1
|
Roy PK, Paul A, Khandibharad S, Kolhe SD, Farooque QSS, Singh S, Singh S. Mechanistic and structural insights into vitamin B 2 metabolizing enzyme riboflavin kinase from Leishmania donovani. Int J Biol Macromol 2024; 278:134392. [PMID: 39098675 DOI: 10.1016/j.ijbiomac.2024.134392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Leishmania donovani relies on specific vitamins and cofactors crucial for its survival and pathogenesis. Tailoring therapies to disrupt these pathways offers a promising strategy for the treatment of Visceral Leishmaniasis. Current treatment regimens are limited due to drug resistance and high costs. The dependency of Leishmania parasites on Vitamin B2 and its metabolic products is not known. In this study, we have biochemically and biophysically characterized a Vitamin B2 metabolism enzyme, riboflavin kinase from L. donovani (LdRFK) which converts riboflavin (vitamin B2) into flavin mononucleotide (FMN). Sequence comparison with human counterpart reflects 31.58 % identity only, thus opening up the possibility of exploring it as drug target. The rfk gene was cloned, expressed and the recombinant protein was purified. Kinetic parameters of LdRFK were evaluated with riboflavin and ATP as substrates which showed differential binding affinity when compared with the human RFK enzyme. Thermal and denaturant stability of the enzyme was evaluated. The rfk gene was overexpressed in the parasites and its role in growth and cell cycle was evaluated. In the absence of crystal structure, homology modelling and molecular dynamic simulation studies were performed to predict LdRFK structure. The data shows differences in substrate binding between human and parasite enzyme. This raises the possibility of exploring LdRFK for specific designing of antileishmanial molecules. Gene disruption studies can further validate its candidature as antileishmanial target.
Collapse
Affiliation(s)
- Pradyot Kumar Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - Shweta Khandibharad
- Biotechnology Research and Innovation Council- National Centre for Cell Science (BRIC-NCCS), NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Sanket Dattatray Kolhe
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - Qureshi Sameer Shaikh Farooque
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - Shailza Singh
- Biotechnology Research and Innovation Council- National Centre for Cell Science (BRIC-NCCS), NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
2
|
Sakyi PO, Amewu RK, Devine RNOA, Bienibuor AK, Miller WA, Kwofie SK. Unravelling the myth surrounding sterol biosynthesis as plausible target for drug design against leishmaniasis. J Parasit Dis 2021; 45:1152-1171. [PMID: 34790000 PMCID: PMC8556451 DOI: 10.1007/s12639-021-01390-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
The mortality rate of leishmaniasis is increasing at an alarming rate and is currently second to malaria amongst the other neglected tropical diseases. Unfortunately, many governments and key stakeholders are not investing enough in the development of new therapeutic interventions. The available treatment options targeting different pathways of the parasite have seen inefficiencies, drug resistance, and toxic side effects coupled with longer treatment durations. Numerous studies to understand the biochemistry of leishmaniasis and its pathogenesis have identified druggable targets including ornithine decarboxylase, trypanothione reductase, and pteridine reductase, which are relevant for the survival and growth of the parasites. Another plausible target is the sterol biosynthetic pathway; however, this has not been fully investigated. Sterol biosynthesis is essential for the survival of the Leishmania species because its inhibition could lead to the death of the parasites. This review seeks to evaluate how critical the enzymes involved in sterol biosynthetic pathway are to the survival of the leishmania parasite. The review also highlights both synthetic and natural product compounds with their IC50 values against selected enzymes. Finally, recent advancements in drug design strategies targeting the sterol biosynthesis pathway of Leishmania are discussed.
Collapse
Affiliation(s)
- Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 56, Legon, Accra, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Richard K. Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 56, Legon, Accra, Ghana
| | - Robert N. O. A. Devine
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Alfred K. Bienibuor
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, IL 19104 USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
3
|
Kumar V, Ghosh S, Roy K, Pal C, Singh S. Deletion of Glutamine Synthetase Gene Disrupts the Survivability and Infectivity of Leishmania donovani. Front Cell Infect Microbiol 2021; 11:622266. [PMID: 33732662 PMCID: PMC7959746 DOI: 10.3389/fcimb.2021.622266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Glutamine synthetase (GS) is one of the most important metabolic enzymes which catalyzes ligation of glutamate and ammonia to form glutamine. Previous studies from our lab had revealed significant differences in parasite and host GS enzyme which warranted us to further work on its relevance in parasite. To analyze glutamine synthetase function in Leishmania, we generated GS overexpressors and knockout mutants and evaluated their ability to grow in vitro in monocyte differentiated macrophage and in vivo by infections in BALB/c mice. GS knocked out strain showed significant growth retardation with delayed cell cycle progression and morphological alteration. Null mutants exhibited attenuated infectivity both in in vitro and in vivo experiments and the effect was reverted back when infected with GS complemented parasites. This indicated that the alterations in phenotype observed were indeed due to GS knockout. GS knockout also made the parasite increasingly sensitive to Miltefosine. Detailed investigation of mode of parasite death upon Miltefosine treatment by dual staining with Annexin-V conjugated FITC and propidium iodide, pointed towards apoptotic or necrotic mode of cell death. This is the first report to confirm that GS is essential for the survivability and infectivity of Leishmania donovani, and can be exploited as a potential drug-target.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Sanhita Ghosh
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Kamalika Roy
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Chiranjib Pal
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, India
| |
Collapse
|
4
|
Multiscale Process Modelling in Translational Systems Biology of Leishmania major: A Holistic view. Sci Rep 2020; 10:785. [PMID: 31964958 PMCID: PMC6972910 DOI: 10.1038/s41598-020-57640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/03/2020] [Indexed: 11/09/2022] Open
Abstract
Present work aims to utilize systems biology and molecular modelling approach to understand the inhibition kinetics of Leishmania major GLO I and identifying potential hit followed by their validation through in vitro and animal studies. Simulation of GLO I inhibition has shown to affect reaction fluxes of almost all reactions in the model that led to increased production of various AGEs and free radicals. Further, in vitro testing of C1 and C2, selected through molecular modelling revealed remarkable morphological alterations like size reduction, membrane blebbing and loss in motility of the parasite, however, only C1 showed better antileishmanial activity. Additionally, C1 showed apoptosis mediated leishmanicidal activity (apoptosis-like cell death) along with cell-cycle arrest at sub-G0/G1 phase and exhibited potent anti-leishmanial effect against intracellular amastigotes. Furthermore, decrease in parasite load was also observed in C1 treated BALB/c female mice. Our results indicate that C1 has healing effect in infected mice and effectively reduced the parasitic burden. Hence, we suggest C1 as a lead molecule which on further modification, may be used to develop novel therapeutics against Leishmaniasis.
