1
|
Functional diversity: update of the posttranslational modification of Epstein-Barr virus coding proteins. Cell Mol Life Sci 2022; 79:590. [PMID: 36376593 DOI: 10.1007/s00018-022-04561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
Epstein-Barr virus (EBV), a human oncogenic herpesvirus with a typical life cycle consisting of latent phase and lytic phase, is associated with many human diseases. EBV can express a variety of proteins that enable the virus to affect host cell processes and evade host immunity. Additionally, these proteins provide a basis for the maintenance of viral infection, contribute to the formation of tumors, and influence the occurrence and development of related diseases. Posttranslational modifications (PTMs) are chemical modifications of proteins after translation and are very important to guarantee the proper biological functions of these proteins. Studies in the past have intensely investigated PTMs of EBV-encoded proteins. EBV regulates the progression of the latent phase and lytic phase by affecting the PTMs of its encoded proteins, which are critical for the development of EBV-associated human diseases. In this review, we summarize the PTMs of EBV-encoded proteins that have been discovered and studied thus far with focus on their effects on the viral life cycle.
Collapse
|
2
|
Chen J, Li G, He H, Li X, Niu W, Cao D, Shen A. Sumoylation of the Carboxy-Terminal of Human Cytomegalovirus DNA Polymerase Processivity Factor UL44 Attenuates Viral DNA Replication. Front Microbiol 2021; 12:652719. [PMID: 33967989 PMCID: PMC8097051 DOI: 10.3389/fmicb.2021.652719] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Controlled regulation of genomic DNA synthesis is a universally conserved process for all herpesviruses, including human cytomegalovirus (HCMV), and plays a key role in viral pathogenesis, such as persistent infections. HCMV DNA polymerase processivity factor UL44 plays an essential role in viral DNA replication. To better understand the biology of UL44, we performed a yeast two-hybrid screen for host proteins that could interact with UL44. The most frequently isolated result was the SUMO-conjugating enzyme UBC9, a protein involved in the sumoylation pathway. The UBC9-UL44 interaction was confirmed by in vitro His-tag pull-down and in vivo co-immunoprecipitation assays. Using deletion mutants of UL44, we mapped two small regions of UL44, aa 11–16, and 260–269, which might be critical for the interaction with UBC9. We then demonstrated that UL44 was a target for sumoylation by in vitro and in vivo sumoylation assays, as well as in HCMV-infected cells. We further confirmed that 410lysine located within a ψKxE consensus motif on UL44 carboxy-terminal was the major sumoylation site of UL44. Interestingly, although 410lysine had no effects on subcellular localization or protein stability of UL44, the removal of 410lysine sumoylation site enhanced both viral DNA synthesis in transfection-replication assays and viral progeny production in infected cells for HCMV, suggesting sumoylation can attenuate HCMV replication through targeting UL44. Our results suggest that sumoylation plays a key role in regulating UL44 functions and viral replication, and reveal the crucial role of the carboxy-terminal of UL44, for which little function has been known before.
Collapse
Affiliation(s)
- Jun Chen
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Guanlie Li
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haiqing He
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xin Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wenjing Niu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Di Cao
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ao Shen
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Garcia P, Harrod A, Jha S, Jenkins J, Barnhill A, Lee H, Thompson M, Williams JP, Barefield J, Mckinnon A, Suarez P, Shah A, Lowrey AJ, Bentz GL. Effects of targeting sumoylation processes during latent and induced Epstein-Barr virus infections using the small molecule inhibitor ML-792. Antiviral Res 2021; 188:105038. [PMID: 33577806 DOI: 10.1016/j.antiviral.2021.105038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022]
Abstract
As the second leading cause of death in the United States, cancer has a considerable impact on society, and one cellular process that is commonly dysregulated in many cancers is the post-translational modification of proteins by the Small Ubiquitin-like Modifier (SUMO; sumoylation). We documented that sumoylation processes are up-regulated in lymphoma tissues in the presence of Latent Membrane Protein-1 (LMP1), the principal oncoprotein of Epstein-Barr virus (EBV). LMP1-mediated dysregulation of cellular sumoylation processes contributes to oncogenesis, modulates innate immune responses, and aids the maintenance of viral latency. Manipulation of protein sumoylation has been proposed for anti-cancer and anti-viral therapies; however, known inhibitors of sumoylation do not only target sumoylation processes. Recently, a specific and selective small-molecule inhibitor of sumoylation (ML-792) was identified; however, nothing is known about the effect of ML-792 on LMP1-mediated dysregulation of cellular sumoylation or the EBV life-cycle. We hypothesized that ML-792 modulates viral replication and the oncogenic potential of EBV LMP1 by inhibiting protein sumoylation. Results showed that ML-792 inhibited sumoylation processes in multiple EBV-positive B cell lines and EBV-positive nasopharyngeal carcinoma cell lines but not in their EBV-negative counterparts. Focusing on its effect on B cells, ML-792 inhibited B-cell growth and promoted cell death at very low doses. ML-792 also modulated LMP1-induced cell migration and cell adhesion, which suggests the abrogation of the oncogenic potential of LMP1. Finally, while higher concentrations of ML-792 were sufficient to induce low levels EBV spontaneous reactivation, they decreased the production of new infectious virus following an induced reactivation and the infection of new cells, suggesting that ML-792 has anti-viral potential. Together, these findings suggest that ML-792 may be a potential therapeutic drug to treat EBV-associated lymphoid malignancies by targeting oncogenesis and the EBV life-cycle.
