanisms contributing to the masking of V2i (variable loop V2 integrin) epitopes compared to the accessibility of V3 epitopes. V2i are conformation-dependent epitopes encompassing the integrin α4β7-binding motif on the V1V2 loop of HIV-1 Env gp120. The V2i monoclonal antibodies (MAbs) display extensive cross-reactivity with gp120 monomers from many subtypes but neutralize only few viruses, indicating V2i's cryptic nature. First, we asked whether CD4-induced Env conformational changes affect V2i epitopes similarly to V3. CD4 treatment of BaL and JRFL pseudoviruses increased their neutralization sensitivity to V3 MAbs but not to the V2i MAbs. Second, the contribution of N-glycans in masking V2i versus V3 epitopes was evaluated by testing the neutralization of pseudoviruses produced in the presence of a glycosidase inhibitor, kifunensine. Viruses grown in kifunensine were more sensitive to neutralization by V3 but not V2i MAbs. Finally, we evaluated the time-dependent dynamics of the V2i and V3 epitopes. Extending the time of virus-MAb interaction to 18 h before adding target cells increased virus neutralization by some V2i MAbs and all V3 MAbs tested. Consistent with this, V2i MAb binding to Env on the surface of transfected cells also increased in a time-dependent manner. Hence, V2i and V3 epitopes are highly dynamic, but distinct factors modulate the antibody accessibility of these epitopes. The study reveals the importance of the structural dynamics of V2i and V3 epitopes in determining HIV-1 neutralization by antibodies targeting these sites. IMPORTANCE Conserved neutralizing epitopes are present in the V1V2 and V3 regions of HIV-1 Env, but these epitopes are often occluded from Abs. This study reveals that distinct mechanisms contribute to the masking of V3 epitopes and V2i epitopes in the V1V2 domain. Importantly, V3 MAbs and some V2i MAbs display greater neutralization against relatively resistant HIV-1 isolates when the MAbs interact with the virus for a prolonged period of time. Given their highly immunogenic nature, V3 and V2i epitopes are valuable targets that would augment the efficacy of HIV vaccines.
Collapse
|
9
|
Anggakusuma, Colpitts CC, Schang LM, Rachmawati H, Frentzen A, Pfaender S, Behrendt P, Brown RJP, Bankwitz D, Steinmann J, Ott M, Meuleman P, Rice CM, Ploss A, Pietschmann T, Steinmann E. Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver cells. Gut 2014; 63:1137-49. [PMID: 23903236 DOI: 10.1136/gutjnl-2012-304299] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Hepatitis C virus (HCV) infection causes severe liver disease and affects more than 160 million individuals worldwide. People undergoing liver organ transplantation face universal re-infection of the graft. Therefore, affordable antiviral strategies targeting the early stages of infection are urgently needed to prevent the recurrence of HCV infection. The aim of the study was to determine the potency of turmeric curcumin as an HCV entry inhibitor. DESIGN The antiviral activity of curcumin and its derivatives was evaluated using HCV pseudo-particles (HCVpp) and cell-culture-derived HCV (HCVcc) in hepatoma cell lines and primary human hepatocytes. The mechanism of action was dissected using R18-labelled virions and a membrane fluidity assay. RESULTS Curcumin treatment had no effect on HCV RNA replication or viral assembly/release. However, co-incubation of HCV with curcumin potently inhibited entry of all major HCV genotypes. Similar antiviral activities were also exerted by other curcumin derivatives but not by tetrahydrocurcumin, suggesting the importance of α,β-unsaturated ketone groups for the antiviral activity. Expression levels of known HCV receptors were unaltered, while pretreating the virus with the compound reduced viral infectivity without viral lysis. Membrane fluidity experiments indicated that curcumin affected the fluidity of the HCV envelope resulting in impairment of viral binding and fusion. Curcumin has also been found to inhibit cell-to-cell transmission and to be effective in combination with other antiviral agents. CONCLUSIONS Turmeric curcumin inhibits HCV entry independently of the genotype and in primary human hepatocytes by affecting membrane fluidity thereby impairing virus binding and fusion.