Collapse
|
5
|
Raj S, Sasidharan S, Dubey VK, Saudagar P. Identification of lead molecules against potential drug target protein MAPK4 from L. donovani: An in-silico approach using docking, molecular dynamics and binding free energy calculation. PLoS One 2019; 14:e0221331. [PMID: 31425543 PMCID: PMC6699710 DOI: 10.1371/journal.pone.0221331] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022] Open
Abstract
Leishmaniasis caused by obligate intracellular parasites of genus Leishmania is one of the most neglected tropical diseases threatening 350 million people worldwide. Protein kinases have drawn much attention as potential drug targets due to their important role in various cellular processes. In Leishmania sp. mitogen-activated protein kinase 4 is essential for the parasite survival because of its involvement in various regulatory, apoptotic and developmental pathways. The current study reveals the identification of natural inhibitors of L. donovani mitogen-activated protein kinase-4 (LdMPK4). We have performed in silico docking of 110 natural inhibitors of Leishmania parasite that have been reported earlier and identified two compounds Genistein (GEN) and Chrysin (CHY). The homology model of LdMPK4 was developed, followed by binding affinity studies, and pharmacokinetic properties of the inhibitors were calculated by maintaining ATP as a standard molecule. The modelled structure was deposited in the protein model database with PMDB ID: PM0080988. Molecular dynamic simulation of the enzyme-inhibitor complex along with the free energy calculations over 50 ns showed that GEN and CHY are more stable in their binding. These two molecules, GEN and CHY, can be considered as lead molecules for targeting LdMPK4 enzyme and could emerge as potential LdMPK4 inhibitors.
Collapse
Affiliation(s)
- Shweta Raj
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, (T.S.), India
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, (T.S.), India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology-Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, (T.S.), India
| |
Collapse
|
6
|
Manta B, Bonilla M, Fiestas L, Sturlese M, Salinas G, Bellanda M, Comini MA. Polyamine-Based Thiols in Trypanosomatids: Evolution, Protein Structural Adaptations, and Biological Functions. Antioxid Redox Signal 2018; 28:463-486. [PMID: 29048199 DOI: 10.1089/ars.2017.7133] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Major pathogenic enterobacteria and protozoan parasites from the phylum Euglenozoa, such as trypanosomatids, are endowed with glutathione (GSH)-spermidine (Sp) derivatives that play important roles in signaling and metal and thiol-redox homeostasis. For some Euglenozoa lineages, the GSH-Sp conjugates represent the main redox cosubstrates around which entire new redox systems have evolved. Several proteins underwent molecular adaptations to synthesize and utilize the new polyamine-based thiols. Recent Advances: The genomes of closely related organisms have recently been sequenced, which allows mining and analysis of gene sequences that belong to these peculiar redox systems. Similarly, the three-dimensional structures of several of these proteins have been solved, which allows for comparison with their counterparts in classical redox systems that rely on GSH/glutaredoxin and thioredoxin. CRITICAL ISSUES The evolutionary and structural aspects related to the emergence and use of GSH-Sp conjugates in Euglenozoa are reviewed focusing on unique structural specializations that proteins developed to use N1,N8-bisglutathionylspermidine (trypanothione) as redox cosubstrate. An updated overview on the biochemical and biological significance of the major enzymatic activities is also provided. FUTURE DIRECTIONS A thiol-redox system strictly dependent on trypanothione is a feature unique to trypanosomatids. The physicochemical properties of the polyamine-GSH conjugates were a major driving force for structural adaptation of proteins that use these thiols as ligand and redox cofactor. In fact, the structural differences of indispensable components of this system can be exploited toward selective drug development. Future research should clarify whether additional cellular processes are regulated by the trypanothione system. Antioxid. Redox Signal. 28, 463-486.
