1
|
Sayari M, Dolatabadian A, El-Shetehy M, Rehal PK, Daayf F. Genome-Based Analysis of Verticillium Polyketide Synthase Gene Clusters. BIOLOGY 2022; 11:biology11091252. [PMID: 36138731 PMCID: PMC9495618 DOI: 10.3390/biology11091252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Fungi can produce many types of secondary metabolites, including mycotoxins. Poisonous mushrooms and mycotoxins that cause food spoilage have been known for a very long time. For example, Aspergillus flavus, which can grow on grains and nuts, produces highly toxic substances called Aflatoxins. Despite their menace to other living organisms, mycotoxins can be used for medicinal purposes, i.e., as antibiotics, growth-promoting compounds, and other kinds of drugs. These and other secondary metabolites produced by plant-pathogenic fungi may cause host plants to display disease symptoms and may play a substantial role in disease progression. Therefore, the identification and characterization of the genes involved in their biosynthesis are essential for understanding the molecular mechanism involved in their biosynthetic pathways and further promoting sustainable knowledge-based crop production. Abstract Polyketides are structurally diverse and physiologically active secondary metabolites produced by many organisms, including fungi. The biosynthesis of polyketides from acyl-CoA thioesters is catalyzed by polyketide synthases, PKSs. Polyketides play roles including in cell protection against oxidative stress, non-constitutive (toxic) roles in cell membranes, and promoting the survival of the host organisms. The genus Verticillium comprises many species that affect a wide range of organisms including plants, insects, and other fungi. Many are known as causal agents of Verticillium wilt diseases in plants. In this study, a comparative genomics approach involving several Verticillium species led us to evaluate the potential of Verticillium species for producing polyketides and to identify putative polyketide biosynthesis gene clusters. The next step was to characterize them and predict the types of polyketide compounds they might produce. We used publicly available sequences from ten species of Verticillium including V. dahliae, V. longisporum, V. nonalfalfae, V. alfalfae, V. nubilum, V. zaregamsianum, V. klebahnii, V. tricorpus, V. isaacii, and V. albo-atrum to identify and characterize PKS gene clusters by utilizing a range of bioinformatic and phylogenetic approaches. We found 32 putative PKS genes and possible clusters in the genomes of Verticillium species. All the clusters appear to be complete and functional. In addition, at least five clusters including putative DHN-melanin-, cytochalasin-, fusarielien-, fujikurin-, and lijiquinone-like compounds may belong to the active PKS repertoire of Verticillium. These results will pave the way for further functional studies to understand the role of these clusters.
Collapse
Affiliation(s)
- Mohammad Sayari
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
| | - Aria Dolatabadian
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
| | - Mohamed El-Shetehy
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Pawanpuneet Kaur Rehal
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
| | - Fouad Daayf
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
- Correspondence:
| |
Collapse
|
2
|
Kang SH, Lee WH, Sim JS, Thaku N, Chang S, Hong JP, Oh TJ. De novo Transcriptome Assembly of Senna occidentalis Sheds Light on the Anthraquinone Biosynthesis Pathway. FRONTIERS IN PLANT SCIENCE 2022; 12:773553. [PMID: 35046973 PMCID: PMC8761625 DOI: 10.3389/fpls.2021.773553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
Senna occidentalis is an annual leguminous herb that is rich in anthraquinones, which have various pharmacological activities. However, little is known about the genetics of S. occidentalis, particularly its anthraquinone biosynthesis pathway. To broaden our understanding of the key genes and regulatory mechanisms involved in the anthraquinone biosynthesis pathway, we used short RNA sequencing (RNA-Seq) and long-read isoform sequencing (Iso-Seq) to perform a spatial and temporal transcriptomic analysis of S. occidentalis. This generated 121,592 RNA-Seq unigenes and 38,440 Iso-Seq unigenes. Comprehensive functional annotation and classification of these datasets using public databases identified unigene sequences related to major secondary metabolite biosynthesis pathways and critical transcription factor families (bHLH, WRKY, MYB, and bZIP). A tissue-specific differential expression analysis of S. occidentalis and measurement of the amount of anthraquinones revealed that anthraquinone accumulation was related to the gene expression levels in the different tissues. In addition, the amounts and types of anthraquinones produced differ between S. occidentalis and S. tora. In conclusion, these results provide a broader understanding of the anthraquinone metabolic pathway in S. occidentalis.
Collapse
Affiliation(s)
- Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, South Korea
| | - Woo-Haeng Lee
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan, South Korea
| | - Joon-Soo Sim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, South Korea
| | - Niha Thaku
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan, South Korea
| | - Saemin Chang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, South Korea
| | - Jong-Pil Hong
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, South Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan, South Korea
- Genome-Based BioIT Convergence Institute, Asan, South Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, South Korea
| |
Collapse
|
3
|
Zhao DS, Hu ZW, Dong LL, Wan XJ, Wang S, Li N, Wang Y, Li SM, Zou HX, Yan X. A Type III Polyketide Synthase (SfuPKS1) Isolated from the Edible Seaweed Sargassum fusiforme Exhibits Broad Substrate and Catalysis Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14643-14649. [PMID: 34812623 DOI: 10.1021/acs.jafc.1c05868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A type III polyketide synthase (SfuPKS1) from the edible seaweed Sargassum fusiforme was molecularly cloned and biochemically characterized. The recombinant SfuPKS1 catalyzed the condensation of fatty acyl-CoA with two or three malonyl-CoA using lactone-type intramolecular cyclization to produce tri- and/or tetraketides. Moreover, it can also utilize phenylpropanoyl-CoA to synthesize phloroglucinol derivatives through Claisen-type cyclization, exhibiting broad substrate and catalysis specificity. Furthermore, the catalytic efficiency (kcat/KM) for acetyl-CoA was 11.8-fold higher than that for 4-coumaroyl-CoA. A pathway for the synthesis of naringenin involving SfuPKS1 was also constructed in Escherichia coli by recombinant means, resulting in 4.9 mg of naringenin per liter.
Collapse
Affiliation(s)
- Dong-Sheng Zhao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Zhi-Wei Hu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Ling-Li Dong
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Xiao-Jie Wan
- Women's Hospital, School of Medicine, Zhejiang University, Xue-Shi Street 1, 310006 Hangzhou, China
| | - Shengqin Wang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Nan Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Yao Wang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Strasse 4, 35037 Marburg, Germany
| | - Hui-Xi Zou
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Xiufeng Yan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| |
Collapse
|
4
|
Tong Y, Lyu Y, Xu S, Zhang L, Zhou J. Optimum chalcone synthase for flavonoid biosynthesis in microorganisms. Crit Rev Biotechnol 2021; 41:1194-1208. [PMID: 33980085 DOI: 10.1080/07388551.2021.1922350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chalcones and the subsequently generated flavonoids, as well as flavonoid derivatives, have been proven to have a variety of physiological activities and are widely used in: the pharmaceutical, food, feed, and cosmetic industries. As the content of chalcones and downstream products in native plants is low, the production of these compounds by microorganisms has gained the attention of many researchers and has a history of more than 20 years. The mining and engineering of chalcone synthase (CHS) could be one of the most important ways to achieve more efficient production of chalcones and downstream products in microorganisms. CHS has a broad spectrum of substrates, and its enzyme activity and expression level can significantly affect the efficiency of the biosynthesis of flavonoids. This review summarizes the recent advances in the: structure, mechanism, evolution, substrate spectrum, transformation, and expression regulation in the flavonoid biosynthesis of this vital enzyme. Future development directions were also suggested. The findings may further promote the research and development of flavonoids and health products, making them vital in the fields of human diet and health.
Collapse
Affiliation(s)
- Yingjia Tong
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yunbin Lyu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Liang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Larsen JS, Pearson LA, Neilan BA. Genome Mining and Evolutionary Analysis Reveal Diverse Type III Polyketide Synthase Pathways in Cyanobacteria. Genome Biol Evol 2021; 13:6178795. [PMID: 33739400 PMCID: PMC8086630 DOI: 10.1093/gbe/evab056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 11/30/2022] Open
Abstract
Cyanobacteria are prolific producers of natural products, including polyketides and hybrid compounds thereof. Type III polyketide synthases (PKSs) are of particular interest, due to their wide substrate specificity and simple reaction mechanism, compared with both type I and type II PKSs. Surprisingly, only two type III PKS products, hierridins, and (7.7)paracyclophanes, have been isolated from cyanobacteria. Here, we report the mining of 517 cyanobacterial genomes for type III PKS biosynthesis gene clusters. Approximately 17% of the genomes analyzed encoded one or more type III PKSs. Together with already characterized type III PKSs, the phylogeny of this group of enzymes was investigated. Our analysis showed that type III PKSs in cyanobacteria evolved into three major lineages, including enzymes associated with 1) (7.7)paracyclophane-like biosynthesis gene clusters, 2) hierridin-like biosynthesis gene clusters, and 3) cytochrome b5 genes. The evolutionary history of these enzymes is complex, with some sequences partitioning primarily according to speciation and others putatively according to their reaction type. Protein modeling showed that cyanobacterial type III PKSs generally have a smaller active site cavity (mean = 109.035 Å3) compared with enzymes from other organisms. The size of the active site did not correlate well with substrate size, however, the “Gatekeeper” amino acid residues within the active site were strongly correlated to enzyme phylogeny. Our study provides unprecedented insight into the distribution, diversity, and molecular evolution of cyanobacterial type III PKSs, which could facilitate the discovery, characterization, and exploitation of novel enzymes, biochemical pathways, and specialized metabolites from this biosynthetically talented clade of microorganisms.
