1
|
Sakdee S, Aroonkesorn A, Imtong C, Li HC, Angsuthanasombat C. Optimized high-yield preparation of alkaline-solubilizable crystalline inclusion of the Bacillus thuringiensis Cry4Aa δ-endotoxin expressed in Escherichia coli. Protein Expr Purif 2023; 210:106320. [PMID: 37301245 DOI: 10.1016/j.pep.2023.106320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
The native Cry4Aa δ-endotoxin produced exclusively in Bacillus thuringiensis during sporulation as a ∼130-kDa inactive protoxin is confined within the parasporal crystalline inclusion that dissolves at alkaline pH in the midgut lumen of mosquito larvae. Here, the recombinant Cry4Aa toxin over-expressed in Escherichia coli at 30 °C as an alkaline-sobubilizable inclusion was found inevitably lost during isolation from the cell lysate (pH ∼6.5) of which host cells were pre-suspended in distilled water (pH ∼5.5). When 100 mM KH2PO4 (pH 5.0) was used as host cell-suspending buffer, the cell lysate's pH became more acidic (pH 5.5), allowing the expressed protoxin to be entirely retained in the form of crystalline inclusion rather than a soluble form, and thus high-yield recovery of the partially purified inclusion was obtained. Upon dialysis of the alkaline-solubilized protoxin against the KH2PO4 buffer, the protoxin precipitate was efficiently recovered and still exhibited high toxicity to Aedes aegypti mosquito larvae. Additionally, the precipitated protoxin was completely resolubilized in 50 mM Na2CO3 buffer (pH 9.0) and proteolytically processed by trypsin to produce the 65-kDa activated toxin comprising ∼47- and ∼20-kDa fragments. In silico structural analysis suggested that His154, His388, His536 and His572 were involved in a dissolution of the Cry4Aa inclusion at pH 6.5, conceivably through interchain salt bridge breakage. Altogether, such an optimized protocol described herein was effective for the preparation of alkaline-solubilizable inclusions of the recombinant Cry4Aa toxin in large amounts (>25 mg per liter culture) that would pave the way for further structure-function relationship studies of different Cry toxins.
Collapse
Affiliation(s)
- Somsri Sakdee
- Bacterial Toxin Research Innovation Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand
| | - Aratee Aroonkesorn
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand
| | - Chompounoot Imtong
- Biophysics Institute for Research and Development (BIRD), Chiang Mai, 50110, Thailand
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Chanan Angsuthanasombat
- Bacterial Toxin Research Innovation Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand; Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan; Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
2
|
Bacillus thuringiensis Cry4Aa insecticidal protein: Functional importance of the intrinsic stability of the unique α4–α5 loop comprising the Pro-rich sequence. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1111-8. [DOI: 10.1016/j.bbapap.2014.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/20/2014] [Accepted: 03/05/2014] [Indexed: 11/17/2022]
|
3
|
Singkhamanan K, Promdonkoy B, Srikhirin T, Boonserm P. Amino acid residues in the N-terminal region of the BinB subunit of Lysinibacillus sphaericus binary toxin play a critical role during receptor binding and membrane insertion. J Invertebr Pathol 2013; 114:65-70. [PMID: 23743006 DOI: 10.1016/j.jip.2013.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 05/23/2013] [Accepted: 05/28/2013] [Indexed: 11/19/2022]
Abstract
The binary toxin produced by Lysinibacillus sphaericus is composed of BinA and BinB subunits that work together in governing toxicity against mosquito larvae. BinA is proposed to be important for toxicity, whereas BinB has been shown to act as a specific receptor-binding component. The precise function of both subunits, however, is not well established. Here, we investigated the function of the N-terminal region of BinB subunit initially by introducing triple alanine substitutions at positions 35PEI37 and 41FYN43. Both block mutations abolished the larvicidal activity. Single point mutations (P35A, E36A, I37A, F41A, Y42A, N43A) were generated in order to identify amino acids that are critical for the toxin activity. Mosquito-larvicidal activity was significantly reduced in P35A, E36A, F41A and Y42A mutants. However, these mutants retained ability to form in vitro interaction with the BinA counterpart. Immunohistochemistry analysis revealed that P35A, F41A and N43A bind to the larval midgut membrane at comparable levels to that of the wild type BinB. In contrast, greatly reduced binding activity was observed in the Y42A, suggesting an important role of this residue in receptor binding. Alanine substitution at P35 resulted in a marked decrease in membrane penetration, indicating its functional importance for the membrane insertion. These results suggest the important roles of the N-terminal region of BinB in both the receptor recognition and the membrane interaction.