Collapse
|
10
|
Matsuda K, Hattori S, Komizu Y, Kariya R, Ueoka R, Okada S. Cepharanthine inhibited HIV-1 cell-cell transmission and cell-free infection via modification of cell membrane fluidity. Bioorg Med Chem Lett 2014; 24:2115-7. [PMID: 24704028 DOI: 10.1016/j.bmcl.2014.03.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 11/15/2022]
Abstract
The anti-HIV-1 activity of cepharanthine (CEP), a natural product derived from Stephania cepharantha Hayata, was evaluated. CEP stabilized plasma membrane fluidity and inhibited HIV-1 envelope-dependent cell-to-cell fusion of HIV-1-infected cells as well as cell-free infection. It is suggested that CEP inhibited the HIV-1 entry process by reducing plasma membrane fluidity, and the plasma membrane is therefore an identical target to prevent viral infection.
Collapse
Affiliation(s)
- Kouki Matsuda
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Shinichiro Hattori
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Yuji Komizu
- Division of Applied Life Science, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Ryuichi Ueoka
- Division of Applied Life Science, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| |
Collapse
|
11
|
5-(Perylen-3-yl)ethynyl-arabino-uridine (aUY11), an arabino-based rigid amphipathic fusion inhibitor, targets virion envelope lipids to inhibit fusion of influenza virus, hepatitis C virus, and other enveloped viruses. J Virol 2013; 87:3640-54. [PMID: 23283943 DOI: 10.1128/jvi.02882-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Entry of enveloped viruses requires fusion of viral and cellular membranes. Fusion requires the formation of an intermediate stalk structure, in which only the outer leaflets are fused. The stalk structure, in turn, requires the lipid bilayer of the envelope to bend into negative curvature. This process is inhibited by enrichment in the outer leaflet of lipids with larger polar headgroups, which favor positive curvature. Accordingly, phospholipids with such shape inhibit viral fusion. We previously identified a compound, 5-(perylen-3-yl)ethynyl-2'-deoxy-uridine (dUY11), with overall shape and amphipathicity similar to those of these phospholipids. dUY11 inhibited the formation of the negative curvature necessary for stalk formation and the fusion of a model enveloped virus, vesicular stomatitis virus (VSV). We proposed that dUY11 acted by biophysical mechanisms as a result of its shape and amphipathicity. To test this model, we have now characterized the mechanisms against influenza virus and HCV of 5-(perylen-3-yl)ethynyl-arabino-uridine (aUY11), which has shape and amphipathicity similar to those of dUY11 but contains an arabino-nucleoside. aUY11 interacted with envelope lipids to inhibit the infectivity of influenza virus, hepatitis C virus (HCV), herpes simplex virus 1 and 2 (HSV-1/2), and other enveloped viruses. It specifically inhibited the fusion of influenza virus, HCV, VSV, and even protein-free liposomes to cells. Furthermore, aUY11 inhibited the formation of negative curvature in model lipid bilayers. In summary, the arabino-derived aUY11 and the deoxy-derived dUY11 act by the same antiviral mechanisms against several enveloped but otherwise unrelated viruses. Therefore, chemically unrelated compounds of appropriate shape and amphipathicity target virion envelope lipids to inhibit formation of the negative curvature required for fusion, inhibiting infectivity by biophysical, not biochemical, mechanisms.