Collapse
Affiliation(s)
- Peter Garcia
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Abigail Harrod
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Shruti Jha
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Jessica Jenkins
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Alex Barnhill
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Holden Lee
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Merritt Thompson
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | | | - James Barefield
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Ashton Mckinnon
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Persia Suarez
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Ananya Shah
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Angela J Lowrey
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Gretchen L Bentz
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| |
Collapse
|
4
|
Ubiquitin Modification of the Epstein-Barr Virus Immediate Early Transactivator Zta. J Virol 2020; 94:JVI.01298-20. [PMID: 32847852 DOI: 10.1128/jvi.01298-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
The Epstein-Barr virus (EBV) immediate early transactivator Zta plays a key role in regulating the transition from latency to the lytic replication stages of EBV infection. Regulation of Zta is known to be controlled through a number of transcriptional and posttranscriptional events. Here, we show that Zta is targeted for ubiquitin modification and that this can occur in EBV-negative and in EBV-infected cells. Genetic studies show critical roles for both an amino-terminal region of Zta and the basic DNA binding domain of Zta in regulating Zta ubiquitination. Pulse-chase experiments demonstrate that the bulk population of Zta is relatively stable but that at least a subset of ubiquitinated Zta molecules are targeted for degradation in the cell. Mutation of four out of a total of nine lysine residues in Zta largely abrogates its ubiquitination, indicating that these are primary ubiquitination target sites. A Zta mutant carrying mutations at these four lysine residues (lysine 12, lysine 188, lysine 207, and lysine 219) cannot induce latently infected cells to produce and/or release infectious virions. Nevertheless, this mutant can induce early gene expression, suggesting a possible defect at the level of viral replication or later in the lytic cascade. As far as we know, this is the first study that has investigated the targeting of Zta by ubiquitination or its role in Zta function.IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous human pathogen and associated with various human diseases. EBV undergoes latency and lytic replication stages in its life cycle. The transition into the lytic replication stage, at which virus is produced, is mainly regulated by the viral gene product, Zta. Therefore, the regulation of Zta function becomes a central issue regarding viral biology and pathogenesis. Known modifications of Zta include phosphorylation and sumoylation. Here, we report the role of ubiquitination in regulating Zta function. We found that Zta is subjected to ubiquitination in both EBV-infected and EBV-negative cells. The ubiquitin modification targets 4 lysine residues on Zta, leading to both mono- and polyubiquitination of Zta. Ubiquitination of Zta affects the protein's stability and likely contributes to the progression of viral lytic replication. The function and fate of Zta may be determined by the specific lysine residue being modified.
Collapse
|
5
|
Germini D, Sall FB, Shmakova A, Wiels J, Dokudovskaya S, Drouet E, Vassetzky Y. Oncogenic Properties of the EBV ZEBRA Protein. Cancers (Basel) 2020; 12:E1479. [PMID: 32517128 PMCID: PMC7352903 DOI: 10.3390/cancers12061479] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Epstein Barr Virus (EBV) is one of the most common human herpesviruses. After primary infection, it can persist in the host throughout their lifetime in a latent form, from which it can reactivate following specific stimuli. EBV reactivation is triggered by transcriptional transactivator proteins ZEBRA (also known as Z, EB-1, Zta or BZLF1) and RTA (also known as BRLF1). Here we discuss the structural and functional features of ZEBRA, its role in oncogenesis and its possible implication as a prognostic or diagnostic marker. Modulation of host gene expression by ZEBRA can deregulate the immune surveillance, allow the immune escape, and favor tumor progression. It also interacts with host proteins, thereby modifying their functions. ZEBRA is released into the bloodstream by infected cells and can potentially penetrate any cell through its cell-penetrating domain; therefore, it can also change the fate of non-infected cells. The features of ZEBRA described in this review outline its importance in EBV-related malignancies.
Collapse
Affiliation(s)
- Diego Germini
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Fatimata Bintou Sall
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
- Laboratory of Hematology, Aristide Le Dantec Hospital, Cheikh Anta Diop University, Dakar 12900, Senegal
| | - Anna Shmakova
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Joëlle Wiels
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Svetlana Dokudovskaya
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Emmanuel Drouet
- CIBB-IBS UMR 5075 Université Grenoble Alpes, 38044 Grenoble, France;
| | - Yegor Vassetzky
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| |
Collapse
|
6
|
The Epstein-Barr Virus Oncoprotein, LMP1, Regulates the Function of SENP2, a SUMO-protease. Sci Rep 2019; 9:9523. [PMID: 31266997 PMCID: PMC6606635 DOI: 10.1038/s41598-019-45825-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/12/2019] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) latent membrane protein-1 (LMP1) activates numerous signal transduction pathways using its C-terminal activating regions. We reported that LMP1 increased global levels of sumoylated proteins, which aided the oncogenic nature of LMP1. Because increased protein sumoylation is detected in numerous cancers, we wanted to elucidate additional mechanisms by which LMP1 modulates the sumoylation machinery. Results indicated that SUMO-protease activity decreased in a LMP1-dependent manner, so we hypothesized that LMP1 inhibits SUMO-protease activity, resulting in reduced de-sumoylation of cellular proteins, which contributes to the detected accumulation of sumoylated proteins in EBV-positive lymphomas. Focusing on SENP2, findings revealed that LMP1 expression corresponded with increased sumoylation of SENP2 at K48 and K447 in a CTAR-dependent manner. Interestingly, independent of LMP1-induced sumoylation of SENP2, LMP1 also decreased SENP2 activity, decreased SENP2 turnover, and altered the localization of SENP2, which led us to investigate if LMP1 regulated the biology of SENP2 by a different post-translational modification, specifically ubiquitination. Data showed that expression of LMP1 inhibited the ubiquitination of SENP2, and inhibition of ubiquitination was sufficient to mimic LMP1-induced changes in SENP2 activity and trafficking. Together, these findings suggest that LMP1 modulates different post-translational modifications of SENP2 in order to modulate its biology and identify a third member of the sumoylation machinery that is manipulated by LMP1 during latent EBV infections, which can affect oncogenesis.
