1
|
Jia L, Tian H, Sun S, Hao X, Wen Y. EID3 inhibits the osteogenic differentiation of periodontal ligament stem cells and mediates the signal transduction of TAZ-EID3-AKT/MTOR/ERK. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119662. [PMID: 38216090 DOI: 10.1016/j.bbamcr.2024.119662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/16/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
Exploring the molecular mechanisms of cell behaviors is beneficial for promoting periodontal ligament stem cell (PDLSC)-mediated tissue regeneration. This study intends to explore the regulatory effects of EID3 on cell proliferation, apoptosis, and osteogenic differentiation and to preliminarily explore the regulatory mechanism of EID3. Here, EID3 was overexpressed or knocked down in PDLSCs by recombinant lentivirus. Then, cell proliferation activity was analyzed by colony-forming assay, EdU assay, and cell cycle assay. Cell apoptosis was detected by flow cytometry. The osteo-differentiation potential was analyzed using ALP activity assay, ALP staining, alizarin red staining, and mRNA and protein assay of osteo-differentiation related genes. The results showed that when EID3 was knocked down, the proliferation activity and osteogenic differentiation potential of PDLSCs decreased, while they increased when EID3 was overexpressed. The cell apoptosis rate decreased in PDLSCs with EID3 knockdown but increased in PDLSCs with EID3 overexpression. Moreover, EID3 inhibited the transduction of the AKT/MTOR and ERK signaling pathway. In addition, TAZ negatively regulated the expression of EID3, and the overexpression of EID3 partially reversed the promotive effects of TAZ on the osteogenic differentiation of PDLSCs. Taken together, EID3 inhibits the proliferation and osteogenic differentiation while promoting the apoptosis of PDLSCs. EID3 inhibits the transduction of the AKT/MTOR and ERK signaling pathways and mediates the regulatory effect of TAZ on PDLSC osteogenic differentiation.
Collapse
Affiliation(s)
- Linglu Jia
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong, China; Shandong Provincial Clinical Research Center for Oral Diseases, Shandong, China
| | - Hui Tian
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Stomatology, Rizhao People's Hospital, Rizhao, Shandong, China
| | - Shaoqing Sun
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong, China; Shandong Provincial Clinical Research Center for Oral Diseases, Shandong, China
| | - Xingyao Hao
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong, China; Shandong Provincial Clinical Research Center for Oral Diseases, Shandong, China
| | - Yong Wen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong, China; Shandong Provincial Clinical Research Center for Oral Diseases, Shandong, China.
| |
Collapse
|
2
|
Ma L, He X, Wu Q. The Molecular Regulatory Mechanism in Multipotency and Differentiation of Wharton's Jelly Stem Cells. Int J Mol Sci 2023; 24:12909. [PMID: 37629090 PMCID: PMC10454700 DOI: 10.3390/ijms241612909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are isolated from Wharton's jelly tissue of umbilical cords. They possess the ability to differentiate into lineage cells of three germ layers. WJ-MSCs have robust proliferative ability and strong immune modulation capacity. They can be easily collected and there are no ethical problems associated with their use. Therefore, WJ-MSCs have great tissue engineering value and clinical application prospects. The identity and functions of WJ-MSCs are regulated by multiple interrelated regulatory mechanisms, including transcriptional regulation and epigenetic modifications. In this article, we summarize the latest research progress on the genetic/epigenetic regulation mechanisms and essential signaling pathways that play crucial roles in pluripotency and differentiation of WJ-MSCs.