Collapse
Affiliation(s)
- Bruno Manta
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay .,2 Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica , Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Mariana Bonilla
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay .,2 Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica , Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Lucía Fiestas
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay
| | - Mattia Sturlese
- 3 Department of Chemical Sciences, Università degli Studi di Padova , Padova, Italy
| | - Gustavo Salinas
- 4 Worm Biology Lab, Institut Pasteur de Montevideo , Montevideo, Uruguay .,5 Departamento de Biociencias, Facultad de Química, Universidad de la República , Montevideo, Uruguay
| | - Massimo Bellanda
- 3 Department of Chemical Sciences, Università degli Studi di Padova , Padova, Italy
| | - Marcelo A Comini
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay
| |
Collapse
|
7
|
Oligopeptidase B and B2: comparative modelling and virtual screening as searching tools for new antileishmanial compounds. Parasitology 2016; 144:536-545. [DOI: 10.1017/s0031182016002237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SUMMARYLeishmaniasis are diseases caused by parasites of the genus Leishmania and transmitted to humans by the bite of infected insects of the subfamily Phlebotominae. Current drug therapy shows high toxicity and severe adverse effects. Recently, two oligopeptidases (OPBs) were identified in Leishmania amazonensis, namely oligopeptidase B (OPB) and oligopeptidase B2 (OPB2). These OPBs could be ideal targets, since both enzymes are expressed in all parasite lifecycle and were not identified in human. This work aimed to identify possible dual inhibitors of OPB and OPB2 from L. amazonensis. The three-dimensional structures of both enzymes were built by comparative modelling and used to perform a virtual screening of ZINC database by DOCK Blaster server. It is the first time that OPB models from L. amazonensis are used to virtual screening approach. Four hundred compounds were identified as possible inhibitors to each enzyme. The top scored compounds were submitted to refinement by AutoDock program. The best results suggest that compounds interact with important residues, as Tyr490, Glu612 and Arg655 (OPB numbers). The identified compounds showed better results than antipain and drugs currently used against leishmaniasis when ADMET in silico were performed. These compounds could be explored in order to find dual inhibitors of OPB and OPB2 from L. amazonensis.
Collapse
|
8
|
Soumya N, Panara MN, Neerupudi KB, Singh S. Functional analysis of an AMP forming acetyl CoA synthetase from Leishmania donovani by gene overexpression and targeted gene disruption approaches. Parasitol Int 2016; 66:992-1002. [PMID: 27825908 DOI: 10.1016/j.parint.2016.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/03/2016] [Indexed: 01/08/2023]
Abstract
Leishmaniasis, a neglected tropical disease is endemic in 98 countries and >350 million people are at risk of getting the infection. The existing chemotherapy of Leishmaniasis is limited due to adverse effects, resistance to existing drugs and increasing cases of HIV-Leishmaniasis co-infection. Hence, there is a need to identify novel metabolic pathways for design of new chemical entities. Acetyl-CoA synthetase (AceCS) is an enzyme of acetate metabolic pathway whose functions are unknown in Leishmania parasite. AceCS from Leishmania donovani (LdAceCS) is significantly different from human host to be explored as a potential drug candidate to develop parasite specific inhibitors. To dissect the functions of LdAceCS in Leishmania promastigotes, two approaches were followed. LdAceCS overexpressing parasites were generated by episomal expression of LdAceCS in promastigotes and single knockout (SKO) cell lines of LdAceCS were generated by targeted gene disruption. An insight into the phenotypic changes undergone by the overexpressors revealed an increase in LdAceCS activity, total lipid content, infectivity and ergosterol levels by ~2.2, 2.2, 1.65 and 3 fold respectively with respect to wild type. Similarly SKO transgenic parasites exhibited ~2.5, 3, 1.5 and 3 fold decrease in activity, total lipid content, infectivity and ergosterol respectively. Repeated attempts to generate null mutants failed thus indicating that LdAceCS is essential for the parasite and can be selectively targeted to combat Leishmania infection. The present study demonstrates that LdAceCS is important for in vitro macrophage infection and is also essential for biosynthesis of total lipids and ergosterol.
Collapse
Affiliation(s)
- Neelagiri Soumya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab, India
| | - Mitesh N Panara
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab, India
| | - Kishore Babu Neerupudi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab, India.
| |
Collapse
|
9
|
From Drug Screening to Target Deconvolution: a Target-Based Drug Discovery Pipeline Using Leishmania Casein Kinase 1 Isoform 2 To Identify Compounds with Antileishmanial Activity. Antimicrob Agents Chemother 2016; 60:2822-33. [PMID: 26902771 DOI: 10.1128/aac.00021-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/18/2016] [Indexed: 01/28/2023] Open
Abstract
Existing therapies for leishmaniases present significant limitations, such as toxic side effects, and are rendered inefficient by parasite resistance. It is of utmost importance to develop novel drugs targeting Leishmania that take these two limitations into consideration. We thus chose a target-based approach using an exoprotein kinase, Leishmania casein kinase 1.2 (LmCK1.2) that was recently shown to be essential for intracellular parasite survival and infectivity. We developed a four-step pipeline to identify novel selective antileishmanial compounds. In step 1, we screened 5,018 compounds from kinase-biased libraries with Leishmania and mammalian CK1 in order to identify hit compounds and assess their specificity. For step 2, we selected 88 compounds among those with the lowest 50% inhibitory concentration to test their biological activity on host-free parasites using a resazurin reduction assay and on intramacrophagic amastigotes using a high content phenotypic assay. Only 75 compounds showed antileishmanial activity and were retained for step 3 to evaluate their toxicity against mouse macrophages and human cell lines. The four compounds that displayed a selectivity index above 10 were then assessed for their affinity to LmCK1.2 using a target deconvolution strategy in step 4. Finally, we retained two compounds, PP2 and compound 42, for which LmCK1.2 seems to be the primary target. Using this four-step pipeline, we identify from several thousand molecules, two lead compounds with a selective antileishmanial activity.