Collapse
|
7
|
Bentz GL, Lowrey AJ, Horne DC, Nguyen V, Satterfield AR, Ross TD, Harrod AE, Uchakina ON, McKallip RJ. Using glycyrrhizic acid to target sumoylation processes during Epstein-Barr virus latency. PLoS One 2019; 14:e0217578. [PMID: 31125383 PMCID: PMC6534330 DOI: 10.1371/journal.pone.0217578] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
Cellular sumoylation processes are proposed targets for anti-viral and anti-cancer therapies. We reported that Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) dysregulates cellular sumoylation processes, contributing to its oncogenic potential in EBV-associated malignancies. Ginkgolic acid and anacardic acid, known inhibitors of sumoylation, inhibit LMP1-induced protein sumoylation; however, both drugs have adverse effects in hosts. Here we test the effects of glycyrrhizic acid, a medicinal botanical extract with anti-inflammatory, anti-carcinogenic, and anti-viral properties, on cellular sumoylation processes. While glycyrrhizic acid is known to inhibit EBV penetration, its affect on cellular sumoylation processes remains to be documented. We hypothesized that glycyrrhizic acid inhibits cellular sumoylation processes and may be a viable treatment for Epstein-Barr virus-associated malignancies. Results showed that glycyrrhizic acid inhibited sumoylation processes (without affecting ubiquitination processes), limited cell growth, and induced apoptosis in multiple cell lines. Similar to ginkgolic acid; glycyrrhizic acid targeted the first step of the sumoylation process and resulted in low levels of spontaneous EBV reactivation. Glycyrrhizic acid did not affect induced reactivation of the virus, but the presence of the extract did reduce the ability of the produced virus to infect additional cells. Therefore, we propose that glycyrrhizic acid may be a potential therapeutic drug to augment the treatment of EBV-associated lymphoid malignancies.
Collapse
Affiliation(s)
- Gretchen L Bentz
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America
| | - Angela J Lowrey
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America
| | - Dustin C Horne
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America
| | - Vy Nguyen
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America
| | - Austin R Satterfield
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America
| | - Tabithia D Ross
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America
| | - Abigail E Harrod
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America
| | - Olga N Uchakina
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America
| | - Robert J McKallip
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America
| |
Collapse
|
8
|
Salahuddin S, Fath EK, Biel N, Ray A, Moss CR, Patel A, Patel S, Hilding L, Varn M, Ross T, Cramblet WT, Lowrey A, Pagano JS, Shackelford J, Bentz GL. Epstein-Barr Virus Latent Membrane Protein-1 Induces the Expression of SUMO-1 and SUMO-2/3 in LMP1-positive Lymphomas and Cells. Sci Rep 2019; 9:208. [PMID: 30659232 PMCID: PMC6338769 DOI: 10.1038/s41598-018-36312-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/12/2018] [Indexed: 11/17/2022] Open
Abstract
Epstein-Barr Virus latent membrane protein-1 (LMP1) interacts with the SUMO-conjugating enzyme Ubc9, which induces protein sumoylation and may contribute to LMP1-mediated oncogenesis. After analyzing human lymphoma tissues and EBV-positive cell lines, we now document a strong correlation between LMP1 and sumo-1/2/3 or SUMO-1/2/3 levels, and show that LMP1-induced sumo expression requires the activation of NF-κB signaling through CTAR1 and CTAR2. Together, these results point to a second mechanism by which LMP1 dysregulates sumoylation processes and adds EBV-associated lymphomas to the list of malignancies associated with increased SUMO expression.
