1
|
Xue L, Luo X, Xing JH, Wang D, Zhang DX. Isolation and pathogenicity evaluation of Escherichia coli O157:H7 from common carp, Cyprinus carpio. Microb Pathog 2023; 182:106250. [PMID: 37454944 DOI: 10.1016/j.micpath.2023.106250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Escherichia coli O157:H7 is the primary serotype of enterohaemorrhagic E. coli (EHEC), which can cause diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. It is considered as a major health concern due to it being a zoonotic disease that is transmitted through food. In this study, a pathogenic bacterium was isolated from infected carp, which identified as E. coli O157:H7 named X21 through genetic sequencing, phylogenetic analysis, physiological and biochemical tests. In the experiment, crucian carp was used as a model to study the pathogenicity of the isolate, the pathological histological observations and cytokines expression of fish tissues were determined after bacterial challenge. The results showed that severe pathological damage observed in the liver, spleen, headkidney of fish infected with isolate X21. Besides, we found that accumulation of IgT+ B cells in the lamina propria of intestine, and up-regulation of SUCH-r, IL-1β, IL-10, IL-11, MyD88, and TNF-α gene in various tissues. After challenged, the survivability of crucian carp infected with isolate X21 stands at a mere 14.27%. To our knowledge, this is the first report that E. coli O157:H7 infected the freshwater fish C. carpio, which indicates that this bacterium is a potential threat to public health and freshwater fish aquaculture.
Collapse
Affiliation(s)
- Ligang Xue
- Jilin Agricultural Science and Technology University, 1 Xuefu Road, Zuojia Town, Changyi District, Jilin, 132109, China
| | - Xia Luo
- Jilin Agricultural Science and Technology University, 1 Xuefu Road, Zuojia Town, Changyi District, Jilin, 132109, China
| | - Jun-Hong Xing
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Dan Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
2
|
Maphosa S, Moleleki LN, Motaung TE. Bacterial secretion system functions: evidence of interactions and downstream implications. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37083586 DOI: 10.1099/mic.0.001326] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Unprecedented insights into the biology and functions of bacteria have been and continue to be gained through studying bacterial secretion systems in isolation. This method, however, results in our understanding of the systems being primarily based on the idea that they operate independently, ignoring the subtleties of downstream interconnections. Gram-negative bacteria are naturally able to adapt to and navigate their frequently varied and dynamic surroundings, mostly because of the covert connections between secretion systems. Therefore, to comprehend some of the linked downstream repercussions for organisms that follow this discourse, it is vital to have mechanistic insights into how the intersecretion system functions in bacterial rivalry, virulence, and survival, among other things. To that purpose, this paper discusses a few key instances of molecular antagonistic and interdependent relationships between bacterial secretion systems and their produced functional products.
Collapse
Affiliation(s)
- Silindile Maphosa
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Lucy N Moleleki
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Thabiso E Motaung
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
3
|
Abstract
The gastrointestinal microbiome plays a pivotal role in physiological homeostasis of the intestine as well as in the pathophysiology of diseases including inflammatory bowel diseases (IBD) and colorectal cancer (CRC). Emerging evidence suggests that gut microbiota signal to the mitochondria of mucosal cells, including epithelial cells and immune cells. Gut microbiota signaling to mitochondria has been shown to alter mitochondrial metabolism, activate immune cells, induce inflammasome signaling, and alter epithelial barrier function. Both dysbiosis of the gut microbiota and mitochondrial dysfunction are associated with chronic intestinal inflammation and CRC. This review discusses mitochondrial metabolism of gut mucosal cells, mitochondrial dysfunction, and known gut microbiota-mediated mitochondrial alterations during IBD and CRC.