Collapse
Affiliation(s)
- Joachim Steen Larsen
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Leanne Andrea Pearson
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Brett Anthony Neilan
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
6
|
Jeandet P, Vannozzi A, Sobarzo-Sánchez E, Uddin MS, Bru R, Martínez-Márquez A, Clément C, Cordelier S, Manayi A, Nabavi SF, Rasekhian M, El-Saber Batiha G, Khan H, Morkunas I, Belwal T, Jiang J, Koffas M, Nabavi SM. Phytostilbenes as agrochemicals: biosynthesis, bioactivity, metabolic engineering and biotechnology. Nat Prod Rep 2021; 38:1282-1329. [PMID: 33351014 DOI: 10.1039/d0np00030b] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 1976 to 2020. Although constituting a limited chemical family, phytostilbenes represent an emblematic group of molecules among natural compounds. Ever since their discovery as antifungal compounds in plants and their ascribed role in human health and disease, phytostilbenes have never ceased to arouse interest for researchers, leading to a huge development of the literature in this field. Owing to this, the number of references to this class of compounds has reached the tens of thousands. The objective of this article is thus to offer an overview of the different aspects of these compounds through a large bibliography analysis of more than 500 articles. All the aspects regarding phytostilbenes will be covered including their chemistry and biochemistry, regulation of their biosynthesis, biological activities in plants, molecular engineering of stilbene pathways in plants and microbes as well as their biotechnological production by plant cell systems.
Collapse
Affiliation(s)
- Philippe Jeandet
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, 35020 Legnaro, PD, Italy
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain and Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh and Neuroscience Research Network, Dhaka, Bangladesh
| | - Roque Bru
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Ascension Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Christophe Clément
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Sylvain Cordelier
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, The People's Republic of China
| | - Jingjie Jiang
- Dorothy and Fred Chau '71 Constellation Professor, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Room 4005D, 110 8th Street, Troy, NY 12180, USA
| | - Mattheos Koffas
- Dorothy and Fred Chau '71 Constellation Professor, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Room 4005D, 110 8th Street, Troy, NY 12180, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| |
Collapse
|
7
|
Martinelli L, Redou V, Cochereau B, Delage L, Hymery N, Poirier E, Le Meur C, Le Foch G, Cladiere L, Mehiri M, Demont-Caulet N, Meslet-Cladiere L. Identification and Characterization of a New Type III Polyketide Synthase from a Marine Yeast, Naganishia uzbekistanensis. Mar Drugs 2020; 18:E637. [PMID: 33322429 PMCID: PMC7763939 DOI: 10.3390/md18120637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 01/22/2023] Open
Abstract
A putative Type III Polyketide synthase (PKSIII) encoding gene was identified from a marine yeast, Naganishia uzbekistanensis strain Mo29 (UBOCC-A-208024) (formerly named as Cryptococcus sp.) isolated from deep-sea hydrothermal vents. This gene is part of a distinct phylogenetic branch compared to all known terrestrial fungal sequences. This new gene encodes a C-terminus extension of 74 amino acids compared to other known PKSIII proteins like Neurospora crassa. Full-length and reduced versions of this PKSIII were successfully cloned and overexpressed in a bacterial host, Escherichia coli BL21 (DE3). Both proteins showed the same activity, suggesting that additional amino acid residues at the C-terminus are probably not required for biochemical functions. We demonstrated by LC-ESI-MS/MS that these two recombinant PKSIII proteins could only produce tri- and tetraketide pyrones and alkylresorcinols using only long fatty acid chain from C8 to C16 acyl-CoAs as starter units, in presence of malonyl-CoA. In addition, we showed that some of these molecules exhibit cytotoxic activities against several cancer cell lines.
Collapse
Affiliation(s)
- Laure Martinelli
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Vanessa Redou
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Bastien Cochereau
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Ludovic Delage
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR),CNRS, UMR8227, Sorbonne Université, 29680 Roscoff, France; (L.D.); (L.C.)
| | - Nolwenn Hymery
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Elisabeth Poirier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Christophe Le Meur
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Gaetan Le Foch
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Lionel Cladiere
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR),CNRS, UMR8227, Sorbonne Université, 29680 Roscoff, France; (L.D.); (L.C.)
| | - Mohamed Mehiri
- Marine Natural Products Team, CNRS, UMR 7272, Institut de Chimie de Nice, Université Côte d’Azur, 06108 Nice, France;
| | - Nathalie Demont-Caulet
- UMR ECOSYS, INRAE, INRAE, University of Paris, 78026 Versailles, France;
- AgroParisTech, Université Paris-Saclay, 78026 Versailles, France
| | - Laurence Meslet-Cladiere
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| |
Collapse
|
8
|
Alberti F, Kaleem S, Weaver JA. Recent developments of tools for genome and metabolome studies in basidiomycete fungi and their application to natural product research. Biol Open 2020; 9:bio056010. [PMID: 33268478 PMCID: PMC7725599 DOI: 10.1242/bio.056010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Basidiomycota are a large and diverse phylum of fungi. They can make bioactive metabolites that are used or have inspired the synthesis of antibiotics and agrochemicals. Terpenoids are the most abundant class of natural products encountered in this taxon. Other natural product classes have been described, including polyketides, peptides, and indole alkaloids. The discovery and study of natural products made by basidiomycete fungi has so far been hampered by several factors, which include their slow growth and complex genome architecture. Recent developments of tools for genome and metabolome studies are allowing researchers to more easily tackle the secondary metabolome of basidiomycete fungi. Inexpensive long-read whole-genome sequencing enables the assembly of high-quality genomes, improving the scaffold upon which natural product gene clusters can be predicted. CRISPR/Cas9-based engineering of basidiomycete fungi has been described and will have an important role in linking natural products to their genetic determinants. Platforms for the heterologous expression of basidiomycete genes and gene clusters have been developed, enabling natural product biosynthesis studies. Molecular network analyses and publicly available natural product databases facilitate data dereplication and natural product characterisation. These technological advances combined are prompting a revived interest in natural product discovery from basidiomycete fungi.This article has an associated Future Leader to Watch interview with the first author of the paper.
Collapse
Affiliation(s)
- Fabrizio Alberti
- School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Saraa Kaleem
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Jack A Weaver
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
9
|
Yu FY, Chiu CM, Lee YZ, Lee SJ, Chou CM, You BJ, Hsieh DK, Lee MR, Lee MH, Bostock RM. Polyketide Synthase Gene Expression in Relation to Chloromonilicin and Melanin Production in Monilinia fructicola. PHYTOPATHOLOGY 2020; 110:1465-1475. [PMID: 32286920 DOI: 10.1094/phyto-02-20-0059-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monilinia fructicola is a fungal pathogen of worldwide significance that causes brown rot of stone fruits. There are only few reports related to the production of biologically active polyketides by this pathogen. In this study, we examined an atypical M. fructicola strain TW5-4 that shows strong antimicrobial activity against various plant pathogens. TW5-4 also displays sparse growth in culture, low virulence, and higher levels of melanin compared with its albino mutant, TW5-4WM, and a wild-type strain Mf13-81. Antifungal compounds were extracted from TW5-4 and purified by thin-layer chromatography following visualization with an on-the-chromatogram inhibition assay. The principal antifungal compound was identified by linear ion trap mass spectrometry, high-resolution electro-spray ionization mass spectrometry, and proton nuclear magnetic resonance analyses as the polyketide chloromonilicin. Multiple M. fructicola polyketide synthase (PKS) sequences were then cloned by degenerate PCR and inverse PCR. Sequence analyses support presence of a 10-member PKS gene family in the M. fructicola genome. Analyses of PKS gene expression found no strong correlation between chloromonilicin production in culture and transcript levels of any of the PKS gene family members in mycelium of strains TW5-4, TW5-4WM, and Mf13-81. However, MfPKS12, a homolog of BcPKS12 involved in biosynthesis of 1,8-dihydroxynaphthalene (DHN)-melanin in Botrytis cinerea, was strongly expressed in mycelia of TW5-4 and Mf13-81. An MfPKS12-silenced mutant accumulated significantly less melanin in mycelia, had lower resistance to polyethylene glycol-induced osmotic stress, and displayed reduced virulence on nectarine fruit. The results suggest that DHN-melanin is required for tolerance to osmotic stress and full virulence in M. fructicola.
