1
|
Shimozawa Y, Matsuhisa H, Nakamura T, Himiyama T, Nishiya Y. Reducing substrate inhibition of malate dehydrogenase from Geobacillus stearothermophilus by C-terminal truncation. Protein Eng Des Sel 2022; 35:6753781. [DOI: 10.1093/protein/gzac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract
Malate dehydrogenase (MDH) catalyzes the reduction of oxaloacetate to L-malate. Geobacillus stearothermophilus MDH (gs-MDH) is used as a diagnostic reagent; however, gs-MDH is robustly inhibited at high substrate concentrations, which limits its reaction rate. Here, we reduced substrate inhibition of gs-MDH by deleting its C-terminal residues. Computational analysis showed that C-terminal residues regulate the position of the active site loop. C-terminal deletions of gs-MDH successfully increased Ki values by 5- to 8-fold with maintained thermal stability (>90% of the wild-type enzyme), although kcat/Km values were decreased by <2-fold. The structure of the mutant showed a shift in the location of the active site loop and a decrease in its volume, suggesting that substrate inhibition was reduced by eliminating the putative substrate binding site causing inhibition. Our results provide an effective method to reduce substrate inhibition of the enzyme without loss of other parameters, including binding and stability constants.
Collapse
Affiliation(s)
- Yuya Shimozawa
- Graduate School of Science and Engineering, Setsunan University Division of Life Science, , Osaka 572-8508, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology , Osaka 563-8577, Japan
| | - Hinano Matsuhisa
- Setsunan University Department of Life Science, Faculty of Science and Engineering, , Osaka 572-8508, Japan
| | - Tsutomu Nakamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology , Osaka 563-8577, Japan
| | - Tomoki Himiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology , Osaka 563-8577, Japan
| | - Yoshiaki Nishiya
- Graduate School of Science and Engineering, Setsunan University Division of Life Science, , Osaka 572-8508, Japan
| |
Collapse
|
2
|
Hofmann J, Bitew MA, Kuba M, De Souza DP, Newton HJ, Sansom FM. Characterisation of putative lactate synthetic pathways of Coxiella burnetii. PLoS One 2021; 16:e0255925. [PMID: 34388185 PMCID: PMC8362950 DOI: 10.1371/journal.pone.0255925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022] Open
Abstract
The zoonotic pathogen Coxiella burnetii, the causative agent of the human disease Q fever, is an ever-present danger to global public health. Investigating novel metabolic pathways necessary for C. burnetii to replicate within its unusual intracellular niche may identify new therapeutic targets. Recent studies employing stable isotope labelling established the ability of C. burnetii to synthesize lactate, despite the absence of an annotated synthetic pathway on its genome. A noncanonical lactate synthesis pathway could provide a novel anti-Coxiella target if it is essential for C. burnetii pathogenesis. In this study, two C. burnetii proteins, CBU1241 and CBU0823, were chosen for analysis based on their similarities to known lactate synthesizing enzymes. Recombinant GST-CBU1241, a putative malate dehydrogenase (MDH), did not produce measurable lactate in in vitro lactate dehydrogenase (LDH) activity assays and was confirmed to function as an MDH. Recombinant 6xHis-CBU0823, a putative NAD+-dependent malic enzyme, was shown to have both malic enzyme activity and MDH activity, however, did not produce measurable lactate in either LDH or malolactic enzyme activity assays in vitro. To examine potential lactate production by CBU0823 more directly, [13C]glucose labelling experiments compared label enrichment within metabolic pathways of a cbu0823 transposon mutant and the parent strain. No difference in lactate production was observed, but the loss of CBU0823 significantly reduced 13C-incorporation into glycolytic and TCA cycle intermediates. This disruption to central carbon metabolism did not have any apparent impact on intracellular replication within THP-1 cells. This research provides new information about the mechanism of lactate biosynthesis within C. burnetii, demonstrating that CBU1241 is not multifunctional, at least in vitro, and that CBU0823 also does not synthesize lactate. Although critical for normal central carbon metabolism of C. burnetii, loss of CBU0823 did not significantly impair replication of the bacterium inside cells.