Collapse
Affiliation(s)
- Dakota N. Jackson
- Department of Internal Medicine, Division of Gastroenterology, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Arianne L. Theiss
- Department of Internal Medicine, Division of Gastroenterology, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, TX, USA,CONTACT Arianne L. Theiss Division of Gastroenterology, Baylor Research Institute, Baylor University Medical Center, 250 Hoblitzelle, 3500 Gaston Avenue, Dallas, TX75246, USA
| |
Collapse
|
4
|
Feeney S, Ryan JT, Kilcoyne M, Joshi L, Hickey R. Glycomacropeptide Reduces Intestinal Epithelial Cell Barrier Dysfunction and Adhesion of Entero-Hemorrhagic and Entero-Pathogenic Escherichia coli in Vitro. Foods 2017; 6:foods6110093. [PMID: 29077065 PMCID: PMC5704137 DOI: 10.3390/foods6110093] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/25/2017] [Indexed: 12/14/2022] Open
Abstract
In recent years, the potential of glycosylated food components to positively influence health has received considerable attention. Milk is a rich source of biologically active glycoconjugates which are associated with antimicrobial, immunomodulatory, anti-adhesion, anti-inflammatory and prebiotic properties. Glycomacropeptide (GMP) is the C-terminal portion of kappa-casein that is released from whey during cheese-making by the action of chymosin. Many of the biological properties associated with GMP, such as anti-adhesion, have been linked with the carbohydrate portion of the protein. In this study, we investigated the ability of GMP to inhibit the adhesion of a variety of pathogenic Escherichia coli strains to HT-29 and Caco-2 intestinal cell lines, given the importance of E. coli in causing bacterial gastroenteritis. GMP significantly reduced pathogen adhesion, albeit with a high degree of species specificity toward enteropathogenic E. coli (EPEC) strains O125:H32 and O111:H2 and enterohemorrhagic E. coli (EHEC) strain 12900 O157:H7. The anti-adhesive effect resulted from the interaction of GMP with the E. coli cells and was also dependent on GMP concentration. Pre-incubation of intestinal Caco-2 cells with GMP reduced pathogen translocation as represented by a decrease in transepithelial electrical resistance (TEER). Thus, GMP is an effective in-vitro inhibitor of adhesion and epithelial injury caused by E. coli and may have potential as a biofunctional ingredient in foods to improve gastrointestinal health.
Collapse
Affiliation(s)
- Shane Feeney
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland.
- Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91TK33 Galway, Ireland.
| | - Joseph Thomas Ryan
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland.
| | - Michelle Kilcoyne
- Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91TK33 Galway, Ireland.
| | - Lokesh Joshi
- Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91TK33 Galway, Ireland.
| | - Rita Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland.
| |
Collapse
|
5
|
Yasugi M, Sugahara Y, Hoshi H, Kondo K, Talukdar PK, Sarker MR, Yamamoto S, Kamata Y, Miyake M. In vitro cytotoxicity induced by Clostridium perfringens isolate carrying a chromosomal cpe gene is exclusively dependent on sporulation and enterotoxin production. Microb Pathog 2015; 85:1-10. [DOI: 10.1016/j.micpath.2015.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/07/2015] [Accepted: 04/21/2015] [Indexed: 12/31/2022]
|
6
|
Lu RY, Yang WX, Hu YJ. The role of epithelial tight junctions involved in pathogen infections. Mol Biol Rep 2014; 41:6591-610. [PMID: 24965148 DOI: 10.1007/s11033-014-3543-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/20/2014] [Indexed: 12/12/2022]
Abstract
Tight junctions (TJs) are sealing complexes between adjacent epithelial cells, functioning by controlling paracellular passage and maintaining cell polarity. These functions of TJs are primarily based on structural integrity as well as dynamic regulatory balance, indicating plasticity of TJ in response to external stimuli. An indispensable role of TJs involved in pathogen infection has been widely demonstrated since disruption of TJs leads to a distinct increase in paracellular permeability and polarity defects which facilitate viral or bacterial entry and spread. In addition to pathological changes in TJ integrity, TJ proteins such as occludin and claudins can either function as receptors for pathogen entry or interact with viral/bacterial effector molecules as an essential step for characterizing an infective stage. This suggests a more complicated role for TJ itself and especially specific TJ components. Thus, this review surveys the role of the epithelial TJs involved in various pathogen infections, and extends TJ targeted therapeutic and pharmacological application prospects.