Collapse
Affiliation(s)
| | | | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
3
|
Lee S, Jung S, Kim HJ, Kim S, Moon JH, Chung H, Kang SJ, Park CG. Mesenchymal stem cell-derived extracellular vesicles subvert Th17 cells by destabilizing RORγt through posttranslational modification. Exp Mol Med 2023; 55:665-679. [PMID: 36964252 PMCID: PMC10073130 DOI: 10.1038/s12276-023-00949-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 03/26/2023] Open
Abstract
Mesenchymal stem cell (MSC)-derived small extracellular vesicles (MSC-sEVs) are known to exert immunosuppressive functions. This study showed that MSC-sEVs specifically convert T helper 17 (Th17) cells into IL-17 low-producer (ex-Th17) cells by degrading RAR-related orphan receptor γt (RORγt) at the protein level. In experimental autoimmune encephalomyelitis (EAE)-induced mice, treatment with MSC-sEVs was found to not only ameliorate clinical symptoms but also to reduce the number of Th17 cells in draining lymph nodes and the central nervous system. MSC-sEVs were found to destabilize RORγt by K63 deubiquitination and deacetylation, which was attributed to the EP300-interacting inhibitor of differentiation 3 (Eid3) contained in the MSC-sEVs. Small extracellular vesicles isolated from the Eid3 knockdown MSCs by Eid3-shRNA failed to downregulate RORγt. Moreover, forced expression of Eid3 by gene transfection was found to significantly decrease the protein level of RORγt in Th17 cells. Altogether, this study reveals the novel immunosuppressive mechanisms of MSC-sEVs, which suggests the feasibility of MSC-sEVs as an attractive therapeutic tool for curing Th17-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Sunho Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sunyoung Jung
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hyun Je Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, 03080, Korea
- Seoul National University Hospital, Seoul, Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University Hospital, Seoul, Korea
| | - Sueon Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ji Hwan Moon
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Hyunwoo Chung
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seong-Jun Kang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
- BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
4
|
Hontani K, Tsuchikawa T, Hiwasa T, Nakamura T, Ueno T, Kushibiki T, Takahashi M, Inoko K, Takano H, Takeuchi S, Dosaka-Akita H, Kuwatani M, Sakamoto N, Hatanaka Y, Mitsuhashi T, Shimada H, Shichinohe T, Hirano S. Identification of novel serum autoantibodies against EID3 in non-functional pancreatic neuroendocrine tumors. Oncotarget 2017; 8:106206-106221. [PMID: 29290942 PMCID: PMC5739727 DOI: 10.18632/oncotarget.22175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/14/2017] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are relatively rare heterogenous tumors, comprising only 1–2% of all pancreatic neoplasms. The majority of pNETs are non-functional tumors (NF-pNETs) that do not produce hormones, and as such, do not cause any hormone-related symptoms. As a result, these tumors are often diagnosed at an advanced stage because patients do not present with specific symptoms. Although tumor markers are used to help diagnosis and predict some types of cancers, chromogranin A, a widely used tumor marker of pNETs, has significant limitations. To identify novel NF-pNET-associated antigens, we performed serological identification of antigens by recombinant cDNA expression cloning (SEREX) and identified five tumor antigens (phosphatase and tensin homolog, EP300-interacting inhibitor of differentiation 3 [EID3], EH domain-containing protein 1, galactoside-binding soluble 9, and BRCA1-associated protein). Further analysis using the AlphaLISA® immunoassay to compare serum antibody levels revealed that antibody levels against the EID3 antigen was significantly higher in the patient group than in the healthy donor group (n = 25, both groups). In addition, higher serum anti-EID3 antibody levels in NF-pNET patients correlated with shorter disease-free survival. The AUC calculated by ROC analysis was 0.784 with moderate diagnostic accuracy. In conclusion, serum anti-EID3 antibody levels may be useful as a tumor marker for prediction of tumor recurrence in NF-pNETs.
Collapse
Affiliation(s)
- Koji Hontani
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Takahiro Tsuchikawa
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Takaki Hiwasa
- Department of Biochemistry and Genetics, Chiba University, Chuo Ku, Chiba 260-8670, Japan
| | - Toru Nakamura
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Takashi Ueno
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Toshihiro Kushibiki
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Mizuna Takahashi
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Kazuho Inoko
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hironobu Takano
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Satoshi Takeuchi
- Department of Medical Oncology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hirotoshi Dosaka-Akita
- Department of Medical Oncology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Masaki Kuwatani
- Department of Gastroenterology and Hematology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hematology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Yutaka Hatanaka
- Department of Translational Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Tomoko Mitsuhashi
- Department of Translational Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Ota-ku, Tokyo 143-8541, Japan
| | - Toshiaki Shichinohe
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
5
|
Lenos KJ, Vermeulen L. Cancer stem cells don't waste their time cleaning-low proteasome activity, a marker for cancer stem cell function. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:519. [PMID: 28149881 DOI: 10.21037/atm.2016.11.81] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A population of stem-like cells in tumors, the so-called cancer stem cells (CSCs), are being held responsible for therapy resistance and tumor recurrence. In analogy with normal stem cells, CSCs possess the capacity of long term self-renewal and multilineage differentiation. CSCs are believed to be more resistant to various therapies compared to their differentiated offspring and therefore the cause of tumor relapse. Markers for CSCs have been identified using xenograft transplantation assays and lineage tracing in mouse models, however the specificity and validity of many of these markers is under debate. Recently, low proteasome activity has been postulated as a novel CSC marker. In several solid malignancies a small subset of low proteasomal activity cells with CSC characteristics were identified, suggesting that proteasomal activity might be a functional marker for CSCs. In this perspective, we will discuss a recent study by Munakata et al., describing a population of colorectal cancer cells with CSC properties, characterized by low proteasome activity and treatment resistance. We will put this finding in a broader view by discussing the challenges and issues inherent with CSC identification, as well as some emerging insights in the CSC concept.