Collapse
|
12
|
Roesch F, Meziane O, Kula A, Nisole S, Porrot F, Anderson I, Mammano F, Fassati A, Marcello A, Benkirane M, Schwartz O. Hyperthermia stimulates HIV-1 replication. PLoS Pathog 2012; 8:e1002792. [PMID: 22807676 PMCID: PMC3395604 DOI: 10.1371/journal.ppat.1002792] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/24/2012] [Indexed: 01/05/2023] Open
Abstract
HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42–45°C) and Heat Shock Proteins (HSPs) modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38–40°C) on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C) increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity. Fever is a complex reaction triggered in response to pathogen infection. It induces diverse effects on the human body and especially on the immune system. The functions of immune cells are positively affected by fever, helping them to fight infection. Fever consists in a physiological elevation of temperature and in inflammation. While the role of inflammatory molecules on HIV-1 replication has been widely studied, little is known about the direct effect of temperature on viral replication. Here, we report that hyperthermia (39.5°C) boosts HIV-1 replication in CD4+ T cells. In single-cycle infection experiments, hyperthermia increased HIV-1 infection up to 7-fold. This effect was mediated in part by an increased activation of the HIV-1 promoter by the viral protein Tat. Our results also indicate that hyperthermia may help HIV-1 to reactivate from latency. We also show that the Heat Shock Protein Hsp90, which levels are increased at 39.5°C, mediates in a large part the positive effect of hyperthermia on HIV-1 infection. Our work suggests that in HIV-1-infected patients, fever episodes may facilitate viral replication.
Collapse
Affiliation(s)
- Ferdinand Roesch
- Institut Pasteur, Unité Virus et Immunité, Département de Virologie, Paris, France
- CNRS, URA3015, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Oussama Meziane
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, Montpellier, France
- CNRS, UPR1142, Montpellier, France
| | - Anna Kula
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Sébastien Nisole
- Institut Pasteur, Unité de Virologie Moléculaire et Vaccinologie, Paris, France
| | - Françoise Porrot
- Institut Pasteur, Unité Virus et Immunité, Département de Virologie, Paris, France
- CNRS, URA3015, Paris, France
| | - Ian Anderson
- Wohl Virion Centre, Division of Infection and Immunity, MRC Centre for Medical & Molecular Virology, University College London, London, United Kingdom
| | - Fabrizio Mammano
- INSERM U941, Hôpital Saint Louis, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, UMRS 941, Paris, France
| | - Ariberto Fassati
- Wohl Virion Centre, Division of Infection and Immunity, MRC Centre for Medical & Molecular Virology, University College London, London, United Kingdom
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Monsef Benkirane
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, Montpellier, France
- CNRS, UPR1142, Montpellier, France
| | - Olivier Schwartz
- Institut Pasteur, Unité Virus et Immunité, Département de Virologie, Paris, France
- CNRS, URA3015, Paris, France
- * E-mail:
| |
Collapse
|
13
|
Cai L, Gochin M, Liu K. Biochemistry and biophysics of HIV-1 gp41 - membrane interactions and implications for HIV-1 envelope protein mediated viral-cell fusion and fusion inhibitor design. Curr Top Med Chem 2012; 11:2959-84. [PMID: 22044229 DOI: 10.2174/156802611798808497] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/16/2011] [Accepted: 12/01/2011] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1), the pathogen of acquired immunodeficiency syndrome (AIDS), causes ~2 millions death every year and still defies an effective vaccine. HIV-1 infects host cells through envelope protein - mediated virus-cell fusion. The transmembrane subunit of envelope protein, gp41, is the molecular machinery which facilitates fusion. Its ectodomain contains several distinguishing functional domains, fusion peptide (FP), Nterminal heptad repeat (NHR), C-terminal heptad repeat (CHR) and membrane proximal extracellular region (MPER). During the fusion process, FP inserts into the host cell membrane, and an extended gp41 prehairpin conformation bridges the viral and cell membranes through MPER and FP respectively. Subsequent conformational change of the unstable prehairpin results in a coiled-coil 6-helix bundle (6HB) structure formed between NHR and CHR. The energetics of 6HB formation drives membrane apposition and fusion. Drugs targeting gp41 functional domains to prevent 6HB formation inhibit HIV-1 infection. T20 (enfuvirtide, Fuzeon) was approved by the US FDA in 2003 as the first fusion inhibitor. It is a 36-residue peptide from the gp41 CHR, and it inhibits 6HB formation by targeting NHR and lipids. Development of new fusion inhibitors, especially small molecule drugs, is encouraged to overcome the shortcomings of T20 as a peptide drug. Hydrophobic characteristics and membrane association are critical for gp41 function and mechanism of action. Research in gp41-membrane interactions, using peptides corresponding to specific functional domains, or constructs including several interactive domains, are reviewed here to get a better understanding of gp41 mediated virus-cell fusion that can inform or guide the design of new HIV-1 fusion inhibitors.