Collapse
Affiliation(s)
- Sadia Salahuddin
- Departments of Medicine and Microbiology and Immunology, The University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, USA.,Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Emma K Fath
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, USA
| | - Natalie Biel
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Ashley Ray
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - C Randall Moss
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Akash Patel
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Sheetal Patel
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Leslie Hilding
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Matthew Varn
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Tabithia Ross
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Wyatt T Cramblet
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Angela Lowrey
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Joseph S Pagano
- Departments of Medicine and Microbiology and Immunology, The University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, USA
| | - Julia Shackelford
- Department of Cellular Biology and Physiology, The University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, USA
| | - Gretchen L Bentz
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, USA. .,Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| |
Collapse
|
9
|
De La Cruz-Herrera CF, Shire K, Siddiqi UZ, Frappier L. A genome-wide screen of Epstein-Barr virus proteins that modulate host SUMOylation identifies a SUMO E3 ligase conserved in herpesviruses. PLoS Pathog 2018; 14:e1007176. [PMID: 29979787 PMCID: PMC6051671 DOI: 10.1371/journal.ppat.1007176] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/18/2018] [Accepted: 06/22/2018] [Indexed: 12/30/2022] Open
Abstract
Many cellular processes pertinent for viral infection are regulated by the addition of small ubiquitin-like modifiers (SUMO) to key regulatory proteins, making SUMOylation an important mechanism by which viruses can commandeer cellular pathways. Epstein-Barr virus (EBV) is a master at manipulating of cellular processes, which enables life-long infection but can also lead to the induction of a variety of EBV-associated cancers. To identify new mechanisms by which EBV proteins alter cells, we screened a library of 51 EBV proteins for global effects on cellular SUMO1 and SUMO2 modifications (SUMOylation), identifying several proteins not previously known to manipulate this pathway. One EBV protein (BRLF1) globally induced the loss of SUMOylated proteins, in a proteasome-dependent manner, as well as the loss of promeylocytic leukemia nuclear bodies. However, unlike its homologue (Rta) in Kaposi's sarcoma associated herpesvirus, it did not appear to have ubiquitin ligase activity. In addition we identified the EBV SM protein as globally upregulating SUMOylation and showed that this activity was conserved in its homologues in herpes simplex virus 1 (HSV1 UL54/ICP27) and cytomegalovirus (CMV UL69). All three viral homologues were shown to bind SUMO and Ubc9 and to have E3 SUMO ligase activity in a purified system. These are the first SUMO E3 ligases discovered for EBV, HSV1 and CMV. Interestingly the homologues had different specificities for SUMO1 and SUMO2, with SM and UL69 preferentially binding SUMO1 and inducing SUMO1 modifications, and UL54 preferentially binding SUMO2 and inducing SUMO2 modifications. The results provide new insights into the function of this family of conserved herpesvirus proteins, and the conservation of this SUMO E3 ligase activity across diverse herpesviruses suggests the importance of this activity for herpesvirus infections.
Collapse
Affiliation(s)
| | - Kathy Shire
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Umama Z. Siddiqi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Wang C, Zeng N, Liu S, Miao Q, Zhou L, Ge X, Han J, Guo X, Yang H. Interaction of porcine reproductive and respiratory syndrome virus proteins with SUMO-conjugating enzyme reveals the SUMOylation of nucleocapsid protein. PLoS One 2017; 12:e0189191. [PMID: 29236778 PMCID: PMC5728522 DOI: 10.1371/journal.pone.0189191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/21/2017] [Indexed: 12/30/2022] Open
Abstract
SUMOylation is a reversible post-translational modification that regulates the function of target protein. In this study, we first predicted by software that the multiple proteins of porcine reproductive and respiratory syndrome virus (PRRSV) could be sumoylated. Next, we confirmed that Nsp1β, Nsp4, Nsp9, Nsp10 and nucleocapsid (N) protein of PRRSV could interact with the sole SUMO E2 conjugating enzyme Ubc9, and Ubc9 could be co-localized with Nsp1β, Nsp4, Nsp9 and Nsp10 in the cytoplasm, while with N protein in both the cytoplasm and nucleus. Finally, we demonstrated that N protein could be sumoylated by either SUMO1 or SUMO2/3. In addition, the overexpression of Ubc9 could inhibit viral genomic replication at early period of PRRSV infection and the knockdown of Ubc9 by siRNA could promote the virus replication. These findings reveal the SUMOylation property of PRRSV N protein and the involvement of Ubc9 in PRRSV replication through interaction with multiple proteins of PRRSV. To our knowledge, this is the first study indicating the interplay between SUMO modification system and PRRSV.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Nanfang Zeng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Siyu Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Qi Miao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
- * E-mail: (XG); (HY)
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
- * E-mail: (XG); (HY)
| |
Collapse
|
11
|
Wilson VG. Viral Interplay with the Host Sumoylation System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:359-388. [PMID: 28197923 PMCID: PMC7121812 DOI: 10.1007/978-3-319-50044-7_21] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Viruses have evolved elaborate means to regulate diverse cellular pathways in order to create a cellular environment that facilitates viral survival and reproduction. This includes enhancing viral macromolecular synthesis and assembly, as well as preventing antiviral responses, including intrinsic, innate, and adaptive immunity. There are numerous mechanisms by which viruses mediate their effects on the host cell, and this includes targeting various cellular post-translational modification systems, including sumoylation. The wide-ranging impact of sumoylation on cellular processes such as transcriptional regulation, apoptosis, stress response, and cell cycle control makes it an attractive target for viral dysregulation. To date, proteins from both RNA and DNA virus families have been shown to be modified by SUMO conjugation, and this modification appears critical for viral protein function. More interestingly, members of the several viral families have been shown to modulate sumoylation, including papillomaviruses, adenoviruses, herpesviruses, orthomyxoviruses, filoviruses, and picornaviruses. This chapter will focus on mechanisms by which sumoylation both impacts human viruses and is used by viruses to promote viral infection and disease.
Collapse
Affiliation(s)
- Van G Wilson
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, 8447 HWY 47, Bryan, TX, 77807-1359, USA.
| |
Collapse
|
12
|
Lowrey AJ, Cramblet W, Bentz GL. Viral manipulation of the cellular sumoylation machinery. Cell Commun Signal 2017; 15:27. [PMID: 28705221 PMCID: PMC5513362 DOI: 10.1186/s12964-017-0183-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/07/2017] [Indexed: 12/11/2022] Open
Abstract
Viruses exploit various cellular processes for their own benefit, including counteracting anti-viral responses and regulating viral replication and propagation. In the past 20 years, protein sumoylation has emerged as an important post-translational modification that is manipulated by viruses to modulate anti-viral responses, viral replication, and viral pathogenesis. The process of sumoylation is a multi-step cascade where a small ubiquitin-like modifier (SUMO) is covalently attached to a conserved ΨKxD/E motif within a target protein, altering the function of the modified protein. Here we review how viruses manipulate the cellular machinery at each step of the sumoylation process to favor viral survival and pathogenesis.