Collapse
Affiliation(s)
- Ru-Yi Lu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | | | | |
Collapse
|
7
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
8
|
Kenny B, Dean P. Do Caco-2 subclones provide more appropriate in vitro models for understanding how human enteric pathogens cause disease? Future Microbiol 2013; 8:701-3. [PMID: 23701326 DOI: 10.2217/fmb.13.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Intestinal epithelial CD98 directly modulates the innate host response to enteric bacterial pathogens. Infect Immun 2013; 81:923-34. [PMID: 23297381 DOI: 10.1128/iai.01388-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
CD98 is a type II transmembrane glycoprotein whose expression increases in intestinal epithelial cells (IECs) during intestinal inflammation. Enteropathogenic Escherichia coli (EPEC) is a food-borne human pathogen that attaches to IECs and injects effector proteins directly into the host cells, thus provoking an inflammatory response. In the present study, we investigated CD98 and EPEC interactions in vitro and ex vivo and examined FVB wild-type (WT) and villin-CD98 transgenic mice overexpressing human CD98 in IECs (hCD98 Tg mice) and infected with Citrobacter rodentium as an in vivo model. In vivo studies indicated that CD98 overexpression, localized to the apical domain of colonic cells, increased the attachment of C. rodentium in mouse colons and resulted in increased expression of proinflammatory markers and decreased expression of anti-inflammatory markers. The proliferative markers Ki-67 and cyclin D1 were significantly increased in the colonic tissue of C. rodentium-infected hCD98 Tg mice compared to that of WT mice. Ex vivo studies correlate with the in vivo data. Small interfering RNA (siRNA) studies with Caco2-BBE cells showed a decrease in adherence of EPEC to Caco2 cells in which CD98 expression was knocked down. In vitro surface plasmon resonance (SPR) experiments showed direct binding between recombinant hCD98 and EPEC/C. rodentium proteins. We also demonstrated that the partial extracellular loop of hCD98 was sufficient for direct binding to EPEC/C. rodentium. These findings demonstrate the importance of the extracellular loop of CD98 in the innate host defense response to intestinal infection by attaching and effacing (A/E) pathogens.
Collapse
|
10
|
Lu YY, Franz B, Truttmann MC, Riess T, Gay-Fraret J, Faustmann M, Kempf VAJ, Dehio C. Bartonella henselae trimeric autotransporter adhesin BadA expression interferes with effector translocation by the VirB/D4 type IV secretion system. Cell Microbiol 2012; 15:759-78. [PMID: 23163798 DOI: 10.1111/cmi.12070] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 11/07/2012] [Accepted: 11/09/2012] [Indexed: 11/30/2022]
Abstract
The Gram-negative, zoonotic pathogen Bartonella henselae is the aetiological agent of cat scratch disease, bacillary angiomatosis and peliosis hepatis in humans. Two pathogenicity factors of B. henselae - each displaying multiple functions in host cell interaction - have been characterized in greater detail: the trimeric autotransporter Bartonella adhesin A (BadA) and the type IV secretion system VirB/D4 (VirB/D4 T4SS). BadA mediates, e.g. binding to fibronectin (Fn), adherence to endothelial cells (ECs) and secretion of vascular endothelial growth factor (VEGF). VirB/D4 translocates several Bartonella effector proteins (Beps) into the cytoplasm of infected ECs, resulting, e.g. in uptake of bacterial aggregates via the invasome structure, inhibition of apoptosis and activation of a proangiogenic phenotype. Despite this knowledge of the individual activities of BadA or VirB/D4 it is unknown whether these major virulence factors affect each other in their specific activities. In this study, expression and function of BadA and VirB/D4 were analysed in a variety of clinical B. henselae isolates. Data revealed that most isolates have lost expression of either BadA or VirB/D4 during in vitro passages. However, the phenotypic effects of coexpression of both virulence factors was studied in one clinical isolate that was found to stably coexpress BadA and VirB/D4, as well as by ectopic expression of BadA in a strain expressing VirB/D4 but not BadA. BadA, which forms a dense layer on the bacterial surface, negatively affected VirB/D4-dependent Bep translocation and invasome formation by likely preventing close contact between the bacterial cell envelope and the host cell membrane. In contrast, BadA-dependent Fn binding, adhesion to ECs and VEGF secretion were not affected by a functional VirB/D4 T4SS. The obtained data imply that the essential virulence factors BadA and VirB/D4 are likely differentially expressed during different stages of the infection cycle of Bartonella.