Collapse
|
10
|
Abstract
A number of bacterial glyoxalase I enzymes are maximally activated by Ni2+ and Co2+ ions, but are inactive in the presence of Zn2+, yet these enzymes will also bind this metal ion. The structure-activity relationships between these two classes of glyoxalase I serve as important clues as to how the molecular structures of these proteins control metal-activation profiles.
Collapse
|
11
|
AMP-acetyl CoA synthetase from Leishmania donovani: identification and functional analysis of 'PX4GK' motif. Int J Biol Macromol 2015; 75:364-72. [PMID: 25660655 DOI: 10.1016/j.ijbiomac.2015.01.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/23/2015] [Accepted: 01/25/2015] [Indexed: 11/23/2022]
Abstract
An adenosine monophosphate forming acetyl CoA synthetase (AceCS) which is the key enzyme involved in the conversion of acetate to acetyl CoA has been identified from Leishmania donovani for the first time. Sequence analysis of L. donovani AceCS (LdAceCS) revealed the presence of a 'PX4GK' motif which is highly conserved throughout organisms with higher sequence identity (96%) to lower sequence identity (38%). A ∼ 77 kDa heterologous protein with C-terminal 6X His-tag was expressed in Escherichia coli. Expression of LdAceCS in promastigotes was confirmed by western blot and RT-PCR analysis. Immunolocalization studies revealed that it is a cytosolic protein. We also report the kinetic characterization of recombinant LdAceCS with acetate, adenosine 5'-triphosphate, coenzyme A and propionate as substrates. Site directed mutagenesis of residues in conserved PX4GK motif of LdAceCS was performed to gain insight into its potential role in substrate binding, catalysis and its role in maintaining structural integrity of the protein. P646A, G651A and K652R exhibited more than 90% loss in activity signifying its indispensible role in the enzyme activity. Substitution of other residues in this motif resulted in altered substrate specificity and catalysis. However, none of them had any role in modulation of the secondary structure of the protein except G651A mutant.
Collapse
|
12
|
Sangshetti JN, Kalam Khan FA, Kulkarni AA, Arote R, Patil RH. Antileishmanial drug discovery: comprehensive review of the last 10 years. RSC Adv 2015. [DOI: 10.1039/c5ra02669e] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This review covers the current aspects of leishmaniasis including marketed drugs, new antileishmanial agents, and possible drug targets of antileishmanial agents.
Collapse
Affiliation(s)
| | | | | | - Rohidas Arote
- Department of Molecular Genetics
- School of Dentistry
- Seoul National University
- Seoul
- Republic of Korea
| | - Rajendra H. Patil
- Department of Biotechnology
- Savitribai Phule Pune University
- Pune 411007
- India
| |
Collapse
|
13
|
Abstract
Our current knowledge of the isomerase glyoxalase I and the thioesterase glyoxalase II is based on a variety of prokaryotic and eukaryotic (model) systems with an emphasis on human glyoxalases. During the last decade, important insights on glyoxalase catalysis and structure–function relationships have also been obtained from parasitic protists. These organisms, including kinetoplastid and apicomplexan parasites, are particularly interesting, both because of their relevance as pathogens and because of their phylogenetic diversity and host–parasite co-evolution which has led to specialized organellar and metabolic adaptations. Accordingly, the glyoxalase repertoire and properties vary significantly among parasitic protists of different major eukaryotic lineages (and even between closely related organisms). For example, several protists have an insular or non-canonical glyoxalase. Furthermore, the structures and the substrate specificities of glyoxalases display drastic variations. The aim of the present review is to highlight such differences as well as similarities between the glyoxalases of parasitic protists and to emphasize the power of comparative studies for gaining insights into fundamental principles and alternative glyoxalase functions.
Collapse
|
14
|
Rondon FCM, Bevilaqua CML, Accioly MP, de Morais SM, de Andrade-Júnior HF, de Carvalho CA, Lima JC, Magalhães HCR. In vitro efficacy of Coriandrum sativum, Lippia sidoides and Copaifera reticulata against Leishmania chagasi. ACTA ACUST UNITED AC 2013; 21:185-91. [PMID: 23070424 DOI: 10.1590/s1984-29612012000300002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/16/2012] [Indexed: 01/21/2023]
Abstract
The increased incidence of visceral leishmaniasis (VL) in Brazil is due to a lack of effective disease control measures. In addition to that, no effective treatment exists for canine VL in response to synthetic drugs. Thus, the objective of this study was to evaluate the effect of the essential oils of Coriandrum sativum and Lippia sidoides, and oleoresin from Copaifera reticulata, on Leishmania chagasi promastigotes and amastigotes. We also examined the toxicity of these treatments on the murine monocyte cell line RAW 264.7. To determine the IC50 a MTT test (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was performed on promastigotes, and an in situ ELISA assay was conducted on amastigotes. Here, we demonstrate that oleoresin from C. reticulata was effective against both promastigotes (IC50 of 7.88 µg.mL-1) and amastigotes (IC50 of 0.52 µg.mL-1), and neither of the two treatments differed significantly (p > 0.05) from pentamidine (IC50 of 2.149 µg.mL-1) and amphotericin B (IC50 of 9.754 µg.mL-1). Of the three plant oils tested, only oleoresin showed no toxicity toward monocyte, with 78.45% viability after treatment. Inhibition of promastigote and amastigote growth and the lack of cytotoxicity by C. reticulata demonstrate that oleoresin may be a viable option for analyzing the in vivo therapeutic effects of leishmanicidal plants.