Collapse
Affiliation(s)
- Angela J Lowrey
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia
| | - Wyatt Cramblet
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia
| | - Gretchen L Bentz
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia.
| |
Collapse
|
13
|
Yang YC, Feng TH, Chen TY, Huang HH, Hung CC, Liu ST, Chang LK. RanBPM regulates Zta-mediated transcriptional activity in Epstein–Barr virus. J Gen Virol 2015; 96:2336-2348. [DOI: 10.1099/vir.0.000157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ya-Chun Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Tzu-Hui Feng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Tse-Yao Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Hsiang-Hung Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Chen-Chia Hung
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Taoyuan, 333, Taiwan, ROC
| | - Shih-Tung Liu
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Taoyuan, 333, Taiwan, ROC
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| |
Collapse
|
14
|
Abstract
Covalent linkage to members of the small ubiquitin-like (SUMO) family of proteins is an important mechanism by which the functions of many cellular proteins are regulated. Sumoylation has roles in the control of protein stability, activity and localization, and is involved in the regulation of transcription, gene expression, chromatin structure, nuclear transport and RNA metabolism. Sumoylation is also linked, both positively and negatively, with the replication of many different viruses both in terms of modification of viral proteins and modulation of sumoylated cellular proteins that influence the efficiency of infection. One prominent example of the latter is the widespread reduction in the levels of cellular sumoylated species induced by herpes simplex virus type 1 (HSV-1) ubiquitin ligase ICP0. This activity correlates with relief from intrinsic immunity antiviral defence mechanisms. Previous work has shown that ICP0 is selective in substrate choice, with some sumoylated proteins such the promyelocytic leukemia protein PML being extremely sensitive, while RanGAP is completely resistant. Here we present a comprehensive proteomic analysis of changes in the cellular SUMO2 proteome during HSV-1 infection. Amongst the 877 potentially sumoylated species detected, we identified 124 whose abundance was decreased by a factor of 3 or more by the virus, several of which were validated by western blot and expression analysis. We found many previously undescribed substrates of ICP0 whose degradation occurs by a range of mechanisms, influenced or not by sumoylation and/or the SUMO2 interaction motif within ICP0. Many of these proteins are known or are predicted to be involved in the regulation of transcription, chromatin assembly or modification. These results present novel insights into mechanisms and host cell proteins that might influence the efficiency of HSV-1 infection. Proteins are subject to many types of modification that regulate their functions and which are applied after their initial synthesis in the cell. One such modification is known as sumoylation, the covalent linkage of a small ubiquitin-like protein to a wide variety of substrate proteins. Sumoylation is involved in the regulation of many cellular pathways, including transcription, DNA repair, chromatin modification and defence to viral infections. Several viruses have connections with sumoylation, either through modification of their own proteins or in changing the sumoylation status of cellular proteins in ways that may be beneficial for infection. Herpes simplex virus type 1 (HSV-1) causes a widespread reduction in uncharacterized sumoylated cellular protein species, an effect that is caused by one of its key regulatory proteins (ICP0), which also induces the degradation of a number of repressive cellular proteins and thereby stimulates efficient infection. This study describes a comprehensive analysis of cellular proteins whose sumoylation status is altered by HSV-1 infection. Of 877 putative cellular sumoylation substrates, we found 124 whose sumoylation status reduces at least three-fold during infection. We validated the behavior of several such proteins and identified amongst them several novel targets of ICP0 activity with predicted repressive properties.
Collapse
|
15
|
LMP1-Induced Sumoylation Influences the Maintenance of Epstein-Barr Virus Latency through KAP1. J Virol 2015; 89:7465-77. [PMID: 25948750 DOI: 10.1128/jvi.00711-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/01/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED As a herpesvirus, Epstein-Barr virus (EBV) establishes a latent infection that can periodically undergo reactivation, resulting in lytic replication and the production of new infectious virus. Latent membrane protein-1 (LMP1), the principal viral oncoprotein, is a latency-associated protein implicated in regulating viral reactivation and the maintenance of latency. We recently found that LMP1 hijacks the SUMO-conjugating enzyme Ubc9 via its C-terminal activating region-3 (CTAR3) and induces the sumoylation of cellular proteins. Because protein sumoylation can promote transcriptional repression, we hypothesized that LMP1-induced protein sumoylation induces the repression of EBV lytic promoters and helps maintain the viral genome in its latent state. We now show that with inhibition of LMP1-induced protein sumoylation, the latent state becomes less stable or leakier in EBV-transformed lymphoblastoid cell lines. The cells are also more sensitive to viral reactivation induced by irradiation, which results in the increased production and release of infectious virus, as well as increased susceptibility to ganciclovir treatment. We have identified a target of LMP1-mediated sumoylation that contributes to the maintenance of latency in this context: KRAB-associated protein-1 (KAP1). LMP1 CTAR3-mediated sumoylation regulates the function of KAP1. KAP1 also binds to EBV OriLyt and immediate early promoters in a CTAR3-dependent manner, and inhibition of sumoylation processes abrogates the binding of KAP1 to these promoters. These data provide an additional line of evidence that supports our findings that CTAR3 is a distinct functioning regulatory region of LMP1 and confirm that LMP1-induced sumoylation may help stabilize the maintenance of EBV latency. IMPORTANCE Epstein-Barr virus (EBV) latent membrane protein-1 (LMP1) plays an important role in the maintenance of viral latency. Previously, we documented that LMP1 targets cellular proteins to be modified by a ubiquitin-like protein (SUMO). We have now identified a function for this LMP1-induced modification of cellular proteins in the maintenance of EBV latency. Because latently infected cells have to undergo viral reactivation in order to be vulnerable to antiviral drugs, these findings identify a new way to increase the rate of EBV reactivation, which increases cell susceptibility to antiviral therapies.