Collapse
Affiliation(s)
- Kamonnut Singkhamanan
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Putthamonthon 4 Road, Nakhon Pathom 73170, Thailand
| | | | | | | |
Collapse
|
4
|
Formation of Macromolecule Complex with Bacillus thuringiensis Cry1A Toxins and Chlorophyllide Binding 252-kDa Lipocalin-Like Protein Locating on Bombyx mori Midgut Membrane. J Membr Biol 2010; 237:125-36. [DOI: 10.1007/s00232-010-9314-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 10/26/2010] [Indexed: 11/26/2022]
|
5
|
Taveecharoenkool T, Angsuthanasombat C, Kanchanawarin C. Combined molecular dynamics and continuum solvent studies of the pre-pore Cry4Aa trimer suggest its stability in solution and how it may form pore. PMC BIOPHYSICS 2010; 3:10. [PMID: 20465833 PMCID: PMC3239330 DOI: 10.1186/1757-5036-3-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/13/2010] [Indexed: 11/10/2022]
Abstract
Cry4Aa toxin is one of the highly specific mosquito-larvicidal proteins produced by the bacterium Bacillus thuringiensis subspecies israelensis. It is thought to form pores in the larval midgut membrane that cause membrane leakage and subsequent insect death. Therefore, Cry4Aa and other Cry toxins have been used as efficient and safe bacterial insecticides to control the disease-carrying mosquitoes such as Aedes, Anopheles, and Culex. However, we still do not clearly understand how Cry toxins kill mosquito-larvae at molecular details. Recent electron crystallographic images of Cry4Ba toxin, another toxin closely related to Cry4Aa toxin, have suggested that the protein forms trimer in aqueous solution and in lipid monolayer. Moreover, the unit cell of X-ray crystal structure of Cry4Ba toxin has been shown to be trimeric. In this study, we constructed the first full-atom structural model of Cry4Aa trimer using the trimeric unit cell structure of Cry4Ba toxin as a template and then used the methods of molecular dynamics (MD) and molecular mechanics combined with Poisson-Boltzmann and surface area (MM-PBSA) to show that the trimeric structure of Cry4Aa toxin is stable in 150 mM KCl solution on 10 ns timescale. The results reveal that Cry4Aa toxins use polar amino acid residues on alpha-helices 3, 4, and 6 to form trimer and suggest that the proteins form trimer to reduce their non-polar interactions with surrounding water. Based on the obtained trimeric structure of Cry4Aa toxins, we propose that pore formation of Cry toxins may involve a 90 degrees -hairpin rotation during the insertion of their three alpha4-alpha5 hairpins into the membrane. This process may be mediated by water and ions.PACS Codes: 87.15.ap, 87.15.bk, 87.14.ep.