Collapse
Affiliation(s)
- Fang-Yi Yu
- Department of Plant Pathology, National Chung Hsing University, Taiwan
| | - Chiu-Min Chiu
- Department of Plant Pathology, National Chung Hsing University, Taiwan
- Department of Plant Pathology, University of California, Davis, CA
- NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University, Taiwan
| | - Yue-Zhi Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Taiwan
| | - Shiow-Ju Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Taiwan
| | - Chien-Ming Chou
- Department of Plant Pathology, National Chung Hsing University, Taiwan (deceased 18 September 2017)
| | - Bang-Jau You
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Dai-Keng Hsieh
- Department of Plant Pathology, National Chung Hsing University, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taiwan
| | - Maw-Rong Lee
- Department of Chemistry, National Chung Hsing University, Taiwan
| | - Miin-Huey Lee
- Department of Plant Pathology, National Chung Hsing University, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University, Taiwan
| | - Richard M Bostock
- Department of Plant Pathology, University of California, Davis, CA
- NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University, Taiwan
| |
Collapse
|
10
|
De Luca D, Lauritano C. In Silico Identification of Type III PKS Chalcone and Stilbene Synthase Homologs in Marine Photosynthetic Organisms. BIOLOGY 2020; 9:E110. [PMID: 32456002 PMCID: PMC7284882 DOI: 10.3390/biology9050110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
Marine microalgae are photosynthetic microorganisms at the base of the marine food webs. They are characterized by huge taxonomic and metabolic diversity and several species have been shown to have bioactivities useful for the treatment of human pathologies. However, the compounds and the metabolic pathways responsible for bioactive compound synthesis are often still unknown. In this study, we aimed at analysing the microalgal transcriptomes available in the Marine Microbial Eukaryotic Transcriptome Sequencing Project (MMETSP) database for an in silico search of polyketide synthase type III homologs and, in particular, chalcone synthase (CHS) and stilbene synthase (STS), which are often referred to as the CHS/STS family. These enzymes were selected because they are known to produce compounds with biological properties useful for human health, such as cancer chemopreventive, anti-inflammatory, antioxidant, anti-angiogenic, anti-viral and anti-diabetic. In addition, we also searched for 4-Coumarate: CoA ligase, an upstream enzyme in the synthesis of chalcones and stilbenes. This study reports for the first time the occurrence of these enzymes in specific microalgal taxa, confirming the importance for microalgae of these pathways and giving new insights into microalgal physiology and possible biotechnological applications for the production of bioactive compounds.
Collapse
Affiliation(s)
- Daniele De Luca
- Department of Humanities, Università degli Studi Suor Orsola Benincasa, CAP80135 Naples, Italy
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, CAP80121 Naples, Italy
| |
Collapse
|
11
|
Liu AJ, Xie KB, Liu YY, Sui SY, Chen RD, Chen DW, Liu JM, Yang L, Dai JG. Biosynthesis of polyketides by two type III polyketide synthases from Aloe barbadensis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:434-443. [PMID: 31791147 DOI: 10.1080/10286020.2019.1674287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Various bioactive polyketides have been found in Aloe barbadensis. However, the polyketide synthases (PKSs), which participate in biosynthesis of polyketides in A. barbadensis remain unknown. In this study, two type III PKSs (AbPKS1 and AbPKS2) were identified from A. barbadensis. AbPKS1 and AbPKS2 were able to utilize malonyl-CoA to yield heptaketides (TW93a and aloesone) and octaketides (SEK4 and SEK4b), respectively. AbPKS1 also exhibited catalytic promiscuity in recognizing CoA thioesters of aromatics to produce unusual polyketides. What Is more, a whole cell biocatalysis system with the capability of producing 26.4 mg/L of SEK4/SEK4b and 2.1 mg/L of aloesone was successfully established.
Collapse
Affiliation(s)
- Ai-Jing Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ke-Bo Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-Yu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Song-Yang Sui
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ri-Dao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Da-Wei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ji-Mei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lin Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jun-Gui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
12
|
Abstract
In this review, we present the recent advances in unusual novel ketosynthases catalyzing
the non-decarboxylative Claisen condensations, including CsyB, MxnB/CorB, Ppys and StlD. The
differences are summarized between these non-decarboxylative ketosynthases and the typical decarboxylative
ketosynthases. Furthermore, the detailed enzymatic characteristics, structural basis, and
catalytic mechanismof these novel ketosynthasesare described. Finally, the prospect of these kind of
ketosynthases is discussed.
Collapse
Affiliation(s)
- Lixia Pan
- Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| |
Collapse
|
13
|
Navarro-Muñoz JC, Collemare J. Evolutionary Histories of Type III Polyketide Synthases in Fungi. Front Microbiol 2020; 10:3018. [PMID: 32038517 PMCID: PMC6985275 DOI: 10.3389/fmicb.2019.03018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
Type III polyketide synthases (PKSs) produce secondary metabolites with diverse biological activities, including antimicrobials. While they have been extensively studied in plants and bacteria, only a handful of type III PKSs from fungi has been characterized in the last 15 years. The exploitation of fungal type III PKSs to produce novel bioactive compounds requires understanding the diversity of these enzymes, as well as of their biosynthetic pathways. Here, phylogenetic and reconciliation analyses of 522 type III PKSs from 1,193 fungal genomes revealed complex evolutionary histories with massive gene duplications and losses, explaining their discontinuous distribution in the fungal tree of life. In addition, horizontal gene transfer events from bacteria to fungi and, to a lower extent, between fungi, could be inferred. Ancestral gene duplication events have resulted in the divergence of eight phylogenetic clades. Especially, two clades show ancestral linkage and functional co-evolution between a type III PKS and a reducing PKS genes. Investigation of the occurrence of protein domains in fungal type III PKS predicted gene clusters highlighted the diversity of biosynthetic pathways, likely reflecting a large chemical landscape. Type III PKS genes are most often located next to genes encoding cytochrome P450s, MFS transporters and transcription factors, defining ancestral core gene clusters. This analysis also allowed predicting gene clusters for the characterized fungal type III PKSs and provides working hypotheses for the elucidation of the full biosynthetic pathways. Altogether, our analyses provide the fundamental knowledge to motivate further characterization and exploitation of fungal type III PKS biosynthetic pathways.
Collapse
|
14
|
Pandith SA, Ramazan S, Khan MI, Reshi ZA, Shah MA. Chalcone synthases (CHSs): the symbolic type III polyketide synthases. PLANTA 2019; 251:15. [PMID: 31776718 DOI: 10.1007/s00425-019-03307-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/02/2019] [Indexed: 05/08/2023]
Abstract
Present review provides a thorough insight on some significant aspects of CHSs over a period of about past three decades with a better outlook for future studies toward comprehending the structural and mechanistic intricacy of this symbolic enzyme. Polyketide synthases (PKSs) form a large family of iteratively acting multifunctional proteins that are involved in the biosynthesis of spectrum of natural products. They exhibit remarkable versatility in the structural configuration and functional organization with an incredible ability to generate different classes of compounds other than the characteristic secondary metabolite constituents. Architecturally, chalcone synthase (CHS) is considered to be the simplest representative of Type III PKSs. The enzyme is pivotal for phenylpropanoid biosynthesis and is also well known for catalyzing the initial step of the flavonoid/isoflavonoid pathway. Being the first Type III enzyme to be discovered, CHS has been subjected to ample investigations which, to a greater extent, have tried to understand its structural complexity and promiscuous functional behavior. In this context, we vehemently tried to collect the fragmented information entirely focussed on this symbolic enzyme from about past three-four decades. The aim of this review is to selectively summarize data on some of the fundamental aspects of CHSs viz, its history and distribution, localization, structure and analogs in non-plant hosts, promoter analyses, and role in defense, with an emphasis on mechanistic studies in different species and vis-à-vis mutation-led changes, and evolutionary significance which has been discussed in detail. The present review gives an insight with a better perspective for the scientific community for future studies devoted towards delimiting the mechanistic and structural basis of polyketide biosynthetic machinery vis-à-vis CHS.
Collapse
Affiliation(s)
- Shahzad A Pandith
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Salika Ramazan
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Mohd Ishfaq Khan
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
15
|
Transcriptional heterologous expression of two type III PKS from the lichen Cladonia uncialis. Mycol Prog 2019. [DOI: 10.1007/s11557-019-01539-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Frisvad JC, Møller LLH, Larsen TO, Kumar R, Arnau J. Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl Microbiol Biotechnol 2018; 102:9481-9515. [PMID: 30293194 PMCID: PMC6208954 DOI: 10.1007/s00253-018-9354-1] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
This review presents an update on the current knowledge of the secondary metabolite potential of the major fungal species used in industrial biotechnology, i.e., Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. These species have a long history of safe use for enzyme production. Like most microorganisms that exist in a challenging environment in nature, these fungi can produce a large variety and number of secondary metabolites. Many of these compounds present several properties that make them attractive for different industrial and medical applications. A description of all known secondary metabolites produced by these species is presented here. Mycotoxins are a very limited group of secondary metabolites that can be produced by fungi and that pose health hazards in humans and other vertebrates when ingested in small amounts. Some mycotoxins are species-specific. Here, we present scientific basis for (1) the definition of mycotoxins including an update on their toxicity and (2) the clarity on misclassification of species and their mycotoxin potential reported in literature, e.g., A. oryzae has been wrongly reported as an aflatoxin producer, due to misclassification of Aspergillus flavus strains. It is therefore of paramount importance to accurately describe the mycotoxins that can potentially be produced by a fungal species that is to be used as a production organism and to ensure that production strains are not capable of producing mycotoxins during enzyme production. This review is intended as a reference paper for authorities, companies, and researchers dealing with secondary metabolite assessment, risk evaluation for food or feed enzyme production, or considerations on the use of these species as production hosts.