Collapse
|
16
|
Adamson AL, Le BT, Siedenburg BD. Inhibition of mTORC1 inhibits lytic replication of Epstein-Barr virus in a cell-type specific manner. Virol J 2014; 11:110. [PMID: 24917448 PMCID: PMC4059732 DOI: 10.1186/1743-422x-11-110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/05/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Epstein-Barr virus is a human herpesvirus that infects a majority of the human population. Primary infection of Epstein-Barr virus (EBV) causes the syndrome infectious mononucleosis. This virus is also associated with several cancers, including Burkitt's lymphoma, post-transplant lymphoproliferative disorder and nasopharyngeal carcinoma. As all herpesvirus family members, EBV initially replicates lytically to produce abundant virus particles, then enters a latent state to remain within the host indefinitely. METHODS Through a genetic screen in Drosophila, we determined that reduction of Drosophila Tor activity altered EBV immediate-early protein function. To further investigate this finding, we inhibited mTOR in EBV-positive cells and investigated subsequent changes to lytic replication via Western blotting, flow cytometry, and quantitative PCR. The student T-test was used to evaluate significance. RESULTS mTOR, the human homolog of Drosophila Tor, is an important protein at the center of a major signaling pathway that controls many aspects of cell biology. As the EBV immediate-early genes are responsible for EBV lytic replication, we examined the effect of inhibition of mTORC1 on EBV lytic replication in human EBV-positive cell lines. We determined that treatment of cells with rapamycin, which is an inhibitor of mTORC1 activity, led to a reduction in the ability of B cell lines to undergo lytic replication. In contrast, EBV-positive epithelial cell lines underwent higher levels of lytic replication when treated with rapamycin. CONCLUSIONS Overall, the responses of EBV-positive cell lines vary when treated with mTOR inhibitors, and this may be important when considering such inhibitors as anti-cancer therapeutic agents.
Collapse
Affiliation(s)
- Amy L Adamson
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA.
| | | | | |
Collapse
|
17
|
The human cytomegalovirus DNA polymerase processivity factor UL44 is modified by SUMO in a DNA-dependent manner. PLoS One 2012; 7:e49630. [PMID: 23166733 PMCID: PMC3499415 DOI: 10.1371/journal.pone.0049630] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/11/2012] [Indexed: 12/22/2022] Open
Abstract
During the replication of human cytomegalovirus (HCMV) genome, the viral DNA polymerase subunit UL44 plays a key role, as by binding both DNA and the polymerase catalytic subunit it confers processivity to the holoenzyme. However, several lines of evidence suggest that UL44 might have additional roles during virus life cycle. To shed light on this, we searched for cellular partners of UL44 by yeast two-hybrid screenings. Intriguingly, we discovered the interaction of UL44 with Ubc9, an enzyme involved in the covalent conjugation of SUMO (Small Ubiquitin-related MOdifier) to cellular and viral proteins. We found that UL44 can be extensively sumoylated not only in a cell-free system and in transfected cells, but also in HCMV-infected cells, in which about 50% of the protein resulted to be modified at late times post-infection, when viral genome replication is accomplished. Mass spectrometry studies revealed that UL44 possesses multiple SUMO target sites, located throughout the protein. Remarkably, we observed that binding of UL44 to DNA greatly stimulates its sumoylation both in vitro and in vivo. In addition, we showed that overexpression of SUMO alters the intranuclear distribution of UL44 in HCMV-infected cells, and enhances both virus production and DNA replication, arguing for an important role for sumoylation in HCMV life cycle and UL44 function(s). These data report for the first time the sumoylation of a viral processivity factor and show that there is a functional interplay between the HCMV UL44 protein and the cellular sumoylation system.
Collapse
|
18
|
Wang YE, Pernet O, Lee B. Regulation of the nucleocytoplasmic trafficking of viral and cellular proteins by ubiquitin and small ubiquitin-related modifiers. Biol Cell 2011; 104:121-38. [PMID: 22188262 PMCID: PMC3625690 DOI: 10.1111/boc.201100105] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/22/2011] [Indexed: 12/29/2022]
Abstract
Nucleocytoplasmic trafficking of many cellular proteins is regulated by nuclear import/export signals as well as post-translational modifications such as covalent conjugation of ubiquitin and small ubiquitin-related modifiers (SUMOs). Ubiquitination and SUMOylation are rapid and reversible ways to modulate the intracellular localisation and function of substrate proteins. These pathways have been co-opted by some viruses, which depend on the host cell machinery to transport their proteins in and out of the nucleus. In this review, we will summarise our current knowledge on the ubiquitin/SUMO-regulated nuclear/subnuclear trafficking of cellular proteins and describe examples of viral exploitation of these pathways.