Collapse
|
15
|
Dinesh N, Pallerla DSR, Kaur PK, Kishore Babu N, Singh S. Exploring Leishmania donovani 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) as a potential drug target by biochemical, biophysical and inhibition studies. Microb Pathog 2013; 66:14-23. [PMID: 24239940 DOI: 10.1016/j.micpath.2013.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/29/2013] [Accepted: 11/01/2013] [Indexed: 01/24/2023]
Abstract
3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (HMGR), an NADPH dependant enzyme catalyzes the synthesis of mevalonic acid from HMG-CoA required for isoprenoid biosynthesis. The HMGR gene from Leishmania donovani was cloned and expressed. Genome analysis of L. donovani revealed that HMGR gene having an open reading frame of 1305 bp encodes a putative protein of 434 amino acids. LdHMGR showed optimal activity at pH 7.2 and temperature 37 °C. Kinetic analysis of this enzyme revealed Km values of 35.7 ± 2.5 μM for (R,S)-HMG-CoA and 70 ± 7.9 μM for the cofactor NADPH. On tryptophan fluorescence quenching, the Stern Volmer constant (Ksv), binding constant (Ka) and protein:cofactor stoichiometry for interaction of NADPH cofactor with the enzyme were found to be 6.0 ± 0.7 M(-1), 0.17 μM and 0.72 respectively. Polyclonal anti-rat HMGR antibody detected a band of ∼45 kDa in all phases of promastigote growth. Biophysical analysis of the secondary structure of LdHMGR confirmed the presence of 25.7 ± 0.35% alpha helicity. Thermal denaturation studies showed extreme stability of the enzyme with 60% helical structure retained at 90 °C. Statins (simvastatin and atorvastatin) and non-statin (resveratrol) effectively inhibited the growth of L. donovani promastigotes as well as the catalytic activity of the recombinant LdHMGR. Atorvastatin was found to be most potent antileishmanial inhibitor with an IC50 value of 19.4 ± 3.07 μM and a very lower concentration of 315.5 ± 2.1 nM was enough to cause 50% recombinant LdHMGR enzyme inhibition suggesting direct interaction with the rate limiting enzyme of the ergosterol biosynthetic pathway. Exogenous supplementation of ergosterol in case of atorvastatin and resveratrol treated cells caused complete reversal of growth inhibition whereas simvastatin was found to be ergosterol refractory. Cholesterol supplementation however, failed to overcome growth inhibition in all the cases. Overall our study emphasizes on exploring LdHMGR as a potential drug target for the development of novel antileishmanial agents.
Collapse
Affiliation(s)
- Neeradi Dinesh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - Dheeraj Sree Ram Pallerla
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - Preet Kamal Kaur
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - Neerupudi Kishore Babu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
16
|
Edagwa B, Wang Y, Narayanasamy P. Synthesis of azide derivative and discovery of glyoxalase pathway inhibitor against pathogenic bacteria. Bioorg Med Chem Lett 2013; 23:6138-40. [PMID: 24076169 DOI: 10.1016/j.bmcl.2013.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
Abstract
A glyoxalase inhibitor was synthesized and tested against Staphylococcus aureus for first time and showed MIC90 of 20 μg/ml. Henceforth, we synthesized unnatural azide derivative of the same inhibitor to improve the biological activity. In that order, an azide carboxylate was synthesized from dimethyl tartrate by tosylation and azide substitution. The synthesized, azide compound was coupled with glutathione derivative in high yield and tested against S. aureus and showed improved MIC90 of 5 μg/ml. In general, it can be also easily converted to unnatural β-amino acid in good yield. The shown methodology will be extended to study induced suicide in Burkholderia mallei, Francisella tularensis and Mycobacterium tuberculosis in future.
Collapse
Affiliation(s)
- Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | | | | |
Collapse
|
17
|
Abstract
SIGNIFICANCE Parasitic infections continue to be a major problem for global human health. Vaccines are practically not available and chemotherapy is highly unsatisfactory. One approach toward a novel antiparasitic drug development is to unravel pathways that may be suited as future targets. Parasitic organisms show a remarkable diversity with respect to the nature and functions of their main low-molecular-mass antioxidants and many of them developed pathways that do not have a counterpart in their mammalian hosts. RECENT ADVANCES Work of the last years disclosed the individual antioxidants employed by parasites and their distinct pathways. Entamoeba, Trichomonas, and Giardia directly use cysteine as main low-molecular-mass thiol but have divergent cysteine metabolisms. Malarial parasites rely exclusively on cysteine uptake and generate glutathione (GSH) as main free thiol as do metazoan parasites. Trypanosomes and Leishmania have a unique trypanothione-based thiol metabolism but employ individual mechanisms for their cysteine supply. In addition, some trypanosomatids synthesize ovothiol A and/or ascorbate. Various essential parasite enzymes such as trypanothione synthetase and trypanothione reductase in Trypanosomatids and the Schistosoma thioredoxin GSH reductase are currently intensively explored as drug target molecules. CRITICAL ISSUES Essentiality is a prerequisite but not a sufficient property of an enzyme to become a suited drug target. The availability of an appropriate in vivo screening system and many other factors are equally important. FUTURE DIRECTIONS The current organism-wide RNA-interference and proteome analyses are supposed to reveal many more interesting candidates for future drug development approaches directed against the parasite antioxidant defense systems.