Collapse
Affiliation(s)
- Jens C Frisvad
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Søltofts Plads, B. 221, 2800, Kongens Lyngby, Denmark.
| | - Lars L H Møller
- Department of Product Safety, Novozymes A/S, Krogshoejvej 36, 2880, Bagsvaerd, Denmark
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Søltofts Plads, B. 221, 2800, Kongens Lyngby, Denmark
| | - Ravi Kumar
- Department of Genomics and Bioinformatics, Novozymes Inc., 1445 Drew Ave., Davis, CA, 95618, USA
| | - José Arnau
- Department of Fungal Strain Technology and Strain Approval Support, Novozymes A/S, Krogshoejvej 36, 2880, Bagsvaerd, Denmark
| |
Collapse
|
17
|
Diversity and evolution of polyketide biosynthesis gene clusters in the Ceratocystidaceae. Fungal Biol 2018; 122:856-866. [PMID: 30115319 DOI: 10.1016/j.funbio.2018.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/30/2018] [Accepted: 04/25/2018] [Indexed: 01/26/2023]
Abstract
Polyketides are secondary metabolites with diverse biological activities. Polyketide synthases (PKS) are often encoded from genes clustered in the same genomic region. Functional analyses and genomic studies show that most fungi are capable of producing a repertoire of polyketides. We considered the potential of Ceratocystidaceae for producing polyketides using a comparative genomics approach. Our aims were to identify the putative polyketide biosynthesis gene clusters, to characterize them and predict the types of polyketide compounds they might produce. We used sequences from nineteen species in the genera, Ceratocystis, Endoconidiophora, Davidsoniella, Huntiella, Thielaviopsis and Bretziella, to identify and characterize PKS gene clusters, by employing a range of bioinformatics and phylogenetic tools. We showed that the genomes contained putative clusters containing a non-reducing type I PKS and a type III PKS. Phylogenetic analyses suggested that these genes were already present in the ancestor of the Ceratocystidaceae. By contrast, the various reducing type I PKS-containing clusters identified in these genomes appeared to have distinct evolutionary origins. Although one of the identified clusters potentially allows for the production of melanin, their functional characterization will undoubtedly reveal many novel and important compounds implicated in the biology of the Ceratocystidaceae.
Collapse
|
18
|
Bertrand RL, Abdel-Hameed M, Sorensen JL. Lichen Biosynthetic Gene Clusters. Part I. Genome Sequencing Reveals a Rich Biosynthetic Potential. JOURNAL OF NATURAL PRODUCTS 2018; 81:723-731. [PMID: 29485276 DOI: 10.1021/acs.jnatprod.7b00769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lichens are symbionts of fungi and algae that produce diverse secondary metabolites with useful properties. Little is known of lichen natural product biosynthesis because of the challenges of working with lichenizing fungi. We describe the first attempt to comprehensively profile the genetic secondary metabolome of a lichenizing fungus. An Illumina platform combined with the Antibiotics and Secondary Metabolites Analysis Shell (FungiSMASH, version 4.0) was used to sequence and annotate assembled contigs of the fungal partner of Cladonia uncialis. Up to 48 putative gene clusters are described comprising type I and type III polyketide synthases (PKS), nonribosomal peptide synthetases (NRPS), hybrid PKS-NRPS, and terpene synthases. The number of gene clusters revealed by this work dwarfs the number of known secondary metabolites from C. uncialis, suggesting that lichenizing fungi have an unexplored biosynthetic potential.
Collapse
Affiliation(s)
- Robert L Bertrand
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Mona Abdel-Hameed
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - John L Sorensen
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| |
Collapse
|
19
|
Ramakrishnan D, Tiwari MK, Manoharan G, Sairam T, Thangamani R, Lee JK, Marimuthu J. Molecular characterization of two alkylresorcylic acid synthases from Sordariomycetes fungi. Enzyme Microb Technol 2018; 115:16-22. [PMID: 29859598 DOI: 10.1016/j.enzmictec.2018.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Two putative type III polyketide synthase genes (PKS) were identified from Sordariomycetes fungi. These two type III PKS genes from Sordaria macrospora (SmPKS) and Chaetomium thermophilum (CtPKS), shared 59.8% sequence identity. Both, full-length and truncated versions of type III PKSs were successfully cloned and overexpressed in a bacterial host, Escherichia Coli BL21 (DE3) using a N-terminus hexa-histidine tag. The full-length and the truncated construct of PKSs showed similar activity profiles, suggesting that additional amino acid residues at the C-terminal of both SmPKS and CtPKS may not be involved in catalytic functions. We demonstrate that these two recombinant polyketide synthases could efficiently synthesize tri- and tetraketide pyrones, resorcinols and resorcylic acids using various acyl-CoAs (C4-C20) as starter units. The truncated S. macrospora polyketide synthases (TrSmPKS) showed a maximum of 7.0 × 104 s-1 M-1 catalytic efficiency towards stearoyl-CoA.Whereas, truncated C. thermophilum polyketide synthases (TrCtPKS) preferred the long-chain acyl-CoA starter arachidoyl-CoA, to produce pentaketide and hexaketide resorcinols with a high catalytic efficiency of 6.2 × 104 s-1 M-1. Homology model and substrate docking analyses suggest a shorter distance between sulfur of catalytic Cys152 and thioester carbonyl group of arachidoyl-CoA as well as stronger imidazolium-thiolate ion pair distance in TrCtPKS between catalytic Cys152-His309 compared to TrSmPKS- arachidoyl CoA complex. Enhanced binding interactions of CtPKS residues forming intermolecular contacts at the active site could be attributed to its high specificity towards arachidoyl-CoA. This study reports the functional characterization of two fungal type III polyketide synthases, SmPKS and CtPKS with high catalytic efficiency from S. macrospora and C. thermophilum respectively. Furthermore, the results suggested that the both SmPKS and CtPKS could be attractive targets for protein engineering to discern the unique substrate specificity and catalytic efficiency.
Collapse
Affiliation(s)
- Dhivya Ramakrishnan
- PSG Centre for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore 641001, India
| | - Manish K Tiwari
- Department of Chemistry, University of Copenhagen,Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Gomathi Manoharan
- PSG Centre for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore 641001, India
| | - Thiagarajan Sairam
- PSG Centre for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore 641001, India
| | - Rajesh Thangamani
- Biotechnology Division, CSIR-National Environmental Engineering Research Institute, CMC, Chennai 600113, India
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeya Marimuthu
- PSG Centre for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore 641001, India.
| |
Collapse
|
20
|
Bilska K, Stuper-Szablewska K, Kulik T, Buśko M, Załuski D, Jurczak S, Perkowski J. Changes in Phenylpropanoid and Trichothecene Production by Fusarium culmorum and F. graminearum Sensu Stricto via Exposure to Flavonoids. Toxins (Basel) 2018; 10:toxins10030110. [PMID: 29510600 PMCID: PMC5869398 DOI: 10.3390/toxins10030110] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 02/07/2023] Open
Abstract
Flavonoids are a group of hydroxylated polyphenolic compounds widely distributed in the plant kingdom. Biosynthesis of these compounds involves type III PKSs, whose presence has been recently predicted in some fungal species through genome sequencing efforts. In this study, for the first time it was found that Fusaria produce flavonoids on solid YES medium. Naringenin, as the central precursor of all flavonoids, was produced at highest quantities, followed by quercetin, kaempferol, apigenin and luteolin. In plants, flavonoids are involved in the protection of cereals to a wide range of stresses, including host defense against Fusaria. Under in vitro conditions, strains of Fusarium culmorum and F. graminearum sensu stricto were incubated at levels of flavonoids close to amounts produced by cereals in response to fungal infection. The amounts of exogenous naringenin, apigenin, luteolin, kaempferol and quercetin were reduced and converted by fungi to the other flavonoid derivatives. Treatment of fungi with naringenin derivatives led to the inhibition of naringenin production. Correspondingly, the production of fungal-derived phenolic acids decreased in flavonoid treated samples, although this effect appeared to be dependent on the strain, flavonoid molecule and its concentration. Fusaria showed high variability in trichothecene production in response to flavonoids. With emphasis on quercetin, mycotoxin accumulation in the media was significantly decreased by luteolin, kaempferol, naringenin and apigenin. However, in some cases, apigenin led to the increase of mycotoxin content in the media. Gene expression experiments of Tri genes responsible for trichothecene biosynthesis (Tri4, Tri5 and Tri10) proved that the inhibition of mycotoxin production by flavonoids occurred at the transcriptional level. However, the changes in Tri transcript levels were not significant in most apigenin and all kaempferol-treated cultures. In this study, a link was established between antioxidant and antiradical properties of flavonoids and their effects on fungi.