Collapse
Affiliation(s)
- Kristiaan J Lenos
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Reis EPD, Paixão DM, Brustolini OJB, Silva FFE, Silva W, Araújo FMGD, Salim ACDM, Oliveira G, Guimarães SEF. Expression of myogenes in longissimus dorsi muscle during prenatal development in commercial and local Piau pigs. Genet Mol Biol 2016; 39:589-599. [PMID: 27801482 PMCID: PMC5127148 DOI: 10.1590/1678-4685-gmb-2015-0295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/20/2016] [Indexed: 11/22/2022] Open
Abstract
This study used qRT-PCR to examine variation in the expression of 13 myogenes during muscle development in four prenatal periods (21, 40, 70 and 90 days post-insemination) in commercial (the three-way Duroc, Landrace and Large-White cross) and local Piau pig breeds that differ in muscle mass. There was no variation in the expression of the CHD8, EID2B, HIF1AN, IKBKB, RSPO3, SOX7 and SUFU genes at the various prenatal ages or between breeds. The MAP2K1 and RBM24 genes showed similar expression between commercial and Piau pigs but greater expression (p < 0.05) in at least one prenatal period. Pair-wise comparisons of prenatal periods in each breed showed that only the CSRP3, LEF1, MRAS and MYOG genes had higher expression (p < 0.05) in at least one prenatal period in commercial and Piau pigs. Overall, these results identified the LEF1 gene as a primary candidate to account for differences in muscle mass between the pig breeds since activation of this gene may lead to greater myoblast fusion in the commercial breed compared to Piau pigs. Such fusion could explain the different muscularity between breeds in the postnatal periods.
Collapse
Affiliation(s)
| | | | | | | | - Walmir Silva
- Departamento de Zootecnia, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | | | | | | | | |
Collapse
|
7
|
Cancer Stem-like Properties in Colorectal Cancer Cells with Low Proteasome Activity. Clin Cancer Res 2016; 22:5277-5286. [DOI: 10.1158/1078-0432.ccr-15-1945] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 04/21/2016] [Indexed: 11/16/2022]
|
8
|
Zhang C, Li X, Adelmant G, Dobbins J, Geisen C, Oser MG, Wucherpfenning KW, Marto JA, Kaelin WG. Peptidic degron in EID1 is recognized by an SCF E3 ligase complex containing the orphan F-box protein FBXO21. Proc Natl Acad Sci U S A 2015; 112:15372-7. [PMID: 26631746 PMCID: PMC4687553 DOI: 10.1073/pnas.1522006112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
EP300-interacting inhibitor of differentiation 1 (EID1) belongs to a protein family implicated in the control of transcription, differentiation, DNA repair, and chromosomal maintenance. EID1 has a very short half-life, especially in G0 cells. We discovered that EID1 contains a peptidic, modular degron that is necessary and sufficient for its polyubiquitylation and proteasomal degradation. We found that this degron is recognized by an Skp1, Cullin, and F-box (SCF)-containing ubiquitin ligase complex that uses the F-box Only Protein 21 (FBXO21) as its substrate recognition subunit. SCF(FBXO21) polyubiquitylates EID1 both in vitro and in vivo and is required for the efficient degradation of EID1 in both cycling and quiescent cells. The EID1 degron partially overlaps with its retinoblastoma tumor suppressor protein-binding domain and is congruent with a previously defined melanoma-associated antigen-binding motif shared by EID family members, suggesting that binding to retinoblastoma tumor suppressor and melanoma-associated antigen family proteins could affect the polyubiquitylation and turnover of EID family members in cells.