Collapse
|
18
|
Kaur PK, Dinesh N, Soumya N, Babu NK, Singh S. Identification and characterization of a novel Ribose 5-phosphate isomerase B from Leishmania donovani. Biochem Biophys Res Commun 2012; 421:51-6. [PMID: 22483752 DOI: 10.1016/j.bbrc.2012.03.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 03/21/2012] [Indexed: 11/29/2022]
Abstract
Leishmaniasis is a group of tropical diseases caused by protozoan parasites of the genus Leishmania. Due to the emergence of resistance to the available antileishmanial drugs there is an immediate need to identify molecular targets on which to base future treatment strategies. Ribose 5-phosphate isomerase (Rpi; EC 5.3.1.6) is a key enzyme of the pentose phosphate pathway (PPP) which catalyses the reversible aldose-ketose isomerization between Ribose 5-phosphate (R5P) and Ribulose 5-phosphate (Ru5P). It exists in two isoforms A and B. These two are completely unrelated enzymes catalyzing the same reaction. Analysis of the Leishmania infantum genome revealed that though the RpiB gene is present, RpiA homologs are completely absent. An absence of RpiBs in the genomes of higher animals makes this enzyme a possible target for the chemotherapy of Leishmaniasis. In this paper, we report for the first time the presence of B isoform of the Rpi enzyme in Leishmania donovani (LdRpiB) by cloning and molecular characterization of the enzyme. An amplified L. donovani RpiB gene is 519 bp and encodes for a putative 172 amino acid protein with a molecular mass of ∼19 kDa. An ∼19 kDa protein with poly-His tag at the C-terminal end was obtained by heterologous expression of LdRpiB in Escherichia coli. The recombinant form of RpiB was obtained in soluble and active form. The LdRpiB exists as a dimer of dimers i.e. the tetramer form. The polyclonal antibody against Trypanosoma cruzi RpiB could detect a band of ∼19 kDa with the purified recombinant RpiB as well as native RpiB from the L. donovani promastigotes. Recombinant RpiB obeys the classical Michaelis-Menten kinetics utilizing R5P as the substrate with a K(m) value of 2.4±0.6 mM and K(cat) value of 30±5.2 s(-1). Our study confirms the presence of Ribose 5-phosphate isomerase B in L. donovani and provides functional characterization of RpiB for further validating it as a potential drug target.
Collapse
Affiliation(s)
- Preet Kamal Kaur
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160 062, Punjab, India
| | | | | | | | | |
Collapse
|
19
|
Yasui E, Kato K. Reversal of Anticancer Drug Resistance Targetting Intracellular Glutathione and Glyoxalase I. J SYN ORG CHEM JPN 2012. [DOI: 10.5059/yukigoseikyokaishi.70.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Wyllie S, Fairlamb AH. Methylglyoxal metabolism in trypanosomes and leishmania. Semin Cell Dev Biol 2011; 22:271-7. [PMID: 21310261 PMCID: PMC3107426 DOI: 10.1016/j.semcdb.2011.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/02/2011] [Indexed: 11/25/2022]
Abstract
Methylglyoxal is a toxic by-product of glycolysis and other metabolic pathways. In mammalian cells, the principal route for detoxification of this reactive metabolite is via the glutathione-dependent glyoxalase pathway forming d-lactate, involving lactoylglutathione lyase (GLO1; EC 4.4.1.5) and hydroxyacylglutathione hydrolase (GLO2; EC 3.2.1.6). In contrast, the equivalent enzymes in the trypanosomatid parasites Trypanosoma cruzi and Leishmania spp. show >200-fold selectivity for glutathionylspermidine and trypanothione over glutathione and are therefore sensu stricto lactoylglutathionylspermidine lyases (EC 4.4.1.-) and hydroxyacylglutathionylspermidine hydrolases (EC 3.2.1.-). The unique substrate specificity of the parasite glyoxalase enzymes can be directly attributed to their unusual active site architecture. The African trypanosome differs from these parasites in that it lacks GLO1 and converts methylglyoxal to l-lactate rather than d-lactate. Since Trypanosoma brucei is the most sensitive of the trypanosomatids to methylglyoxal toxicity, the absence of a complete and functional glyoxalase pathway in these parasites is perplexing. Alternative routes of methylglyoxal detoxification in T. brucei are discussed along with the potential of exploiting trypanosomatid glyoxalase enzymes as targets for anti-parasitic chemotherapy.
Collapse
Affiliation(s)
- Susan Wyllie
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee, Angus, Scotland, UK
| | | |
Collapse
|
21
|
Chawla B, Madhubala R. Drug targets in Leishmania. J Parasit Dis 2010; 34:1-13. [PMID: 21526026 DOI: 10.1007/s12639-010-0006-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 06/22/2010] [Indexed: 02/03/2023] Open
Abstract
Leishmaniasis is a major public health problem and till date there are no effective vaccines available. The control strategy relies solely on chemotherapy of the infected people. However, the present repertoire of drugs is limited and increasing resistance towards them has posed a major concern. The first step in drug discovery is to identify a suitable drug target. The genome sequences of Leishmania major and Leishmania infantum has revealed immense amount of information and has given the opportunity to identify novel drug targets that are unique to these parasites. Utilization of this information in order to come up with a candidate drug molecule requires combining all the technology and using a multi-disciplinary approach, right from characterizing the target protein to high throughput screening of compounds. Leishmania belonging to the order kinetoplastidae emerges from the ancient eukaryotic lineages. They are quite diverse from their mammalian hosts and there are several cellular processes that we are getting to know of, which exist distinctly in these parasites. In this review, we discuss some of the metabolic pathways that are essential and could be used as potential drug targets in Leishmania.