Collapse
Affiliation(s)
- Katarzyna Bilska
- Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | - Kinga Stuper-Szablewska
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-637 Poznan, Poland.
| | - Tomasz Kulik
- Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | - Maciej Buśko
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-637 Poznan, Poland.
| | - Dariusz Załuski
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland.
| | - Sebastian Jurczak
- Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | - Juliusz Perkowski
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-637 Poznan, Poland.
| |
Collapse
|
21
|
Mishra VK, Passari AK, Leo VV, Singh BP. Molecular Diversity and Detection of Endophytic Fungi Based on Their Antimicrobial Biosynthetic Genes. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Exploiting the Biosynthetic Potential of Type III Polyketide Synthases. Molecules 2016; 21:molecules21060806. [PMID: 27338328 PMCID: PMC6274091 DOI: 10.3390/molecules21060806] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 11/17/2022] Open
Abstract
Polyketides are structurally and functionally diverse secondary metabolites that are biosynthesized by polyketide synthases (PKSs) using acyl-CoA precursors. Recent studies in the engineering and structural characterization of PKSs have facilitated the use of target enzymes as biocatalysts to produce novel functionally optimized polyketides. These compounds may serve as potential drug leads. This review summarizes the insights gained from research on type III PKSs, from the discovery of chalcone synthase in plants to novel PKSs in bacteria and fungi. To date, at least 15 families of type III PKSs have been characterized, highlighting the utility of PKSs in the development of natural product libraries for therapeutic development.
Collapse
|
23
|
Sun L, Wang S, Zhang S, Yu D, Qin Y, Huang H, Wang W, Zhan J. Identification of a type III polyketide synthase involved in the biosynthesis of spirolaxine. Appl Microbiol Biotechnol 2016; 100:7103-13. [DOI: 10.1007/s00253-016-7444-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 11/30/2022]
|
24
|
Sucipto H, Sahner JH, Prusov E, Wenzel SC, Hartmann RW, Koehnke J, Müller R. In vitro reconstitution of α-pyrone ring formation in myxopyronin biosynthesis. Chem Sci 2015; 6:5076-5085. [PMID: 29308173 PMCID: PMC5724707 DOI: 10.1039/c5sc01013f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/14/2015] [Indexed: 12/22/2022] Open
Abstract
Myxopyronins are α-pyrone antibiotics produced by the terrestrial bacterium Myxococcus fulvus Mx f50 and possess antibacterial activity against Gram-positive and Gram-negative pathogens. They target the bacterial RNA polymerase (RNAP) "switch region" as non-competitive inhibitors and display no cross-resistance to the established RNAP inhibitor rifampicin. Recent analysis of the myxopyronin biosynthetic pathway led to the hypothesis that this secondary metabolite is produced from two separate polyketide parts, which are condensed by the stand-alone ketosynthase MxnB. Using in vitro assays we show that MxnB catalyzes a unique condensation reaction forming the α-pyrone ring of myxopyronins from two activated acyl chains in form of their β-keto intermediates. MxnB is able to accept thioester substrates coupled to either N-acetylcysteamine (NAC) or a specific carrier protein (CP). The turnover rate of MxnB for substrates bound to CP was 12-fold higher than for NAC substrates, demonstrating the importance of protein-protein interactions in polyketide synthase (PKS) systems. The crystal structure of MxnB reveals the enzyme to be an unusual member of the ketosynthase group capable of binding and condensing two long alkyl chains bound to carrier proteins. The geometry of the two binding tunnels supports the biochemical data and allows us to propose an order of reaction, which is supported by the identification of novel myxopyronin congeners in the extract of the producer strain. Insights into the mechanism of this unique condensation reaction do not only expand our knowledge regarding the thiolase enzyme family but also opens up opportunities for PKS bioengineering to achieve directed structural modifications.
Collapse
Affiliation(s)
- H Sucipto
- Department of Microbial Natural Products , Helmholtz Institute for Pharmaceutical Research Saarland , Building C2 3 , 66123 Saarbrücken , Germany .
| | - J H Sahner
- Department of Drug Design and Optimization , Helmholtz Institute for Pharmaceutical Research Saarland , Pharmaceutical and Medicinal Chemistry , Saarland University , Building C2 3 , 66123 Saarbrücken , Germany
| | - E Prusov
- Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - S C Wenzel
- Department of Microbial Natural Products , Helmholtz Institute for Pharmaceutical Research Saarland , Building C2 3 , 66123 Saarbrücken , Germany .
| | - R W Hartmann
- Department of Drug Design and Optimization , Helmholtz Institute for Pharmaceutical Research Saarland , Pharmaceutical and Medicinal Chemistry , Saarland University , Building C2 3 , 66123 Saarbrücken , Germany
| | - J Koehnke
- Workgroup Structural Biology of Biosynthetic Enzymes , Helmholtz Institute for Pharmaceutical Research Saarland , Building C2 2 , 66123 Saarbrücken , Germany .
| | - R Müller
- Department of Microbial Natural Products , Helmholtz Institute for Pharmaceutical Research Saarland , Building C2 3 , 66123 Saarbrücken , Germany .
| |
Collapse
|
25
|
Lysøe E, Harris LJ, Walkowiak S, Subramaniam R, Divon HH, Riiser ES, Llorens C, Gabaldón T, Kistler HC, Jonkers W, Kolseth AK, Nielsen KF, Thrane U, Frandsen RJN. The genome of the generalist plant pathogen Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism. PLoS One 2014; 9:e112703. [PMID: 25409087 PMCID: PMC4237347 DOI: 10.1371/journal.pone.0112703] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/13/2014] [Indexed: 12/03/2022] Open
Abstract
Fusarium avenaceum is a fungus commonly isolated from soil and associated with a wide range of host plants. We present here three genome sequences of F. avenaceum, one isolated from barley in Finland and two from spring and winter wheat in Canada. The sizes of the three genomes range from 41.6–43.1 MB, with 13217–13445 predicted protein-coding genes. Whole-genome analysis showed that the three genomes are highly syntenic, and share>95% gene orthologs. Comparative analysis to other sequenced Fusaria shows that F. avenaceum has a very large potential for producing secondary metabolites, with between 75 and 80 key enzymes belonging to the polyketide, non-ribosomal peptide, terpene, alkaloid and indole-diterpene synthase classes. In addition to known metabolites from F. avenaceum, fuscofusarin and JM-47 were detected for the first time in this species. Many protein families are expanded in F. avenaceum, such as transcription factors, and proteins involved in redox reactions and signal transduction, suggesting evolutionary adaptation to a diverse and cosmopolitan ecology. We found that 20% of all predicted proteins were considered to be secreted, supporting a life in the extracellular space during interaction with plant hosts.
Collapse
Affiliation(s)
- Erik Lysøe
- Department of Plant Health and Plant Protection, Bioforsk - Norwegian Institute of Agricultural and Environmental Research, Ås, Norway
- * E-mail:
| | - Linda J. Harris
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Sean Walkowiak
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Rajagopal Subramaniam
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Hege H. Divon
- Section of Mycology, Norwegian Veterinary Institute, Oslo, Norway
| | - Even S. Riiser
- Department of Plant Health and Plant Protection, Bioforsk - Norwegian Institute of Agricultural and Environmental Research, Ås, Norway
| | | | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - H. Corby Kistler
- ARS-USDA, Cereal Disease Laboratory, St. Paul, Minnesota, United States of America
| | - Wilfried Jonkers
- ARS-USDA, Cereal Disease Laboratory, St. Paul, Minnesota, United States of America
| | - Anna-Karin Kolseth
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kristian F. Nielsen
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Ulf Thrane
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
26
|
|
27
|
Lv Y, Xiao J, Pan L. Type III polyketide synthase is involved in the biosynthesis of protocatechuic acid in Aspergillus niger. Biotechnol Lett 2014; 36:2303-10. [PMID: 25048233 DOI: 10.1007/s10529-014-1609-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/03/2014] [Indexed: 12/20/2022]
Abstract
Genomic studies have shown that not only plants but also filamentous fungi contain type III polyketide synthases. To study the function of type III polyketide synthase (AnPKSIII) in Aspergillus niger, a deletion strain (delAnPKSIII) and an overexpression strain (oeAnPKSIII) were constructed in A. niger MA169.4, a derivative of the wild-type (WT) A. niger ATCC 9029 that produces large quantities of gluconic acid. Alterations in the metabolites were analyzed by HPLC when the extract of the overexpression strain was compared with extracts of the WT and deletion strains. Protocatechuic acid (PCA; 3,4-dihydroxybenzoic acid, 3.2 mg/l) was isolated and identified as the main product of AnPKSIII when inductively expressed in A. niger MA169.4. The molecular weight of PCA was 154.1 (m/z 153.1 [M-H](-)), was detected by ESI-MS in the negative ionization mode, and (1)H and (13)C NMR data confirmed its structure.
Collapse
Affiliation(s)
- Yangyong Lv
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, People's Republic of China
| | | | | |
Collapse
|
28
|
Chooi YH, Muria-Gonzalez MJ, Solomon PS. A genome-wide survey of the secondary metabolite biosynthesis genes in the wheat pathogen Parastagonospora nodorum.. Mycology 2014; 5:192-206. [PMID: 25379341 PMCID: PMC4205913 DOI: 10.1080/21501203.2014.928386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/22/2014] [Indexed: 12/02/2022] Open
Abstract
The model pathogen Parastagonospora nodorum is a necrotroph and the causal agent of the wheat disease Septoria nodorum blotch (SNB). The sequenced P. nodorum genome has revealed that the fungus harbours a large number of secondary metabolite genes. Secondary metabolites are known to play important roles in the virulence of plant pathogens, but limited knowledge is available about the SM repertoire of this wheat pathogen. Here, we review the secondary metabolites that have been isolated from P. nodorum and related species of the same genus and provide an in-depth genome-wide overview of the secondary metabolite gene clusters encoded in the P. nodorum genome. The secondary metabolite gene survey reveals that P. nodorum is capable of producing a diverse range of small molecules and exciting prospects exist for discovery of novel virulence factors and bioactive molecules.