Collapse
Affiliation(s)
- Janine Hofmann
- Faculty of Veterinary and Agricultural Sciences, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | - Mebratu A. Bitew
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California, United States of America
| | - Miku Kuba
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - David P. De Souza
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Hayley J. Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Fiona M. Sansom
- Faculty of Veterinary and Agricultural Sciences, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Konakalla NC, Nitin M, Kaldis A, Masarapu H, Carpentier S, Voloudakis A. dsRNA Molecules From the Tobacco Mosaic Virus p126 Gene Counteract TMV-Induced Proteome Changes at an Early Stage of Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:663707. [PMID: 34054904 PMCID: PMC8155517 DOI: 10.3389/fpls.2021.663707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Exogenous application of double-stranded RNA (dsRNA) in the tobacco-Tobacco mosaic virus (TMV) pathosystem was shown previously to induce resistance against TMV providing an alternative approach to transgenesis. In the present study, we employed proteomics technology to elucidate the effect of TMV on tobacco as well as the effect of exogenous application of TMV p126 dsRNA molecules (dsRNAp126) at an early stage of the tobacco-TMV interaction. The proteome of tobacco leaf at 15 min post inoculation (mpi) in the presence or absence of dsRNAp126 molecules was studied. Thirty-six tobacco proteins were differentially accumulated in TMV-infected vs. healthy tobacco leaf tissue. The identified main differential TMV-responsive proteins were found to be involved in photosynthesis, energy metabolism, stress, and defense responses. Most of the virus-induced changes in the tobacco leaf proteome were not observed in the leaves treated with dsRNAp126 + TMV. The results indicated that the protein changes induced by TMV infection were counteracted by the exogenous application of dsRNAp126 molecules. Moreover, using small RNA sequencing, we showed that the exogenously applied dsRNAp126 was efficiently processed in tobacco as early as 15 min post application (mpa) to produce small interfering RNAs (siRNAs); the dicing pattern was not affected by the presence of TMV. The presence of dsRNAp126 reduced TMV p126 RNA abundance suggesting virus titer reduction via a sequence-specific mechanism, since a non-homologous dsRNA did not protect from TMV infection nor affect TMV accumulation.
Collapse
Affiliation(s)
- Naga Charan Konakalla
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, Athens, Greece
- Department of Virology, Sri Venkateswara University, Tirupati, India
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Mukesh Nitin
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, Athens, Greece
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, Athens, Greece
| | - Hema Masarapu
- Department of Virology, Sri Venkateswara University, Tirupati, India
| | - Sebastien Carpentier
- Department of Biosystems, KU Leuven, Leuven, Belgium
- SYBIOMA: Facility for Systems Biology Based Mass Spectrometry, Leuven, Belgium
| | - Andreas Voloudakis
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
4
|
Tricarboxylic acid cycle dehydrogenases inhibition by naringenin: experimental and molecular modelling evidence. Br J Nutr 2020; 123:1117-1126. [DOI: 10.1017/s0007114520000549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractThe study of polyphenols’ effects on health has been gaining attention lately. In addition to reacting with important enzymes, altering the cell metabolism, these substances can present either positive or negative metabolic alterations depending on their consumption levels. Naringenin, a citrus flavonoid, already presents diverse metabolic effects. The objective of this work was to evaluate the effect of maternal naringenin supplementation during pregnancy on the tricarboxylic acid cycle activity in offspring’s cerebellum. Adult female Wistar rats were divided into two groups: (1) vehicle (1 ml/kg by oral administration (p.o.)) or (2) naringenin (50 mg/kg p.o.). The offspring were euthanised at 7th day of life, and the cerebellum was dissected to analyse citrate synthase, isocitrate dehydrogenase (IDH), α-ketoglutarate dehydrogenase (α-KGDH) and malate dehydrogenase (MDH) activities. Molecular docking used SwissDock web server and FORECASTER Suite, and the proposed binding pose image was created on UCSF Chimera. Data were analysed by Student’s t test. Naringenin supplementation during pregnancy significantly inhibited IDH, α-KGDH and MDH activities in offspring’s cerebellum. A similar reduction was observed in vitro, using purified α-KGDH and MDH, subjected to pre-incubation with naringenin. Docking simulations demonstrated that naringenin possibly interacts with dehydrogenases in the substrate and cofactor binding sites, inhibiting their function. Naringenin administration during pregnancy may affect cerebellar development and must be evaluated with caution by pregnant women and their physicians.