Collapse
Affiliation(s)
- Taveechai Taveecharoenkool
- Theoretical and Computational Biophysics Laboratory, Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | | | | |
Collapse
|
6
|
The role of β18–β19 loop structure in insecticidal activity of Cry1Ac toxin from Bacillus thuringiensis. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0391-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Chayaratanasin P, Moonsom S, Sakdee S, Chaisri U, Katzenmeier G, Angsuthanasombat C. High level of soluble expression in Escherichia coli and characterisation of the cloned Bacillus thuringiensis Cry4Ba domain III fragment. BMB Rep 2007; 40:58-64. [PMID: 17244483 DOI: 10.5483/bmbrep.2007.40.1.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Similar to the other known structures of Bacillus thuringiensis Cry delta-endotoxins, the crystal structure of the 65-kDa activated Cry4Ba toxin comprises three domains which are, from the N- to C-terminus, a bundle of alpha-helices, a three-beta-sheet domain, and a beta-sandwich. To investigate the properties of the C-terminal domain III in isolation from the rest of the toxin, the cloned Cry4Ba-domain III was over-expressed as a 21-kDa soluble protein in Escherichia coli, which cross-reacted with anti-Cry4Ba domain III monoclonal antibody. A highly-purified domain III was obtained in a monomeric form by ion-exchange and size-exclusion FPLC. Circular dichroism spectroscopy indicated that the isolated domain III fragment distinctly exists as a beta-sheet structure, corresponding to the domain III structure embodied in the Cry4Ba crystal structure. In vitro binding analysis via immuno-histochemical assay revealed that the Cry4Ba-domain III protein was able to bind to the apical microvilli of the susceptible Stegomyia aegypti larval midguts, albeit at lower-binding activity when compared with the full-length active toxin. These results demonstrate for the first time that the C-terminal domain III of the Cry4Ba mosquito-larvicidal protein, which can be isolated as a native folded monomer, conceivably participates in toxin-receptor recognition.
Collapse
Affiliation(s)
- Poramed Chayaratanasin
- Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand
| | | | | | | | | | | |
Collapse
|
8
|
Tiewsiri K, Angsuthanasombat C. Structurally conserved aromaticity of Tyr249 and Phe264 in helix 7 is important for toxicity of the Bacillus thuringiensis Cry4Ba toxin. BMB Rep 2007; 40:163-71. [PMID: 17394765 DOI: 10.5483/bmbrep.2007.40.2.163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Functional elements of the conserved helix 7 in the poreforming domain of the Bacillus thuringiensis Cry delta- endotoxins have not yet been clearly identified. Here, we initially performed alanine substitutions of four highly conserved aromatic residues, Trp(243), Phe(246), Tyr(249) and Phe(264), in helix 7 of the Cry4Ba mosquito-larvicidal protein. All mutant toxins were overexpressed in Escherichia coli as 130-kDa protoxins at levels comparable to the wild-type. Bioassays against Stegomyia aegypti mosquito larvae revealed that only W243A, Y249A or F264A mutant toxins displayed a dramatic decrease in toxicity. Further mutagenic analysis showed that replacements with an aromatic residue particularly at Tyr(249) and Phe(264) still retained the high-level toxin activity. In addition, a nearly complete loss in larvicidal activity was found for Y249L/F264L or F264A/ Y249A double mutants, confirming the involvement in toxicity of both aromatic residues which face towards the same direction. Furthermore, the Y249L/F264L mutant was found to be structurally stable upon toxin solubilisation and trypsin digestion, albeit a small change in the circular dichroism spectrum. Altogether, the present study provides for the first time an insight into the highly conserved aromaticity of Tyr(249) and Phe(264) within helix 7 playing an important role in larvicidal activity of the Cry4Ba toxin.
Collapse
Affiliation(s)
- Kasorn Tiewsiri
- Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand.
| | | |
Collapse
|
9
|
Leetachewa S, Katzenmeier G, Angsuthanasombat C. Novel preparation and characterization of the alpha4-loop-alpha5 membrane-perturbing peptide from the Bacillus thuringiensis Cry4Ba delta-endotoxin. BMB Rep 2006; 39:270-7. [PMID: 16756755 DOI: 10.5483/bmbrep.2006.39.3.270] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Helices 4 and 5 of the Bacillus thuringiensis Cry4Ba delta-endotoxin have been shown to be important determinants for mosquito-larvicidal activity, likely being involved in membrane-pore formation. In this study, the Cry4Ba mutant protein containing an additional engineered tryptic cleavage site was used to produce the alpha4-alpha5 hairpin peptide by an efficient alternative strategy. Upon solubilization of toxin inclusions expressed in Escherichia coli and subsequent digestion with trypsin, the 130-kDa mutant protoxin was processed to protease-resistant fragments of ca. 47, 10 and 7 kDa. The 7-kDa fragment was identified as the alpha4-loop-alpha5 hairpin via N-terminal sequencing and mass spectrometry, and was successfully purified by size-exclusion FPLC and reversed-phase HPLC. Using circular dichroism spectroscopy, the 7-kDa peptide was found to exist predominantly as an alpha-helical structure. Membrane perturbation studies by using fluorimetric calcein-release assays revealed that the 7-kDa helical hairpin is highly active against unilamellar liposomes compared with the 65-kDa activated full-length toxin. These results directly support the role of the alpha4-loop-alpha5 hairpin in membrane perturbation and pore formation of the full-length Cry4Ba toxin.