Collapse
Affiliation(s)
- Yit-Heng Chooi
- Plant Sciences Division, Research School of Biology, The Australian National University , Canberra , 0200 , Australia
| | - Mariano Jordi Muria-Gonzalez
- Plant Sciences Division, Research School of Biology, The Australian National University , Canberra , 0200 , Australia
| | - Peter S Solomon
- Plant Sciences Division, Research School of Biology, The Australian National University , Canberra , 0200 , Australia
| |
Collapse
|
29
|
Hashimoto M, Koen T, Takahashi H, Suda C, Kitamoto K, Fujii I. Aspergillus oryzae CsyB catalyzes the condensation of two β-ketoacyl-CoAs to form 3-acetyl-4-hydroxy-6-alkyl-α-pyrone. J Biol Chem 2014; 289:19976-84. [PMID: 24895122 DOI: 10.1074/jbc.m114.569095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type III polyketide synthases from fungi produce a variety of secondary metabolites including pyrones, resorcinols, and resorcylic acids. We previously reported that CsyB from Aspergillus oryzae forms α-pyrone csypyrone B compounds when expressed in A. oryzae. Feeding experiments of labeled acetates indicated that a fatty acyl starter is involved in the reaction catalyzed by CsyB. Here we report the in vivo and in vitro reconstitution analysis of CsyB. When CsyB was expressed in Escherichia coli, we observed the production of 3-acetyl-4-hydroxy-α-pyrones with saturated or unsaturated straight aliphatic chains of C9-C17 in length at the 6 position. Subsequent in vitro analysis using recombinant CsyB revealed that CsyB could accept butyryl-CoA as a starter substrate and malonyl-CoA and acetoacetyl-CoA as extender substrates to form 3-acetyl-4-hydroxy-6-propyl-α-pyrone. CsyB also afforded dehydroacetic acid from two molecules of acetoacetyl-CoA. Furthermore, synthetic N-acetylcysteamine thioester of β-ketohexanoic acid was converted to 3-butanoyl-4-hydroxy-6-propyl-α-pyrone by CsyB. These results therefore confirmed that CsyB catalyzed the synthesis of β-ketoacyl-CoA from the reaction of the starter fatty acyl CoA thioesters with malonyl-CoA as the extender through decarboxylative condensation and further coupling with acetoacetyl-CoA to form 3-acetyl-4-hydroxy-6-alkyl-α-pyrone. CsyB is the first type III polyketide synthase that synthesizes 3-acetyl-4-hydroxy-6-alkyl-α-pyrone by catalyzed the coupling of two β-ketoacyl-CoAs.
Collapse
Affiliation(s)
- Makoto Hashimoto
- From the School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan and
| | - Tsukasa Koen
- From the School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan and
| | - Hiroaki Takahashi
- From the School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan and
| | - Chihiro Suda
- From the School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan and
| | - Katsuhiko Kitamoto
- the Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Isao Fujii
- From the School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan and
| |
Collapse
|
30
|
Goiris K, Muylaert K, Voorspoels S, Noten B, De Paepe D, E Baart GJ, De Cooman L. Detection of flavonoids in microalgae from different evolutionary lineages. JOURNAL OF PHYCOLOGY 2014; 50:483-92. [PMID: 26988321 DOI: 10.1111/jpy.12180] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/09/2014] [Indexed: 05/08/2023]
Abstract
Flavonoids are important secondary plant metabolites believed to be present mainly in land plants. As phenolics were detected previously in microalgae using photometric assays, we wanted to investigate the nature of these phenolics and verify whether flavonoids are present. Therefore, in this study, we used state-of-the-art ultra-high performance liquid chromatography-two-dimensional mass spectrometry (UHPLC-MS/MS) technology to investigate whether microalgae also contain flavonoids. For this, representative microalgal biomass samples from divergent evolutionary lineages (Cyanobacteria, Rhodophyta, Chlorophyta, Haptophyta, Ochrophyta) were screened for a set of carefully selected precursors, intermediates, and end products of the flavonoid biosynthesis pathways. Our data unequivocally showed that microalgae contain a wide range of flavonoids and thus must possess the enzyme pool required for their biosynthesis. Further, some of the microalgae displayed an intricate flavonoid pattern that is compatible with the established basic flavonoid pathway as observed in higher plants. This implies that the flavonoid biosynthesis pathway arose much earlier in evolution compared to what is generally accepted.
Collapse
Affiliation(s)
- Koen Goiris
- Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Cluster for Bioengineering Technology (CBeT), Laboratory of Enzyme, Fermentation and Brewing Technology (EFBT), KAHO Sint-Lieven, KU Leuven, Gebroeders De Smetstraat 1, Gent, 9000, Belgium
- Research Unit Aquatic Biology, KU Leuven Kulak, Etienne Sabbelaan 53, Kortrijk, 8500, Belgium
| | - Koenraad Muylaert
- Research Unit Aquatic Biology, KU Leuven Kulak, Etienne Sabbelaan 53, Kortrijk, 8500, Belgium
| | - Stefan Voorspoels
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Bart Noten
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Domien De Paepe
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
- Technology and Food Science Unit (T&V), Institute for Agricultural and Fisheries Research (ILVO), Burgemeester Van Gansberghelaan 115, Merelbeke, 9820, Belgium
| | - Gino J E Baart
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG) and Leuven Institute for Beer Research (LIBR), VIB Laboratory for Systems Biology, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Luc De Cooman
- Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Cluster for Bioengineering Technology (CBeT), Laboratory of Enzyme, Fermentation and Brewing Technology (EFBT), KAHO Sint-Lieven, KU Leuven, Gebroeders De Smetstraat 1, Gent, 9000, Belgium
| |
Collapse
|
31
|
Zhou B, Wang Y, Zhan Y, Li Y, Kawabata S. Chalcone synthase family genes have redundant roles in anthocyanin biosynthesis and in response to blue/UV-A light in turnip (Brassica rapa; Brassicaceae). AMERICAN JOURNAL OF BOTANY 2013; 100:2458-67. [PMID: 24197179 DOI: 10.3732/ajb.1300305] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
PREMISE OF THE STUDY The epidermis of Brassica rapa (turnip) cv. Tsuda contains light-induced anthocyanins, visible signs of activity of chalcone synthase (CHS), a key anthocyanin biosynthetic enzyme, which is encoded by the CHS gene family. To elucidate the regulation of this light-induced pigmentation, we isolated Brassica rapa CHS1-CHS6 (BrCHS1-CHS6) and characterized their cis-elements and expression patterns. METHODS Epidermises of light-exposed swollen hypocotyls (ESHS) were harvested to analyze transcription levels of BrCHS genes by real-time PCR. Different promoters for the genes were inserted into tobacco to examine pCHS-GUS activity by histochemistry. Yeast-one-hybridization was used to detect binding activity of BrCHS motifs to transcription factors. KEY RESULTS Transcript levels of BrCHS1, -4, and -5 and anthocyanin-biosynthesis-related genes F3H, DFR, and ANS were high, while those of BrCHS2, -3, and -6 were almost undetectable in pigmented ESHS. However, in leaves, CHS5, F3H, and ANS expression was higher than in nonpigmented ESHS, but transcription of DFR was not detected. In the analysis of BrCHS1 and BrCHS3 promoter activity, GUS activity was strong in pigmented flowers of BrPCHS1-GUS-transformed tobacco plants, but nearly absent in BrPCHS3-GUS-transformed plants. Transcript levels of regulators, BrMYB75 and BrTT8, were strongly associated with the anthocyanin content and were light-induced. Coregulated cis-elements were found in promoters of BrCHS1,-4, and -5, and BrMYB75 and BrTT8 had high binding activities to the BrCHS Unit 1 motif. CONCLUSIONS The chalcone synthase gene family encodes a redundant set of light-responsive, tissue-specific genes that are expressed at different levels and are involved in flavonoid biosynthesis in Tsuda turnip.
Collapse
Affiliation(s)
- Bo Zhou
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | | | | | | | | |
Collapse
|
32
|
Strategies for mining fungal natural products. J Ind Microbiol Biotechnol 2013; 41:301-13. [PMID: 24146366 DOI: 10.1007/s10295-013-1366-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/05/2013] [Indexed: 10/26/2022]
Abstract
Fungi are well known for their ability to produce a multitude of natural products. On the one hand their potential to provide beneficial antibiotics and immunosuppressants has been maximized by the pharmaceutical industry to service the market with cost-efficient drugs. On the other hand identification of trace amounts of known mycotoxins in food and feed samples is of major importance to ensure consumer health and safety. Although several fungal natural products, their biosynthesis and regulation are known today, recent genome sequences of hundreds of fungal species illustrate that the secondary metabolite potential of fungi has been substantially underestimated. Since expression of genes and subsequent production of the encoded metabolites are frequently cryptic or silent under standard laboratory conditions, strategies for activating these hidden new compounds are essential. This review will cover the latest advances in fungal genome mining undertaken to unlock novel products.