Collapse
|
5
|
Liu Y, Munteanu CR, Kong Z, Ran T, Sahagún-Ruiz A, He Z, Zhou C, Tan Z. Identification of coenzyme-binding proteins with machine learning algorithms. Comput Biol Chem 2019; 79:185-192. [PMID: 30851647 DOI: 10.1016/j.compbiolchem.2019.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/11/2018] [Accepted: 01/25/2019] [Indexed: 01/12/2023]
Abstract
The coenzyme-binding proteins play a vital role in the cellular metabolism processes, such as fatty acid biosynthesis, enzyme and gene regulation, lipid synthesis, particular vesicular traffic, and β-oxidation donation of acyl-CoA esters. Based on the theory of Star Graph Topological Indices (SGTIs) of protein primary sequences, we proposed a method to develop a first classification model for predicting protein with coenzyme-binding properties. To simulate the properties of coenzyme-binding proteins, we created a dataset containing 2897 proteins, among 456 proteins functioned as coenzyme-binding activity. The SGTIs of peptide sequence were calculated with Sequence to Star Network (S2SNet) application. We used the SGTIs as inputs to several classification techniques with a machine learning software - Weka. A Random Forest classifier based on 3 features of the embedded and non-embedded graphs was identified as the best predictive model for coenzyme-binding proteins. This model developed was with the true positive (TP) rate of 91.7%, false positive (FP) rate of 7.6%, and Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.971. The prediction of new coenzyme-binding activity proteins using this model could be useful for further drug development or enzyme metabolism researches.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China; Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, 410128, PR China
| | - Cristian R Munteanu
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruña, Spain; Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), A Coruña, 15006, Spain
| | - Zhiwei Kong
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tao Ran
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China; Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, T1J 4B1, Canada
| | - Alfredo Sahagún-Ruiz
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Animal Science, National Autonomous University of Mexico, Universidad 3000, Copilco Coyoacán, CP 04510, México D.F., Mexico
| | - Zhixiong He
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China; Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, 410128, PR China.
| | - Chuanshe Zhou
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China; Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, 410128, PR China
| | - Zhiliang Tan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China; Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, 410128, PR China
| |
Collapse
|
6
|
Zhao A, Han F. Crystal structure of Arabidopsis thaliana glutamyl-tRNA Glu reductase in complex with NADPH and glutamyl-tRNA Glu reductase binding protein. PHOTOSYNTHESIS RESEARCH 2018; 137:443-452. [PMID: 29785497 DOI: 10.1007/s11120-018-0518-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
In higher plants, the tetrapyrrole biosynthesis pathway starts from the reaction catalyzed by the rate-limiting enzyme, glutamyl-tRNAGlu reductase (GTR). In Arabidopsis thaliana, GTR is controlled by post-transcriptional regulators such as GTR binding protein (GBP), which stimulates AtGTR activity. The NADPH-binding domain of AtGTR undergoes a substantial movement upon GBP binding. Here, we report the crystal structure of AtGTR-NADPH-GBP ternary complex. NADPH binding causes slight structural changes compared with the AtGTR-GBP binary complex, and possibly take a part of the space needed by the substrate glutamyl-tRNAGlu. The highly reactive sulfhydryl group of the active-site residue Cys144 shows an obvious rotation, which may facilitate the hydride transfer from NADPH to the thioester intermediate to form glutamate-1-semialdehyde. Furthermore, Lys271, Lys274, Ser275, Asn278, and Gln282 of GBP participate in the interaction between AtGTR and GBP, and the stimulating effect of GBP decreased when all of these residues were mutated to Ala. When the Cys144 of AtGTR was mutated to Ser, AtGTR activity could not be detected even in the presence of GBP.