Collapse
Affiliation(s)
- Bhavna Chawla
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | | |
Collapse
|
22
|
Chandra S, Ruhela D, Deb A, Vishwakarma RA. Glycobiology of theLeishmaniaparasite and emerging targets for antileishmanial drug discovery. Expert Opin Ther Targets 2010; 14:739-57. [DOI: 10.1517/14728222.2010.495125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Chauhan SC, Madhubala R. Glyoxalase I gene deletion mutants of Leishmania donovani exhibit reduced methylglyoxal detoxification. PLoS One 2009; 4:e6805. [PMID: 19710909 PMCID: PMC2728510 DOI: 10.1371/journal.pone.0006805] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 08/03/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Glyoxalase I is a metalloenzyme of the glyoxalase pathway that plays a central role in eliminating the toxic metabolite methyglyoxal. The protozoan parasite Leishmania donovani possesses a unique trypanothione dependent glyoxalase system. PRINCIPAL FINDINGS Analysis of the L. donovani GLOI sequence predicted a mitochondrial targeting sequence, suggesting that the enzyme is likely to be targeted to the mitochondria. In order to determine definitively the intracellular localization of GLOI in L. donovani, a full-length GLOI gene was fused to green fluorescent protein (GFP) gene to generate a chimeric construct. Confocal microscopy of L. donovani promastigotes carrying this chimeric construct and immunofluorescence microscopy using anti-GLOI antibodies demonstrated that GLOI is localized in the kinetoplast of the parasite apart from the cytosol. To study the physiological role of GLOI in Leishmania, we first created promastigote mutants heterozygous for GLOI by targeted gene replacement using either hygromycin or neomycin phosphotransferases as selectable markers. Heterozygous mutants of L. donovani display a slower growth rate, have lower glyoxalase I activity and have reduced ability to detoxify methylglyoxal in comparison to the wild-type parasites. Complementation of the heterozygous mutant with an episomal GLOI construct showed the restoration of heterozygous mutant phenotype nearly fully to that of the wild-type. Null mutants were obtained only after GLOI was expressed from an episome in heterozygous mutants. CONCLUSIONS We for the first time report localization of GLOI in L. donovani in the kinetoplast. To study the physiological role of GLOI in Leishmania, we have generated GLOI attenuated strains by targeted gene replacement and report that GLOI is likely to be an important gene since GLOI mutants in L. donovani showed altered phenotype. The present data supports that the GLOI plays an essential role in the survival of this pathogenic organism and that inhibition of the enzyme potentiates the toxicity of methylglyoxal.
Collapse
Affiliation(s)
- Swati C. Chauhan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rentala Madhubala
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
24
|
Wendler A, Irsch T, Rabbani N, Thornalley PJ, Krauth-Siegel RL. Glyoxalase II does not support methylglyoxal detoxification but serves as a general trypanothione thioesterase in African trypanosomes. Mol Biochem Parasitol 2009; 163:19-27. [DOI: 10.1016/j.molbiopara.2008.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 09/10/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
|
25
|
Rath J, Gowri VS, Chauhan SC, Padmanabhan PK, Srinivasan N, Madhubala R. A glutathione-specific aldose reductase of Leishmania donovani and its potential implications for methylglyoxal detoxification pathway. Gene 2008; 429:1-9. [PMID: 18983902 DOI: 10.1016/j.gene.2008.09.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 08/13/2008] [Accepted: 09/30/2008] [Indexed: 11/17/2022]
Abstract
Methylglyoxal is mainly catabolized by two major enzymatic pathways. The first is the ubiquitous detoxification pathway, the glyoxalase pathway. In addition to the glyoxalase pathway, aldose reductase pathway also plays a crucial role in lowering the levels of methylglyoxal. The gene encoding aldose reductase (ALR) has been cloned from Leishmania donovani, a protozoan parasite causing visceral leishmaniasis. DNA sequence analysis revealed an open reading frame (ORF) of approximately 855 bp encoding a putative protein of 284 amino acids with a calculated molecular mass of 31.7 kDa and a predicted isoelectric point of 5.85. The sequence identity between L. donovani ALR (LdALR) and mammals and plants is only 36-44%. The ORF is a single copy gene. A protein with a molecular mass that matched the estimated approximately 74 kDa according to the amino acid composition of LdALR with a maltose binding tag present at its N-terminal end was induced by heterologous expression of LdALR in Escherichia coli. In the presence of glutathione, recombinant LdALR reduced methylglyoxal with a K(m) of approximately 112 microM. Comparative structural analysis of the human ALR structure with LdALR model suggests that the active site anchoring the N-terminal end of the glutathione is highly conserved. However, the C-terminal end of the glutathione backbone is expected to be exposed in LdALR, as the residues anchoring the C-terminal end of the glutathione backbone come from the three loop regions in human, which are apparently shortened in the LdALR structure. Thus, the computational analysis provides clues about the expected mode of glutathione binding and its interactions with the protein. This is the first report of the role of an ALR in the metabolic disposal of methylglyoxal in L. donovani and of thiol binding to a kinetoplastid aldose reductase.