Collapse
|
33
|
Aspergillus oryzae type III polyketide synthase CsyB uses a fatty acyl starter for the biosynthesis of csypyrone B compounds. Bioorg Med Chem Lett 2013; 23:5637-40. [PMID: 24011646 DOI: 10.1016/j.bmcl.2013.08.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 11/24/2022]
Abstract
Csypyrones B1, B2 and B3 are α-pyrones that can be obtained from Aspergillus oryzae expressing CsyB, which is a type III polyketide synthase. We investigated the biosynthesis of the csypyrone B compounds using [1-(13)C] and [2-(13)C] acetate feeding experiments. (13)C NMR analyses of the methyl esters of the csypyrone B compounds fed with the (13)C-labeled acetates showed that the carboxyl carbons of the csypyrone B side-chains were derived from the C-2 methyl carbon of the acetate. These results indicated that fatty acyl starters are involved in the CsyB reaction and that the csypyrone B compounds are formed by the oxidation of side-chains by the host fungus.
Collapse
|
34
|
Engineering microbial cells for the biosynthesis of natural compounds of pharmaceutical significance. BIOMED RESEARCH INTERNATIONAL 2013; 2013:780145. [PMID: 23710459 PMCID: PMC3655478 DOI: 10.1155/2013/780145] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/30/2013] [Indexed: 12/19/2022]
Abstract
Microbes constitute important platforms for the biosynthesis of numerous molecules of pharmaceutical interest such as antitumor, anticancer, antiviral, antihypertensive, antiparasitic, antioxidant, immunological agents, and antibiotics as well as hormones, belonging to various chemical families, for instance, terpenoids, alkaloids, polyphenols, polyketides, amines, and proteins. Engineering microbial factories offers rich opportunities for the production of natural products that are too complex for cost-effective chemical synthesis and whose extraction from their originating plants needs the use of many solvents. Recent progresses that have been made since the millennium beginning with metabolic engineering of microorganisms for the biosynthesis of natural products of pharmaceutical significance will be reviewed.
Collapse
|
35
|
Lussier FX, Colatriano D, Wiltshire Z, Page JE, Martin VJJ. Engineering microbes for plant polyketide biosynthesis. Comput Struct Biotechnol J 2013; 3:e201210020. [PMID: 24688680 PMCID: PMC3962132 DOI: 10.5936/csbj.201210020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 01/01/2023] Open
Abstract
Polyketides are an important group of secondary metabolites, many of which have important industrial applications in the food and pharmaceutical industries. Polyketides are synthesized from one of three classes of enzymes differentiated by their biochemical features and product structure: type I, type II or type III polyketide synthases (PKSs). Plant type III PKS enzymes, which will be the main focus of this review, are relatively small homodimeric proteins that catalyze iterative decarboxylative condensations of malonyl units with a CoA-linked starter molecule. This review will describe the plant type III polyketide synthetic pathway, including the synthesis of chalcones, stilbenes and curcuminoids, as well as recent work on the synthesis of these polyketides in heterologous organisms. The limitations and bottlenecks of heterologous expression as well as attempts at creating diversity through the synthesis of novel “unnatural” polyketides using type III PKSs will also be discussed. Although synthetic production of plant polyketides is still in its infancy, their potential as useful bioactive compounds makes them an extremely interesting area of study.
Collapse
Affiliation(s)
- François-Xavier Lussier
- Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, Canada, H4B 1R6
| | - David Colatriano
- Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, Canada, H4B 1R6
| | - Zach Wiltshire
- Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, Canada, H4B 1R6
| | - Jonathan E Page
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada, S7N 0W9
| | - Vincent J J Martin
- Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, Canada, H4B 1R6
| |
Collapse
|
36
|
Identification of csypyrone B2 and B3 as the minor products of Aspergillus oryzae type III polyketide synthase CsyB. Bioorg Med Chem Lett 2013; 23:650-3. [DOI: 10.1016/j.bmcl.2012.11.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/18/2012] [Accepted: 11/30/2012] [Indexed: 11/24/2022]
|
37
|
Abstract
The iterative type I polyketide synthases (IPKSs) are central to the biosynthesis of an enormously diverse array of natural products in fungi. These natural products, known as polyketides, exhibit a wide range of biological activities and include clinically important drugs as well as undesirable toxins. The PKSs synthesize these structurally diverse polyketides via a series of decarboxylative condensations of malonyl-CoA extender units and β-keto modifications in a highly programmed manner. Significant progress has been made over the past few years in understanding the biosynthetic mechanism and programming of fungal PKSs. The continuously expanding fungal genome sequence data have sparked genome-directed discoveries of new fungal PKSs and associated products. The increasing number of fungal PKSs that have been linked to their products along with in-depth biochemical and structural characterizations of these large enzymes have remarkably improved our knowledge on the molecular basis for polyketide structural diversity in fungi. This Perspective highlights the recent advances and examines how the newly expanded paradigm has contributed to our ability to link fungal PKS genes to chemical structures and vice versa. The knowledge will help us navigate through the logarithmically expanding seas of genomic information for polyketide compound discovery and provided opportunities to reprogram these megasynthases to generate new chemical entities.
Collapse
Affiliation(s)
- Yit-Heng Chooi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| |
Collapse
|
38
|
Sytar O, Brestic M, Rai M. Possible ways of fagopyrin biosynthesis and production in buckwheat plants. Fitoterapia 2012; 84:72-9. [PMID: 23103298 DOI: 10.1016/j.fitote.2012.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 02/08/2023]
Abstract
The present work extends knowledge about possible biosynthesis of fagopyrin in buckwheat plants by providing possible candidate genes for its biosynthesis and the role of type III polyketide synthases (PKSs). Moreover, new information is presented about the possible connection between naphthodianthrones and phenolic biosynthesis. Possible regulation of fagopyrin biosynthesis and production under different growth conditions is also discussed.
Collapse
Affiliation(s)
- Oksana Sytar
- Department of Plant Physiology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia.
| | | | | |
Collapse
|
39
|
Genome mining reveals the evolutionary origin and biosynthetic potential of basidiomycete polyketide synthases. Fungal Genet Biol 2012; 49:996-1003. [PMID: 23078836 DOI: 10.1016/j.fgb.2012.09.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/09/2012] [Accepted: 09/27/2012] [Indexed: 11/20/2022]
Abstract
Numerous polyketides are known from bacteria, plants, and fungi. However, only a few have been isolated from basidiomycetes. Large scale genome sequencing projects now help anticipate the capacity of basidiomycetes to synthesize polyketides. In this study, we identified and annotated 111 type I and three type III polyketide synthase (PKS) genes from 35 sequenced basidiomycete genomes. Phylogenetic analysis of PKS genes suggests that all main types of fungal iterative PKS had already evolved before the Ascomycota and Basidiomycota diverged. A comparison of genomic and metabolomic data shows that the number of polyketide genes exceeds the number of known polyketide structures by far. Exploiting these results to design degenerate PCR primers, we amplified and cloned the complete sequence of armB, a PKS gene from the melleolide producer Armillaria mellea. We expect this study will serve as a guide for future genomic mining projects to discover structurally diverse mushroom-derived polyketides.
Collapse
|
40
|
Jeya M, Kim TS, Tiwari MK, Li J, Zhao H, Lee JK. The Botrytis cinerea type III polyketide synthase shows unprecedented high catalytic efficiency toward long chain acyl-CoAs. MOLECULAR BIOSYSTEMS 2012; 8:2864-7. [PMID: 22945364 DOI: 10.1039/c2mb25282a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BPKS from Botrytis cinerea is a novel type III polyketide synthase that accepts C(4)-C(18) aliphatic acyl-CoAs and benzoyl-CoA as the starters to form pyrones, resorcylic acids and resorcinols through sequential condensation with malonyl-CoA. The catalytic efficiency (k(cat)/K(m)) of BPKS was 2.8 × 10(5) s(-1) M(-1) for palmitoyl-CoA, the highest ever reported. Substrate docking analyses addressed the unique features of BPKS such as its high activity and high specificity toward long chain acyl-CoAs.
Collapse
Affiliation(s)
- Marimuthu Jeya
- Department of Chemical Engineering, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | | | |
Collapse
|
41
|
Yu D, Xu F, Zeng J, Zhan J. Type III polyketide synthases in natural product biosynthesis. IUBMB Life 2012; 64:285-95. [DOI: 10.1002/iub.1005] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/28/2011] [Indexed: 11/08/2022]
|
42
|
Sanchez JF, Somoza AD, Keller NP, Wang CCC. Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat Prod Rep 2012; 29:351-71. [PMID: 22228366 DOI: 10.1039/c2np00084a] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review studies the impact of whole genome sequencing on Aspergillus secondary metabolite research. There has been a proliferation of many new, intriguing discoveries since sequencing data became widely available. What is more, the genomes disclosed the surprising finding that there are many more secondary metabolite biosynthetic pathways than laboratory research had suggested. Activating these pathways has been met with some success, but many more dormant genes remain to be awakened.