Collapse
Affiliation(s)
- Yun-Yueh Lu
- Focal Area Infection Biology, Biozentrum of the University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Immunogenical Study of Chimeric Recombinant Intimin-Tir of Escherichia coli O157:H7 in Mice. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2012. [DOI: 10.5812/archcid.14068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Bonazzi M, Cossart P. Impenetrable barriers or entry portals? The role of cell-cell adhesion during infection. ACTA ACUST UNITED AC 2012; 195:349-58. [PMID: 22042617 PMCID: PMC3206337 DOI: 10.1083/jcb.201106011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell-cell adhesion plays a fundamental role in cell polarity and organogenesis. It also contributes to the formation and establishment of physical barriers against microbial infections. However, a large number of pathogens, from viruses to bacteria and parasites, have developed countless strategies to specifically target cell adhesion molecules in order to adhere to and invade epithelial cells, disrupt epithelial integrity, and access deeper tissues for dissemination. The study of all these processes has contributed to the characterization of molecular machineries at the junctions of eukaryotic cells that have been better understood by using pathogens as probes.
Collapse
Affiliation(s)
- Matteo Bonazzi
- Centre Nationale de la Recherche Scientifique, UMR 5236, CPBS, CNRS, 34293 Montpellier, France.
| | | |
Collapse
|
13
|
Immunization of mice with Lactobacillus casei expressing a beta-intimin fragment reduces intestinal colonization by Citrobacter rodentium. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1823-33. [PMID: 21900533 DOI: 10.1128/cvi.05262-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a common cause of diarrhea in children from developing countries. Intimate adhesion of the bacteria to intestinal cells occurs via binding of the adhesin intimin to the TIR receptor exposed on cell surfaces. Here, Lactobacillus casei expressing a fragment of β-intimin (L. casei-Int(cv)) was tested as mucosal vaccines in mice against intestinal colonization with the murine pathogen Citrobacter rodentium. Oral or sublingual immunization of C57BL/6 mice with L. casei-Int(cv) induced anti-Int(cv) IgA in feces but no IgG in sera. Conversely, anti-Int(cv) IgG was induced in the sera of mice after sublingual immunization with purified Int(cv). All vaccines were able to decrease C. rodentium recovery from feces. However, this reduction was more evident and sustained over time in mice immunized with L. casei-Int(cv) by the sublingual route. These mice also displayed an increase in interleukin 6 (IL-6) and gamma interferon (IFN-γ) secretion by spleen cells 10 days after infection. Additionally, oral or sublingual immunization of C3H/HePas mice, which are highly susceptible to C. rodentium infection, with L. casei-Int(cv) induced anti-Int(cv) antibodies and significantly increased survival after challenge. Immunohistological analysis of colon sections revealed that C. rodentium was located in deep fractions of the tissue from C3H/HePas mice immunized with L. casei whereas superficial staining was observed in colon sections from mice immunized with L. casei-Int(cv.) The results indicate that vaccines composed of L. casei expressing intimin may represent a promising approach and that the C3H/HePas infection model with C. rodentium can be used to evaluate potential vaccines against EPEC.