Collapse
Affiliation(s)
- Jyoti Rath
- School of Life sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | | | | | | | | | | |
Collapse
|
26
|
Irigoín F, Cibils L, Comini MA, Wilkinson SR, Flohé L, Radi R. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radic Biol Med 2008; 45:733-42. [PMID: 18588970 DOI: 10.1016/j.freeradbiomed.2008.05.028] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/24/2008] [Accepted: 05/28/2008] [Indexed: 10/22/2022]
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas' disease, an infection that affects several million people in Latin America. With no immediate prospect of a vaccine and problems associated with current chemotherapies, the development of new treatments is an urgent priority. Several aspects of the redox metabolism of this parasite differ enough from those in the mammalian host to be considered targets for drug development. Here, we review the information about a trypanosomatid-specific molecule centrally involved in redox metabolism, the dithiol trypanothione, and the main effectors of cellular antioxidant defense. We focus mainly on data from T. cruzi, making comparisons with other trypanosomatids whenever possible. In these parasites trypanothione participates in crucial thiol-disulfide exchange reactions and serves as electron donor in different metabolic pathways, from synthesis of DNA precursors to oxidant detoxification. Interestingly, the levels of several enzymes involved in trypanothione metabolism and oxidant detoxification increase during the transformation of T. cruzi to its mammalian-infective form and the overexpression of some of them has been associated with increased resistance to macrophage-dependent oxidative killing. Together, the evidence suggests a central role of the trypanothione-dependent antioxidant systems in the infection process.
Collapse
Affiliation(s)
- Florencia Irigoín
- Departmento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Uruguay
| | | | | | | | | | | |
Collapse
|
27
|
Krauth-Siegel RL, Comini MA. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta Gen Subj 2008; 1780:1236-48. [PMID: 18395526 DOI: 10.1016/j.bbagen.2008.03.006] [Citation(s) in RCA: 294] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 02/26/2008] [Accepted: 03/11/2008] [Indexed: 01/09/2023]
Abstract
Trypanosomes and leishmania, the causative agents of several tropical diseases, possess a unique redox metabolism which is based on trypanothione. The bis(glutathionyl)spermidine is the central thiol that delivers electrons for the synthesis of DNA precursors, the detoxification of hydroperoxides and other trypanothione-dependent pathways. Many of the reactions are mediated by tryparedoxin, a distant member of the thioredoxin protein family. Trypanothione is kept reduced by the parasite-specific flavoenzyme trypanothione reductase. Since glutathione reductases and thioredoxin reductases are missing, the reaction catalyzed by trypanothione reductase represents the only connection between the NADPH- and the thiol-based redox metabolisms. Thus, cellular thiol redox homeostasis is maintained by the biosynthesis and reduction of trypanothione. Nearly all proteins of the parasite-specific trypanothione metabolism have proved to be essential.
Collapse
|
28
|
O'Young J, Sukdeo N, Honek JF. Escherichia coli glyoxalase II is a binuclear zinc-dependent metalloenzyme. Arch Biochem Biophys 2007; 459:20-6. [PMID: 17196158 DOI: 10.1016/j.abb.2006.11.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 11/15/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
Cytotoxic methylglyoxal is detoxified by the two-enzyme glyoxalase system. Glyoxalase I (GlxI) catalyzes conversion of non-enzymatically produced methylglyoxal-glutathione hemithioacetal into its corresponding thioester. Glyoxalase II (Glx II) hydrolyzes the thioester into d-lactate and free glutathione. Glyoxalase I and II are metalloenzymes, which possess mononuclear and binuclear active sites, respectively. There are two distinct classes of GlxI; the first class is Zn2+-dependent and is composed of GlxI from mainly eukaryotic organisms and the second class is composed of non-Zn2+-dependent (but Ni2+ or Co2+-dependent) GlxI enzymes (mainly prokaryotic and leishmanial species). GlxII is typically Zn2+-activated, containing Zn2+ and either Fe3+/Fe2+ or Mn2+ at the active site depending upon the biological source. To address whether two classes of GlxII might exist, glyoxalase II from Escherichia coli was cloned and overexpressed and characterized. Unlike E. coli GlxI, which is non-Zn2+-dependent, Zn2+ activates the E. coli GlxII enzyme, with no evidence for Ni2+ metal utilization.
Collapse
Affiliation(s)
- Jason O'Young
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ont., Canada N2L 3G1
| | | | | |
Collapse
|
29
|
Abstract
Trypanosomes and Leishmania, the causative agents of severe tropical diseases, employ 2-Cys-peroxiredoxins together with cysteine-homologues of glutathione peroxidases and ascorbate-dependent peroxidases for the detoxification of hydroperoxides. All three types of peroxidases gain their reducing equivalents from the parasite-specific dithiol trypanothione [bis(glutathionyl)spermidine]. Based on their primary structure and cellular localization, the trypanosomatid 2-Cys-peroxiredoxins are subdivided into two families that occur in the mitochondrion and cytosol of the parasites. In Trypanosoma brucei, the cytosolic 2-Cys-peroxiredoxin, as well as the glutathione peroxidase-type enzyme, is essential for cell viability. Despite overlapping substrate specificities and subcellular localizations, the two types of peroxidases can obviously not substitute for each other which suggests distinct cell-physiological roles.
Collapse
|