Collapse
Affiliation(s)
- Lifeng Cai
- Beijing Institute of Pharmacology & Toxicology, Haidian District, Beijing 100850, China.
| | | | | |
Collapse
|
14
|
Sensitivity to electrical stimulation of human immunodeficiency virus type 1 and MAGIC-5 cells. AMB Express 2011; 1:23. [PMID: 21906386 PMCID: PMC3222307 DOI: 10.1186/2191-0855-1-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/08/2011] [Indexed: 11/15/2022] Open
Abstract
To determine the sensitivities to low electrical potential of human immunodeficiency virus type 1 (HIV-1) and its target cells, HIV-1 and MAGIC-5 cells were directly stimulated with a constant direct current potential of 1.0 V (vs. Ag/AgCl). HIV-1 was incubated for 3 h at 37°C on a poly-L-lysine-coated indium-tin oxide electrode, and then stimulated by an electrical potential. MAGIC-5 cells were seeded onto the electrically stimulated HIV-1 and cultured for 3 days at 37°C. HIV-1-infected cells were measured by multinuclear activation via a galactosidase indicator assay. MAGIC-5 cells were also stimulated by an electrical potential of 1.0 V; cell damage, proliferation and apoptosis were evaluated by trypan blue staining, cell counting and in situ apoptosis detection, respectively. HIV-1 was found to be damaged to a greater extent by electrical stimulation than the cells. In particular, after application of a 1.0-V potential for 3 min, HIV-1LAI and HIV-1KMT infection were inhibited by about 90%, but changes in cell damage, proliferation and apoptosis were virtually undetectable. These results suggested that HIV-1 is significantly more susceptible to low electrical potential than cells. This finding could form the basis of a novel therapeutic strategy against HIV-1 infection.
Collapse
|
15
|
Helical conformation of the SEVI precursor peptide PAP248-286, a dramatic enhancer of HIV infectivity, promotes lipid aggregation and fusion. Biophys J 2010; 97:2474-83. [PMID: 19883590 DOI: 10.1016/j.bpj.2009.08.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/09/2009] [Accepted: 08/12/2009] [Indexed: 01/27/2023] Open
Abstract
In previous in vivo studies, amyloid fibers formed from a peptide ubiquitous in human seminal fluid (semen-derived enhancer of viral infection (SEVI)) were found to dramatically enhance the infectivity of the HIV virus (3-5 orders of magnitude by some measures). To complement those studies, we performed in vitro assays of PAP(248-286), the most active precursor to SEVI, and other polycationic polymers to investigate the physical mechanisms by which the PAP(248-286) promotes the interaction with lipid bilayers. At acidic (but not at neutral) pH, freshly dissolved PAP(248-286) catalyzes the formation of large lipid flocculates in a variety of membrane compositions, which may be linked to the promotion of convective transport in the vaginal environment rather than transport by a random Brownian motion. Furthermore, PAP(248-286) is itself fusiogenic and weakens the integrity of the membrane in such a way that may promote fusion by the HIV gp41 protein. An alpha-helical conformation of PAP(248-286), lying parallel to the membrane surface, is implicated in promoting bridging interactions between membranes by the screening of the electrostatic repulsion that occurs when two membranes are brought into close contact. This suggests that nonspecific binding of monomeric or small oligomeric forms of SEVI in a helical conformation to lipid membranes may be an additional mechanism by which SEVI enhances the infectivity of the HIV virus.