Collapse
|
14
|
Dean P, Mühlen S, Quitard S, Kenny B. The bacterial effectors EspG and EspG2 induce a destructive calpain activity that is kept in check by the co-delivered Tir effector. Cell Microbiol 2010; 12:1308-21. [PMID: 20345487 PMCID: PMC2955966 DOI: 10.1111/j.1462-5822.2010.01469.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial pathogens deliver multiple effector proteins into eukaryotic cells to subvert host cellular processes and an emerging theme is the cooperation between different effectors. Here, we reveal that a fine balance exists between effectors that are delivered by enteropathogenic E. coli (EPEC) which, if perturbed can have marked consequences on the outcome of the infection. We show that absence of the EPEC effector Tir confers onto the bacterium a potent ability to destroy polarized intestinal epithelia through extensive host cell detachment. This process was dependent on the EPEC effectors EspG and EspG2 through their activation of the host cysteine protease calpain. EspG and EspG2 are shown to activate calpain during EPEC infection, which increases significantly in the absence of Tir – leading to rapid host cell loss and necrosis. These findings reveal a new function for EspG and EspG2 and show that Tir, independent of its bacterial ligand Intimin, is essential for maintaining the integrity of the epithelium during EPEC infection by keeping the destructive activity of EspG and EspG2 in check.
Collapse
Affiliation(s)
- Paul Dean
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle, Newcastle-Upon-Tyne NE2 4HH, UK
| | | | | | | |
Collapse
|
15
|
Tabu K, Sasai K, Kimura T, Wang L, Aoyanagi E, Kohsaka S, Tanino M, Nishihara H, Tanaka S. Promoter hypomethylation regulates CD133 expression in human gliomas. Cell Res 2008; 18:1037-46. [PMID: 18679414 DOI: 10.1038/cr.2008.270] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brain tumor-initiating cells (BTICs) have been enriched using antibodies against the cell surface protein CD133; however, the biological relevance and the regulatory mechanism of CD133 expression in human gliomas are not yet understood. In this study, we initially demonstrated that CD133 was overexpressed in high-grade human glioblastomas where CD133-positive cells were focally observed as a micro-cluster. In addition, CD133 transcripts with exon 1A, 1B, or 1C were predominantly expressed in glioblastomas. To elucidate the mechanism regulating this aberrant expression of CD133, three proximal promoters (P1, P2, and P3) containing a CpG island were isolated. In U251MG and T98G glioblastoma cells, the P1 region flanking exon 1A exhibited the highest activity among the three promoters, and this activity was significantly inactivated by in vitro methylation. After treatment with the demethylating agent 5-azacytidine and/or the histone deacetylase inhibitor valproic acid, the expression level of CD133 mRNA was significantly restored in glioma cells. Importantly, hypomethylation of CpG sites within the P1, P2, and P3 regions was observed by bisulfite sequencing in human glioblastoma tissues with abundant CD133 mRNA. Taken together, our results indicate that DNA hypomethylation is an important determinant of CD133 expression in glioblastomas, and this epigenetic event may be associated with the development of BTICs expressing CD133.
Collapse
Affiliation(s)
- Kouichi Tabu
- Laboratory of Molecular and Cellular Pathology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ferreira PCD, Campos IB, Abe CM, Trabulsi LR, Elias WP, Ho PL, Oliveira MLS. Immunization of mice with Lactobacillus casei expressing intimin fragments produces antibodies able to inhibit the adhesion of enteropathogenic Escherichia coli to cultivated epithelial cells. ACTA ACUST UNITED AC 2008; 54:245-54. [PMID: 18801043 DOI: 10.1111/j.1574-695x.2008.00471.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) are frequently isolated as a cause of infantile diarrhea in developing countries. Its pathogenicity is distinguished by histopathological alterations at the site of infection, known as attaching and effacing (A/E) lesions, in which bacterial virulence factors and host proteins participate. Intimin, a bacterial adhesin expressed by all EPEC described to date, is responsible for the intimate adherence of the bacteria to host cells and is essential for the formation of A/E lesions. Mucosal vaccination may represent an efficacious intervention to prevent EPEC infection and lower morbidity and mortality rates. Strategies for mucosal vaccinations that use lactic acid bacteria for the delivery of heterologous antigens rely on their safety profile and ability to stimulate the immune system. In the present work, we have constructed Lactobacillus casei strains expressing different fragments of intimin beta, a subtype that is frequently expressed by EPEC strains. Mucosal immunization of mice with L. casei expressing intimin fragments induced specific systemic and mucosal antibodies. These antibodies were able to recognize native intimin on the surface of EPEC and to inhibit in vitro EPEC binding to epithelial cells.