Collapse
Affiliation(s)
- Cuiyan Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
| | - Xiaotong Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Guillaume Adelmant
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215
| | - Jessica Dobbins
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215
| | - Christoph Geisen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215; Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
| | - Kai W Wucherpfenning
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215; Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
9
|
Niess H, Camaj P, Renner A, Ischenko I, Zhao Y, Krebs S, Mysliwietz J, Jäckel C, Nelson PJ, Blum H, Jauch KW, Ellwart JW, Bruns CJ. Side population cells of pancreatic cancer show characteristics of cancer stem cells responsible for resistance and metastasis. Target Oncol 2014; 10:215-27. [PMID: 24950733 DOI: 10.1007/s11523-014-0323-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 05/09/2014] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) have been proposed to underlie the initiation and maintenance of tumor growth and the development of chemoresistance in solid tumors. The identification and role of these important cells in pancreatic cancer remains controversial. Here, we isolate side population (SP) cells from the highly aggressive and metastatic human pancreatic cancer cell line L3.6pl and evaluate their potential role as models for CSCs. SP cells were isolated following Hoechst 33342 staining of L3.6pl cells. SP, non-SP, and unsorted L3.6pl cells were orthotopically xenografted into the pancreas of nude mice and tumor growth observed. RNA was analyzed by whole genome array and pathway mapping was performed. Drug resistant variants of L3.6pl were developed and examined for SP proportions and evaluated for surface expression of known CSC markers. A distinct SP with the ability to self-renew and differentiate into non-SP cells was isolated from L3.6pl (0.9 % ± 0.22). SP cells showed highly tumorigenic and metastatic characteristics after orthotopic injection. Transcriptomic analysis identified modulation of gene networks linked to tumorigenesis, differentiation, and metastasization in SP cells relative to non-SP cells. Wnt, NOTCH, and EGFR signaling pathways associated with tumor stem cells were altered in SP cells. When cultured with increasing concentrations of gemcitabine, the proportion of SP cells, ABCG2(+), and CD24(+) cells were significantly enriched, whereas 5-fluorouracil (5-FU) treatment lowered the percentage of SP cells. SP cells were distinct from cells positive for previously postulated pancreatic CSC markers. The Hoechst-induced side population in L3.6pl cells comprises a subset of tumor cells displaying aggressive growth and metastasization, increased gemcitabine-, but not 5-FU resistance. The cells may act as a partial model for CSC biology.
Collapse
Affiliation(s)
- Hanno Niess
- Department of Surgery, University of Munich, Campus Großhadern, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
The transcriptional consequences of somatic amplifications, deletions, and rearrangements in a human lung squamous cell carcinoma. Neoplasia 2013; 14:1075-86. [PMID: 23226101 DOI: 10.1593/neo.121380] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 09/25/2012] [Accepted: 09/28/2012] [Indexed: 12/16/2022] Open
Abstract
Lung cancer causes more deaths, worldwide, than any other cancer. Several histologic subtypes exist. Currently, there is a dearth of targeted therapies for treating one of the main subtypes: squamous cell carcinoma (SCC). As for many cancers, lung SCC karyotypes are often highly anomalous owing to large somatic structural variants, some of which are seen repeatedly in lung SCC, indicating a potential causal association for genes therein. We chose to characterize a lung SCC genome to unprecedented detail and integrate our findings with the concurrently characterized transcriptome. We aimed to ascertain how somatic structural changes affected gene expression within the cell in ways that could confer a pathogenic phenotype. We sequenced the genomes of a lung SCC cell line (LUDLU-1) and its matched lymphocyte cell line (AGLCL) to more than 50x coverage. We also sequenced the transcriptomes of LUDLU-1 and a normal bronchial epithelium cell line (LIMM-NBE1), resulting in more than 600 million aligned reads per sample, including both coding and non-coding RNA (ncRNA), in a strand-directional manner. We also captured small RNA (<30 bp). We discovered significant, but weak, correlations between copy number and expression for protein-coding genes, antisense transcripts, long intergenic ncRNA, and microRNA (miRNA). We found that miRNA undergo the largest change in overall expression pattern between the normal bronchial epithelium and the tumor cell line. We found evidence of transcription across the novel genomic sequence created from six somatic structural variants. For each part of our integrated analysis, we highlight candidate genes that have undergone the largest expression changes.
Collapse
|