Collapse
Affiliation(s)
- Yao E Wang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
19
|
Abstract
Since posttranslational modification (PTM) by the small ubiquitin-related modifiers (SUMOs) was discovered over a decade ago, a huge number of cellular proteins have been found to be reversibly modified, resulting in alteration of differential cellular pathways. Although the molecular consequences of SUMO attachment are difficult to predict, the underlying principle of SUMOylation is altering inter- and/or intramolecular interactions of the modified substrate, changing localization, stability, and/or activity. Unsurprisingly, many different pathogens have evolved to exploit the cellular SUMO modification system due to its functional flexibility and far-reaching functional downstream consequences. Although the extensive knowledge gained so far is impressive, a definitive conclusion about the role of SUMO modification during virus infection in general remains elusive and is still restricted to a few, yet promising concepts. Based on the available data, this review aims, first, to provide a detailed overview of the current state of knowledge and, second, to evaluate the currently known common principles/molecular mechanisms of how human pathogenic microbes, especially viruses and their regulatory proteins, exploit the host cell SUMO modification system.
Collapse
|
20
|
Heaton PR, Deyrieux AF, Bian XL, Wilson VG. HPV E6 proteins target Ubc9, the SUMO conjugating enzyme. Virus Res 2011; 158:199-208. [PMID: 21510985 DOI: 10.1016/j.virusres.2011.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 04/03/2011] [Accepted: 04/04/2011] [Indexed: 12/31/2022]
Abstract
The human papillomavirus oncogenic protein, E6, interacts with a number of cellular proteins, and for some targets, E6 directs their degradation through the ubiquitin-proteasome pathway. Post-translational modification with ubiquitin-like modifiers, such as SUMO, also influences protein activities, protein-protein interactions, and protein stability. We report that the high risk HPVE6 proteins reduce the intracellular quantity of the sole SUMO conjugation enzyme, Ubc9, concomitant with decreased host sumoylation. E6 did not significantly influence transcription of Ubc9, indicating that the effects were likely at the protein level. Consistent with typical E6-mediated proteasomal degradation, E6 bound to Ubc9 in vitro, and required E6AP for reduction of Ubc9 levels. Under stable E6 expression conditions in differentiating keratinocytes there was a decrease in Ubc9 and a loss of numerous sumoylated targets indicating a significant perturbation of the normal sumoylation profile. While E6 is known to inhibit PIASy, a SUMO ligase, our results suggest that HPV E6 also targets the Ubc9 protein to modulate host cell sumoylation, suggesting that the sumoylation system may be an important target during viral reproduction and possibly the subsequent development of cervical cancer.
Collapse
Affiliation(s)
- Phillip R Heaton
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
21
|
Murata T, Hotta N, Toyama S, Nakayama S, Chiba S, Isomura H, Ohshima T, Kanda T, Tsurumi T. Transcriptional repression by sumoylation of Epstein-Barr virus BZLF1 protein correlates with association of histone deacetylase. J Biol Chem 2010; 285:23925-35. [PMID: 20516063 DOI: 10.1074/jbc.m109.095356] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transition from latent to lytic phases of the Epstein-Barr virus life cycle is triggered by expression of a viral transactivator, BZLF1, that then induces expression of the viral immediate-early and early genes. The BZLF1 protein is post-translationally modified by a small ubiquitin-related modifier-1 (SUMO-1). Here we found that BZLF1 is conjugated at lysine 12 not only by SUMO-1 but also by SUMO-2 and 3. The K12R mutant of BZLF1, which no longer becomes sumoylated, exhibits stronger transactivation than the wild-type BZLF1 in a reporter assay system as well as in the context of virus genome with nucleosomal structures. Furthermore, exogenous supply of a SUMO-specific protease, SENP, caused de-sumoylation of BZLF1 and enhanced BZLF1-mediated transactivation. Immunoprecipitation experiments proved that histone deacetylase 3 preferentially associated with the sumoylated form of BZLF1. Levels of the sumoylated BZLF1 increased as lytic replication progressed. Based on these observations, we conclude that sumoylation of BZLF1 regulates its transcriptional activity through histone modification during Epstein-Barr virus productive replication.
Collapse
Affiliation(s)
- Takayuki Murata
- Division of Virology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sumoylation of the Epstein-Barr virus BZLF1 protein inhibits its transcriptional activity and is regulated by the virus-encoded protein kinase. J Virol 2010; 84:4383-94. [PMID: 20181712 DOI: 10.1128/jvi.02369-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Epstein-Barr virus (EBV) immediate-early protein BZLF1 (Z) mediates the switch between latent and lytic EBV infection. Z not only activates early lytic viral gene transcription but also plays a direct role in lytic viral genome replication. Although a small fraction of Z is known to be sumoylated, the effects of this posttranslational modification on various different Z functions have not been well defined. In this report, we show that only the lysine at amino acid residue 12 is required for the sumoylation of Z, and that Z can be sumoylated by SUMO isoforms 1, 2, and 3. We also demonstrate that the sumo-defective Z mutants ZK12A and ZK12R have enhanced transcriptional activity. The sumoylated and nonsumoylated forms of Z were found to have a similar cellular location, both being localized primarily within the nuclear matrix. The Z sumo-defective mutants were, however, partially defective for disrupting promyelocytic leukemia (PML) bodies compared to the ability of wild-type Z. In addition, we show that lytic viral genome replication does not require the sumoylation of Z, although a Z mutant altered at both amino acids 12 and 13 is replication defective. Furthermore, we show that the sumoylation of Z is greatly increased (from less than 1 to about 11%) in lytically induced 293 cells infected with an EBV mutant virus deleted for the EBV-encoded protein kinase (EBV-PK) compared to that of 293 cells infected with wild-type EBV, and that the overexpression of EBV-PK leads to the reduced sumoylation of Z in EBV-negative cells. Our results suggest that the sumoylation of Z helps to promote viral latency, and that EBV-PK inhibits Z sumoylation during viral reactivation.