Collapse
|
16
|
Amaral AI, Coroadinha AS, Merten OW, Alves PM. Improving retroviral vectors production: Role of carbon sources in lipid biosynthesis. J Biotechnol 2008; 138:57-66. [DOI: 10.1016/j.jbiotec.2008.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 08/14/2008] [Accepted: 08/19/2008] [Indexed: 11/28/2022]
|
17
|
Harada S, Monde K, Tanaka Y, Kimura T, Maeda Y, Yusa K. Neutralizing antibodies decrease the envelope fluidity of HIV-1. Virology 2008; 370:142-50. [PMID: 17900650 DOI: 10.1016/j.virol.2007.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/06/2007] [Accepted: 08/17/2007] [Indexed: 11/28/2022]
Abstract
For successful penetration of HIV-1, the formation of a fusion pore may be required in order to accumulate critical numbers of fusion-activated gp41 with the help of fluidization of the plasma membrane and viral envelope. An increase in temperature to 40 degrees C after viral adsorption at 25 degrees C enhanced the infectivity by 1.4-fold. The enhanced infectivity was inhibited by an anti-CXCR4 peptide, T140, and anti-V3 monoclonal antibodies (0.5beta and 694/98-D) by post-attachment neutralization, but not by non-neutralizing antibodies (670-30D and 246-D) specific for the C5 of gp120 and cluster I of gp41, respectively. Anti-HLA-II and an anti-HTLV-I gp46 antibody, LAT27, neutralized the molecule-carrying HIV-1(C-2(MT-2)). The anti-V3 antibodies suppressed the fluidity of the HIV-1(C-2) envelope, whereas the non-neutralizing antibodies did not. The anti-HLA-II antibody decreased the envelope fluidity of HIV-1(C-2(MT-2)), but not that of HIV-1(C-2). Therefore, fluidity suppression by these antibodies represents an important neutralization mechanism, in addition to inhibition of viral attachment.
Collapse
Affiliation(s)
- Shinji Harada
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Zolla-Pazner S, Cohen SS, Krachmarov C, Wang S, Pinter A, Lu S. Focusing the immune response on the V3 loop, a neutralizing epitope of the HIV-1 gp120 envelope. Virology 2007; 372:233-46. [PMID: 18061228 DOI: 10.1016/j.virol.2007.09.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 06/25/2007] [Accepted: 09/20/2007] [Indexed: 11/28/2022]
Abstract
Rabbits were immunized with a novel regimen designed to focus the immune response on a single neutralizing epitope of HIV-1 gp120 and thereby preferentially induce neutralizing antibodies (Abs). Animals were primed with gp120 DNA from a clade A Env bearing the GPGR V3 motif and/or a clade C Env bearing the GPGQ V3 motif, and boosted with one or more fusion proteins containing V3 sequences from clades A, B and/or C. Immune sera neutralized three of four Tier 1 primary isolates, including strains heterologous to the immunizing strains, and potent cross-clade-neutralizing activity was demonstrated against V3 chimeric pseudoviruses carrying in a Tier 1 Env, the consensus V3 sequences from clades A1, AG, B, AE, or F. The broadest and most potent neutralizing responses were elicited with the clade C gp120 DNA and a combination of V3-fusion proteins from clades A, B and C. Neutralizing activity was primarily due to V3-specific Abs. The results demonstrate that the immune response can be focused on a neutralizing epitope and show that the anti-V3 Abs induced recognize a diverse set of V3 loops.