Collapse
Affiliation(s)
- James F Sanchez
- University of Southern California-Pharmacology and Pharmaceutical Sciences, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
43
|
Dairi T, Kuzuyama T, Nishiyama M, Fujii I. Convergent strategies in biosynthesis. Nat Prod Rep 2011; 28:1054-86. [PMID: 21547300 DOI: 10.1039/c0np00047g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review article focuses on how nature sometimes solves the same problem in the biosynthesis of small molecules but using very different approaches. Four examples, involving isopentenyl diphosphate, menaquinone, lysine, and aromatic polyketides, are highlighted that represent different strategies in convergent metabolism.
Collapse
Affiliation(s)
- Tohru Dairi
- Faculty of Engineering and Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | | | | | | |
Collapse
|
44
|
Bhetariya PJ, Madan T, Basir SF, Varma A, Usha SP. Allergens/Antigens, toxins and polyketides of important Aspergillus species. Indian J Clin Biochem 2011; 26:104-19. [PMID: 22468035 PMCID: PMC3107401 DOI: 10.1007/s12291-011-0131-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 12/11/2022]
Abstract
The medical, agricultural and biotechnological importance of the primitive eukaryotic microorganisms, the Fungi was recognized way back in 1920. Among various groups of fungi, the Aspergillus species are studied in great detail using advances in genomics and proteomics to unravel biological and molecular mechanisms in these fungi. Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus parasiticus, Aspergillus nidulans and Aspergillus terreus are some of the important species relevant to human, agricultural and biotechnological applications. The potential of Aspergillus species to produce highly diversified complex biomolecules such as multifunctional proteins (allergens, antigens, enzymes) and polyketides is fascinating and demands greater insight into the understanding of these fungal species for application to human health. Recently a regulator gene for secondary metabolites, LaeA has been identified. Gene mining based on LaeA has facilitated new metabolites with antimicrobial activity such as emericellamides and antitumor activity such as terrequinone A from A. nidulans. Immunoproteomic approach was reported for identification of few novel allergens for A. fumigatus. In this context, the review is focused on recent developments in allergens, antigens, structural and functional diversity of the polyketide synthases that produce polyketides of pharmaceutical and biological importance. Possible antifungal drug targets for development of effective antifungal drugs and new strategies for development of molecular diagnostics are considered.
Collapse
Affiliation(s)
- Preetida J. Bhetariya
- Division of Plant Pathology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| | - Taruna Madan
- National Institute for Research in Reproductive Health (NIRRH), Parel, Mumbai, 400012 India
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Anupam Varma
- Division of Plant Pathology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| | - Sarma P. Usha
- Division of Plant Pathology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| |
Collapse
|
45
|
Abstract
Aspergillus flavus is saprophytic soil fungus that infects and contaminates preharvest and postharvest seed crops with the carcinogenic secondary metabolite aflatoxin. The fungus is also an opportunistic animal and human pathogen causing aspergillosis diseases with incidence increasing in the immunocompromised population. Whole genome sequences of A. flavus have been released and reveal 55 secondary metabolite clusters that are regulated by different environmental regimes and the global secondary metabolite regulators LaeA and VeA. Characteristics of A. flavus associated with pathogenicity and niche specialization include secondary metabolite production, enzyme elaboration, and a sophisticated oxylipin host crosstalk associated with a quorum-like development program. One of the more promising strategies in field control involves the use of atoxic strains of A. flavus in competitive exclusion studies. In this review, we discuss A. flavus as an agricultural and medical threat and summarize recent research advances in genomics, elucidation of parameters of pathogenicity, and control measures.
Collapse
Affiliation(s)
- Saori Amaike
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
46
|
Naoumkina MA, Zhao Q, Gallego-Giraldo L, Dai X, Zhao PX, Dixon RA. Genome-wide analysis of phenylpropanoid defence pathways. MOLECULAR PLANT PATHOLOGY 2010; 11:829-46. [PMID: 21029326 PMCID: PMC6640277 DOI: 10.1111/j.1364-3703.2010.00648.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phenylpropanoids can function as preformed and inducible antimicrobial compounds, as well as signal molecules, in plant-microbe interactions. Since we last reviewed the field 8 years ago, there has been a huge increase in our understanding of the genes of phenylpropanoid biosynthesis and their regulation, brought about largely by advances in genome technology, from whole-genome sequencing to massively parallel gene expression profiling. Here, we present an overview of the biosynthesis and roles of phenylpropanoids in plant defence, together with an analysis of confirmed and predicted phenylpropanoid pathway genes in the sequenced genomes of 11 plant species. Examples are provided of phylogenetic and expression clustering analyses, and the large body of underlying genomic data is provided through a website accessible from the article.
Collapse
Affiliation(s)
- Marina A Naoumkina
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | | | | | |
Collapse
|
47
|
Surveys of non-ribosomal peptide and polyketide assembly lines in fungi and prospects for their analysis in vitro and in vivo. Fungal Genet Biol 2010; 48:49-61. [PMID: 20601041 DOI: 10.1016/j.fgb.2010.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 06/02/2010] [Accepted: 06/21/2010] [Indexed: 12/16/2022]
Abstract
With many bioactive non-ribosomal peptides and polyketides produced in fungi, studies of their biosyntheses are an active area of research. Practical limitations of working with mega-dalton synthetases including cell lysis and protein extraction to recombinant gene and pathway expression has slowed understanding of many secondary metabolic processes relative to bacterial counterparts. Recent advances in accessing fungal biosynthetic machinery are beginning to change this. Here we describe the successes of some studies of thiotemplate biosynthesis in fungal systems, along with very recent advances in chemical tagging and mass spectrometric strategies to selectively study biosynthetic conveyer belts in isolation, and within a few years, in endogenous fungal proteomes.
Collapse
|
48
|
Seshime Y, Juvvadi PR, Kitamoto K, Ebizuka Y, Nonaka T, Fujii I. Aspergillus oryzae type III polyketide synthase CsyA is involved in the biosynthesis of 3,5-dihydroxybenzoic acid. Bioorg Med Chem Lett 2010; 20:4785-8. [PMID: 20630753 DOI: 10.1016/j.bmcl.2010.06.119] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 06/11/2010] [Accepted: 06/22/2010] [Indexed: 11/25/2022]
Abstract
As a novel superfamily of type III polyketide synthases in microbes, four genes csyA, csyB, csyC, and csyD, were found in the genome of Aspergillus oryzae, an industrially important filamentous fungus. In order to analyze their functions, we carried out the overexpression of csyA under the control of alpha-amylase promoter in A. oryzae and identified 3,5-dihydroxybenzoic acid (DHBA) as the major product. Feeding experiments using (13)C-labeled acetates confirmed that the acetate labeling pattern of DHBA coincided with that of orcinol derived from orsellinic acid, a polyketide formed by the condensation and cyclization of four acetate units. Further oxidation of methyl group of orcinol by the host fungus could lead to the production of DHBA. Comparative molecular modeling of CsyA with the crystal structure of Neurospora crassa 2'-oxoalkylresorcylic acid synthase indicated that CsyA cavity size can only accept short-chain acyl starter and tetraketide formation. Thus, CsyA is considered to be a tetraketide alkyl-resorcinol/resorcylic acid synthase.
Collapse
Affiliation(s)
- Yasuyo Seshime
- School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Yu D, Zeng J, Chen D, Zhan J. Characterization and reconstitution of a new fungal type III polyketide synthase from Aspergillus oryzae. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2010.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Seshime Y, Juvvadi PR, Kitamoto K, Ebizuka Y, Fujii I. Identification of csypyrone B1 as the novel product of Aspergillus oryzae type III polyketide synthase CsyB. Bioorg Med Chem 2010; 18:4542-6. [PMID: 20471846 DOI: 10.1016/j.bmc.2010.04.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/18/2010] [Accepted: 04/20/2010] [Indexed: 11/19/2022]
Abstract
As a novel superfamily of type III polyketide synthases (PKSs) in microbes, four genes, csyA, csyB, csyC, and csyD, were found in the genome of Aspergillus oryzae, an industrially important filamentous fungus. Although orthologs of csyA, csyC, and csyD genes are present in a closely related species, Aspergillus flavus, csyB gene is unique to A. oryzae. To identify its function, we carried out overexpression of csyB gene under the control of alpha-amylase promoter in A. oryzae. 3-(3-Acetyl-4-hydroxy-2-oxo-2H-pyran-6-yl)propanoic acid, named csypyrone B1, was identified as a CsyB product. Feeding experiments of (13)C-labeled acetate indicated that five acetate units were incorporated into csypyrone B1. Two possible mechanisms are proposed for the biosynthesis of cycpyrone B1: (1) condensation of succinyl-CoA with three acetyl/malonyl-CoAs, and the following pyrone ring cyclization; (2) condensation of butyryl-CoA with three acetyl/malonyl-CoAs, and the following pyrone ring cyclization and side-chain oxidation.
Collapse
Affiliation(s)
- Yasuyo Seshime
- School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | | | | | | | | |
Collapse
|