Collapse
|
17
|
Miyake M, Sakane S, Kobayashi C, Hanajima-Ozawa M, Fukui A, Kamitani S, Horiguchi Y. A colorimetric assay for studying effector secretion through the bacterial type III secretion system. FEMS Microbiol Lett 2007; 278:36-42. [PMID: 17995954 DOI: 10.1111/j.1574-6968.2007.00943.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have devised a colorimetric method that monitors secretion of effector proteins into host cytoplasm through the bacterial type III secretion machinery. Here we used constructs of effectors fused with Bordetella adenylate cyclase as a reporter, but evaluated the effector translocation by quantifying cell viability, rather than by measuring the intracellular cAMP concentration. This is based on our findings that cells infected by a secretion-competent bacterium expressing the fusion protein lost their viability under our experimental conditions. Cell death was quantified using commercially available reagents and basic research equipment. An observation that cell death was potentiated when the infected cells were treated with 2-deoxyglucose and sodium azide suggests that the depletion of intracellular ATP is partly involved in the process. Using enteropathogenic Escherichia coli, we demonstrated that the method was applicable to at least three effectors of bacteria, Tir, EspF, and Map, and was useful for studying a secretion signal sequence for Tir. This technically simple and inexpensive method is a good alternative to the existing procedure for studying the mechanism by which effectors are secreted through the type III secretion system in a high-throughput format.
Collapse
Affiliation(s)
- Masami Miyake
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Hanajima-Ozawa M, Matsuzawa T, Fukui A, Kamitani S, Ohnishi H, Abe A, Horiguchi Y, Miyake M. Enteropathogenic Escherichia coli, Shigella flexneri, and Listeria monocytogenes recruit a junctional protein, zonula occludens-1, to actin tails and pedestals. Infect Immun 2006; 75:565-73. [PMID: 17118974 PMCID: PMC1828484 DOI: 10.1128/iai.01479-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli, Shigella flexneri, and Listeria monocytogenes induce localized actin polymerization at the cytoplasmic face of the plasma membrane or within the host cytoplasm, creating unique actin-rich structures termed pedestals or actin tails. The process is known to be mediated by the actin-related protein 2 and 3 (Arp2/3) complex, which in these cases acts downstream of neural Wiskott-Aldrich syndrome protein (N-WASP) or of a listerial functional homolog of WASP family proteins. Here, we show that zonula occludens-1 (ZO-1), a protein in the tight junctions of polarized epithelial cells, is recruited to actin tails and pedestals. Immunocytochemical analysis revealed that ZO-1 was stained most in the distal part of the actin-rich structures, and the incorporation was mediated by the proline-rich region of the ZO-1 molecule. The direct clustering of membrane-targeted Nck, which is known to activate the N-WASP-Arp2/3 pathway, triggered the formation of the ZO-1-associated actin tails. The results suggest that the activation of the Arp2/3 complex downstream of N-WASP or a WASP-related molecule is a key to the formation of the particular actin-rich structures that bind with ZO-1. We propose that an analysis of the recruitment on a molecular basis will lead to an understanding of how ZO-1 recognizes a distinctive actin-rich structure under pathophysiological conditions.
Collapse
Affiliation(s)
- Miyuki Hanajima-Ozawa
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-city, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|