Collapse
|
19
|
Harada S, Yokomizo K, Monde K, Maeda Y, Yusa K. A broad antiviral neutral glycolipid, fattiviracin FV-8, is a membrane fluidity modulator. Cell Microbiol 2007; 9:196-203. [PMID: 17222192 DOI: 10.1111/j.1462-5822.2006.00781.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To screen for an effective antiviral compound which acts as a membrane fluidity modulator, dichotomous effects on human immunodeficiency virus type 1 (HIV-1) infection due to different treatments of several glycolipids and lipids were examined. Continuous treatment of infected cells with 40 microg ml(-1) fattiviracin FV-8, a neutral glycolipid isolated from Streptomycetes, inhibited HIV-1 infection by 96%, whereas pretreatment with 400 microg ml(-1) enhanced infectivity 4.7-fold. The glycolipid showed similar effects as glycyrrhizin; it inhibited infection by broad enveloped viruses, blocked cell-cell fusion, reduced the infectivity of treated virions and enhanced susceptibility to viral infection and cell-cell fusion of cells pretreated with high doses of the compound. Suppression and enhancement was correlated with decreased and increased fluidity of plasma membrane of the fattiviracin FV-8-treated cells. Restricted movement of membrane molecules might impede the formation of a wide fusion pore, and therefore be critical to the entry of viruses. Thus, this can be applied as a new strategy to inhibit viral infections.
Collapse
Affiliation(s)
- Shinji Harada
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | | | | | | | | |
Collapse
|
20
|
Harada S. The broad anti-viral agent glycyrrhizin directly modulates the fluidity of plasma membrane and HIV-1 envelope. Biochem J 2006; 392:191-9. [PMID: 16053446 PMCID: PMC1317678 DOI: 10.1042/bj20051069] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell entry of enveloped viruses requires a wide-fusion-pore mechanism, involving clustering of fusion-activated proteins and fluidization of the plasma membrane and viral envelope. In the present study, GL (glycyrrhizin) is reported to lower membrane fluidity, thus suppressing infection by HIV, influenza A virus and vesicular stomatitis virus, but not by poliovirus. GL-treated HIV-1 particles showed reduced infectivity. GL also inhibited cell-to-cell fusion induced by HIV-1 and HTLV-I (human T-cell leukaemia virus type I). However, when cells treated with 1 mg/ml GL were placed in GL-free medium, they showed increased susceptibility to HIV-1 infection and HTLV-I fusion due to enhancement of membrane fluidity. The membrane dependence of GL and GL removal experiments suggest that GL does affect the cell entry of viruses. HIVs with more gp120 were less dependent on temperature and less sensitive to GL treatment than those with less gp120, indicating that the existence of more gp120 molecules resulted in a higher probability of forming a cluster of fusion-activated proteins.
Collapse
Affiliation(s)
- Shinji Harada
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|
21
|
Coroadinha AS, Silva AC, Pires E, Coelho A, Alves PM, Carrondo MJT. Effect of osmotic pressure on the production of retroviral vectors: Enhancement in vector stability. Biotechnol Bioeng 2006; 94:322-9. [PMID: 16528756 DOI: 10.1002/bit.20847] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The use of Moloney murine leukaemia virus (MoMLV) derived retroviral vectors in gene therapy requires the production of high titer preparations. However, obtaining high titers of infective MoMLV retroviral vectors is difficult due to the vector inherent instability. In this work the effect of the cell culture medium osmotic pressure upon the virus stability was studied. The osmolality of standard medium was raised from 335 up to 500 mOsm/kg using either ionic (sodium chloride) or non-ionic osmotic agents (sorbitol and fructose). It was observed that, independently of the osmotic agent used, the infectious vector inactivation rate was inversely correlated with the osmolality used in the production media; therefore, the use of high medium osmolalities enhanced vector stability. For production purposes a balance must be struck between cell yield, cell productivity and retroviral stability. From the conditions tested herein sorbitol addition, ensuring osmolalities between 410 and 450 mOsm/kg, yields the best production conditions; NaCl hampered the viral infectious production while fructose originates lower cell yields. Lipid extractions were performed for cholesterol and phospholipid analyses showing that more stable viral vectors had a 10% reduction in the cholesterol content. A similar reduction in cholesterol was observed in the producer cells. A detailed analysis of the major phospholipids composition, type and fatty acid content, by mass spectrometry did not show significant changes, confirming the decrease in the cholesterol to phospholipids ratio in the viral membrane as the major reason for the increased vector stability.
Collapse
|