Collapse
Affiliation(s)
- Aiguo Zhao
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Feng Han
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Takahashi-Íñiguez T, Aburto-Rodríguez N, Vilchis-González AL, Flores ME. Function, kinetic properties, crystallization, and regulation of microbial malate dehydrogenase *. J Zhejiang Univ Sci B 2016; 17:247-261. [PMCID: PMC4829630 DOI: 10.1631/jzus.b1500219] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/14/2015] [Indexed: 09/12/2023]
Abstract
Malate dehydrogenase (MDH) is an enzyme widely distributed among living organisms and is a key protein in the central oxidative pathway. It catalyzes the interconversion between malate and oxaloacetate using NAD+ or NADP+ as a cofactor. Surprisingly, this enzyme has been extensively studied in eukaryotes but there are few reports about this enzyme in prokaryotes. It is necessary to review the relevant information to gain a better understanding of the function of this enzyme. Our review of the data generated from studies in bacteria shows much diversity in their molecular properties, including weight, oligomeric states, cofactor and substrate binding affinities, as well as differences in the direction of the enzymatic reaction. Furthermore, due to the importance of its function, the transcription and activity of this enzyme are rigorously regulated. Crystal structures of MDH from different bacterial sources led to the identification of the regions involved in substrate and cofactor binding and the residues important for the dimer-dimer interface. This structural information allows one to make direct modifications to improve the enzyme catalysis by increasing its activity, cofactor binding capacity, substrate specificity, and thermostability. A comparative analysis of the phylogenetic reconstruction of MDH reveals interesting facts about its evolutionary history, dividing this superfamily of proteins into two principle clades and establishing relationships between MDHs from different cellular compartments from archaea, bacteria, and eukaryotes.
Collapse
|
8
|
Wang ZD, Wang BJ, Ge YD, Pan W, Wang J, Xu L, Liu AM, Zhu GP. Expression and identification of a thermostable malate dehydrogenase from multicellular prokaryote Streptomyces avermitilis MA-4680. Mol Biol Rep 2010; 38:1629-36. [DOI: 10.1007/s11033-010-0273-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 09/02/2010] [Indexed: 01/18/2023]
|
9
|
Tomita T, Fushinobu S, Kuzuyama T, Nishiyama M. Structural basis for the alteration of coenzyme specificity in a malate dehydrogenase mutant. Biochem Biophys Res Commun 2006; 347:502-8. [PMID: 16828705 DOI: 10.1016/j.bbrc.2006.06.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 06/22/2006] [Indexed: 11/30/2022]
Abstract
To elucidate the structural basis for the alteration of coenzyme specificity from NADH toward NADPH in a malate dehydrogenase mutant EX7 from Thermus flavus, we determined the crystal structures at 2.0 A resolution of EX7 complexed with NADPH and NADH, respectively. In the EX7-NADPH complex, Ser42 and Ser45 form hydrogen bonds with the 2'-phosphate group of the adenine ribose of NADPH, although the adenine moiety is not seen in the electron density map. In contrast, although Ser42 and Ser45 occupy a similar position in the EX7-NADH complex structure, both the adenine and adenine ribose moieties of NADH are missing in the map. These results and kinetic analysis of site-directed mutant enzymes indicate (1) that the preference of EX7 for NADPH over NADH is ascribed to the recognition of the 2'-phosphate group by two Ser and Arg44, and (2) that the adenine moiety of NADPH is not recognized in this mutant.
Collapse
Affiliation(s)
- Takeo Tomita
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
10
|
Luo C, Wang X, Long J, Liu J. An NADH-tetrazolium-coupled sensitive assay for malate dehydrogenase in mitochondria and crude tissue homogenates. ACTA ACUST UNITED AC 2006; 68:101-11. [PMID: 16740313 DOI: 10.1016/j.jbbm.2006.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 04/14/2006] [Accepted: 04/18/2006] [Indexed: 11/28/2022]
Abstract
A sensitive spectrophotometric assay for determining mitochondrial malate dehydrogenase activity is described. The assay measures NADH production by coupling it to the reduction of 2-(p-iodophenyl)-3(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT). Via an intermediate electron carrier, either phenazine methosulfate or lipoamide dehydrogenase, INT accepts electrons and is reduced to a red-colored formazan, which can be quantified by spectrophotometer at 500 nm. This assay uses only commercial reagents but gives a 2-5 fold (with lipoamide dehydrogenase) or 5-20 fold (with phenazine methosulfate) activity increase over currently available assays for pure enzyme in mitochondria isolated from human neuroblastoma cells, rat brain and liver, and crude homogenates of rat brain and liver. The assay can be easily performed with 96-well plate and less than 2.5 microg protein of isolated mitochondria or crude tissue homogenate. These results suggest that this assay is a simple, sensitive, stable and inexpensive method with wide application.
Collapse
Affiliation(s)
- Cheng Luo
- Institute for Nutritional Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, PR China
| | | | | | | |
Collapse
|