Collapse
Affiliation(s)
- Somphob Leetachewa
- Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University, Nakornpathom, Thailand
| | | | | |
Collapse
|
10
|
Boonserm P, Mo M, Angsuthanasombat C, Lescar J. Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution. J Bacteriol 2006; 188:3391-401. [PMID: 16621834 PMCID: PMC1447447 DOI: 10.1128/jb.188.9.3391-3401.2006] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Cry4Aa delta-endotoxin from Bacillus thuringiensis is toxic to larvae of Culex, Anopheles, and Aedes mosquitoes, which are vectors of important human tropical diseases. With the objective of designing modified toxins with improved potency that could be used as biopesticides, we determined the structure of this toxin in its functional form at a resolution of 2.8 angstroms. Like other Cry delta-endotoxins, the activated Cry4Aa toxin consists of three globular domains, a seven-alpha-helix bundle responsible for pore formation (domain I) and the following two other domains having structural similarities with carbohydrate binding proteins: a beta-prism (domain II) and a plant lectin-like beta-sandwich (domain III). We also studied the effect on toxicity of amino acid substitutions and deletions in three loops located at the surface of the putative receptor binding domain II of Cry4Aa. Our results indicate that one loop is an important determinant of toxicity, presumably through attachment of Cry4Aa to the surface of mosquito cells. The availability of the Cry4Aa structure should guide further investigations aimed at the molecular basis of the target specificity and membrane insertion of Cry endotoxins.
Collapse
Affiliation(s)
- Panadda Boonserm
- Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand.
| | | | | | | |
Collapse
|
11
|
Likitvivatanavong S, Katzenmeier G, Angsuthanasombat C. Asn183 in α5 is essential for oligomerisation and toxicity of the Bacillus thuringiensis Cry4Ba toxin. Arch Biochem Biophys 2006; 445:46-55. [PMID: 16356469 DOI: 10.1016/j.abb.2005.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 11/14/2005] [Accepted: 11/14/2005] [Indexed: 11/17/2022]
Abstract
The proposed toxicity mechanism of the Bacillus thuringiensis Cry insecticidal proteins involves membrane penetration and lytic pore formation of the alpha4-alpha5 hairpins in the target larval midgut cell membranes. In this study, alanine substitutions of selected polar residues (Tyr(178), Gln(180), Asn(183), Asn(185), and Asn(195)) in the hydrophobic helix-alpha5 of the Cry4Ba mosquito-larvicidal protein were initially conducted via PCR-based directed mutagenesis. Upon IPTG induction, all the 130-kDa mutant protoxins were highly expressed in Escherichia coli as cytoplasmic inclusions, with yields similar to the wild-type protoxin. When E. coli cells expressing each mutant toxin were tested against Stegomyia aegypti mosquito larvae, the larvicidal activity of the N183A mutant was almost completely abolished whereas the four other mutants showed only a small reduction in toxicity. Additionally, replacements of this critical residue with various amino acids revealed that the uncharged polar residue at position 183 in alpha5 is crucial for larvicidal activity. Further characterisation of the N183K bio-inactive mutant revealed that the 65-kDa activated toxin was unable to form oligomers in lipid vesicles and its ability to induce the release of entrapped calcein from liposomes was much weaker than that of the wild-type toxin. These results suggest that the highly conserved Asn(183) located in the middle of the transmembrane alpha5 of Cry4Ba plays a crucial role in toxicity and toxin oligomerisation in the lipid membranes.
Collapse
Affiliation(s)
- Supaporn Likitvivatanavong
- Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand
| | | | | |
Collapse
|