Collapse
|
23
|
Isaacson MK, Ploegh HL. Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection. Cell Host Microbe 2009; 5:559-70. [PMID: 19527883 PMCID: PMC7103382 DOI: 10.1016/j.chom.2009.05.012] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 05/27/2009] [Indexed: 11/26/2022]
Abstract
Ubiquitin is important for nearly every aspect of cellular physiology. All viruses rely extensively on host machinery for replication; therefore, it is not surprising that viruses connect to the ubiquitin pathway at many levels. Viral involvement with ubiquitin occurs either adventitiously because of the unavoidable usurpation of cellular processes, or for some specific purpose selected for by the virus to enhance viral replication. Here, we review current knowledge of how the ubiquitin pathway alters viral replication and how viruses influence the ubiquitin pathway to enhance their own replication.
Collapse
Affiliation(s)
- Marisa K Isaacson
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | |
Collapse
|
24
|
Abstract
The switch from Epstein-Barr virus (EBV) latent infection to lytic replication is governed by two transcriptional regulators, Zta and Rta. We previously reported that the EBV protein encoded by the LF2 gene binds to Rta and can inhibit Rta activity in reporter gene assays. We now report that LF2 associates with Rta in the context of EBV-infected cells induced for lytic replication. LF2 inhibition of Rta occurs in both epithelial and B cells, and this downregulation is promoter specific: LF2 decreases Rta activation of the BALF2, BMLF1, and BMRF1 promoters by 60 to 90% but does not significantly decrease Rta activation of its own promoter (Rp). LF2 decreases Rta activation by at least two mechanisms: decreased DNA binding and interference with transcriptional activation by the Rta acidic activation domain. Coexpression of LF2 also specifically induces modification of Rta by the small ubiquitin-like modifiers SUMO2 and SUMO3. We further demonstrate that LF2 overexpression blocks lytic activation in EBV-infected cells induced with Rta or Zta. Our results demonstrate that LF2, a gene deleted from the EBV reference strain B95-8, encodes a potent inhibitor of EBV replication, and they suggest that future studies of EBV replication need to account for the potential effects of LF2 on Rta activity.
Collapse
|
25
|
Tomoiu A, Gravel A, Tanguay RM, Flamand L. Functional interaction between human herpesvirus 6 immediate-early 2 protein and ubiquitin-conjugating enzyme 9 in the absence of sumoylation. J Virol 2006; 80:10218-28. [PMID: 17005699 PMCID: PMC1617313 DOI: 10.1128/jvi.00375-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immediate-early 2 (IE2) protein of human herpesvirus 6 is a potent transactivator of cellular and viral promoters. To better understand the biology of IE2, we generated a LexA-IE2 fusion protein and screened, using the yeast two-hybrid system, a Jurkat T-cell cDNA library for proteins that could interact with IE2. The most frequently isolated IE2-interacting protein was the human ubiquitin-conjugating enzyme 9 (Ubc9), a protein involved in the small ubiquitin-like modifier (SUMO) conjugation pathway. Using deletion mutants of IE2, we mapped the IE2-Ubc9-interacting region to residues 989 to 1037 of IE2. The interaction was found to be of functional significance to IE2, as Ubc9 overexpression significantly repressed promoter activation by IE2. The C93S Ubc9 mutant exhibited a similar effect on IE2, indicating that the E2 SUMO-conjugating function of Ubc9 is not required for its repressive action on IE2. No consensus sumoylation sites or evidence of IE2 conjugation to SUMO could be demonstrated under in vivo or in vitro conditions. Moreover, expression levels and nuclear localization of IE2 were not altered by Ubc9 overexpression, suggesting that Ubc9's repressive function likely occurs at the transcriptional complex level. Overall, our results indicate that Ubc9 influences IE2's function and provide new information on the complex interactions that occur between herpesviruses and the sumoylation pathway.
Collapse
Affiliation(s)
- Andru Tomoiu
- Centre de Recherche du CHUL, 2705 Laurier Blvd., Room T1-49, Québec, QC, Canada
| | | | | | | |
Collapse
|
26
|
Boggio R, Chiocca S. Viruses and sumoylation: recent highlights. Curr Opin Microbiol 2006; 9:430-6. [PMID: 16815735 PMCID: PMC7108358 DOI: 10.1016/j.mib.2006.06.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 06/20/2006] [Indexed: 12/02/2022]
Abstract
Since its discovery in 1997, SUMO (small ubiquitin-like modifier) has been implicated in a range of activities, indicating that this protein is as important in the cell as ubiquitin is. Although it can function throughout the cell, it appears to be involved more in nuclear functions. The growing list of substrates that are covalently modified by SUMO includes many viral proteins; SUMO appears to facilitate viral infection of cells, making it a possible target for antiviral therapies. It therefore is important to understand how viruses manipulate the cellular sumoylation system and how sumoylation affects viral functions.
Collapse
|