1
|
Maes ME, Donahue RJ, Schlamp CL, Marola OJ, Libby RT, Nickells RW. BAX activation in mouse retinal ganglion cells occurs in two temporally and mechanistically distinct steps. Mol Neurodegener 2023; 18:67. [PMID: 37752598 PMCID: PMC10521527 DOI: 10.1186/s13024-023-00659-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Pro-apoptotic BAX is a central mediator of retinal ganglion cell (RGC) death after optic nerve damage. BAX activation occurs in two stages including translocation of latent BAX to the mitochondrial outer membrane (MOM) and then permeabilization of the MOM to facilitate the release of apoptotic signaling molecules. As a critical component of RGC death, BAX is an attractive target for neuroprotective therapies and an understanding of the kinetics of BAX activation and the mechanisms controlling the two stages of this process in RGCs is potentially valuable in informing the development of a neuroprotective strategy. METHODS The kinetics of BAX translocation were assessed by both static and live-cell imaging of a GFP-BAX fusion protein introduced into RGCs using AAV2-mediated gene transfer in mice. Activation of BAX was achieved using an acute optic nerve crush (ONC) protocol. Live-cell imaging of GFP-BAX was achieved using explants of mouse retina harvested 7 days after ONC. Kinetics of translocation in RGCs were compared to GFP-BAX translocation in 661W tissue culture cells. Permeabilization of GFP-BAX was assessed by staining with the 6A7 monoclonal antibody, which recognizes a conformational change in this protein after MOM insertion. Assessment of individual kinases associated with both stages of activation was made using small molecule inhibitors injected into the vitreous either independently or in concert with ONC surgery. The contribution of the Dual Leucine Zipper-JUN-N-Terminal Kinase cascade was evaluated using mice with a double conditional knock-out of both Mkk4 and Mkk7. RESULTS ONC induces the translocation of GFP-BAX in RGCs at a slower rate and with less intracellular synchronicity than 661W cells, but exhibits less variability among mitochondrial foci within a single cell. GFP-BAX was also found to translocate in all compartments of an RGC including the dendritic arbor and axon. Approximately 6% of translocating RGCs exhibited retrotranslocation of BAX immediately following translocation. Unlike tissue culture cells, which exhibit simultaneous translocation and permeabilization, RGCs exhibited a significant delay between these two stages, similar to detached cells undergoing anoikis. Translocation, with minimal permeabilization could be induced in a subset of RGCs using an inhibitor of Focal Adhesion Kinase (PF573228). Permeabilization after ONC, in a majority of RGCs, could be inhibited with a broad spectrum kinase inhibitor (sunitinib) or a selective inhibitor for p38/MAPK14 (SB203580). Intervention of DLK-JNK axis signaling abrogated GFP-BAX translocation after ONC. CONCLUSIONS A comparison between BAX activation kinetics in tissue culture cells and in cells of a complex tissue environment shows distinct differences indicating that caution should be used when translating findings from one condition to the other. RGCs exhibit both a delay between translocation and permeabilization and the ability for translocated BAX to be retrotranslocated, suggesting several stages at which intervention of the activation process could be exploited in the design of a therapeutic strategy.
Collapse
Affiliation(s)
- Margaret E Maes
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Ryan J Donahue
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Cassandra L Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA
| | - Olivia J Marola
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard T Libby
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
| | - Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Maes ME, Donahue RJ, Schlamp CL, Marola OJ, Libby RT, Nickells R. BAX activation in mouse retinal ganglion cells occurs in two temporally and mechanistically distinct steps. RESEARCH SQUARE 2023:rs.3.rs-2846437. [PMID: 37292963 PMCID: PMC10246290 DOI: 10.21203/rs.3.rs-2846437/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Pro-apoptotic BAX is a central mediator of retinal ganglion cell (RGC) death after optic nerve damage. BAX activation occurs in two stages including translocation of latent BAX to the mitochondrial outer membrane (MOM) and then permeabilization of the MOM to facilitate the release of apoptotic signaling molecules. As a critical component of RGC death, BAX is an attractive target for neuroprotective therapies and an understanding of the kinetics of BAX activation and the mechanisms controlling the two stages of this process in RGCs is potentially valuable in informing the development of a neuroprotective strategy. Methods The kinetics of BAX translocation were assessed by both static and live-cell imaging of a GFP-BAX fusion protein introduced into RGCs using AAV2-mediated gene transfer in mice. Activation of BAX was achieved using an acute optic nerve crush (ONC) protocol. Live-cell imaging of GFP-BAX was achieved using explants of mouse retina harvested 7 days after ONC. Kinetics of translocation in RGCs were compared to GFP-BAX translocation in 661W tissue culture cells. Permeabilization of GFP-BAX was assessed by staining with the 6A7 monoclonal antibody, which recognizes a conformational change in this protein after MOM insertion. Assessment of individual kinases associated with both stages of activation was made using small molecule inhibitors injected into the vitreous either independently or in concert with ONC surgery. The contribution of the Dual Leucine Zipper-JUN-N-Terminal Kinase cascade was evaluated using mice with a double conditional knock-out of both Mkk4 and Mkk7 . Results ONC induces the translocation of GFP-BAX in RGCs at a slower rate and with less intracellular synchronicity than 661W cells, but exhibits less variability among mitochondrial foci within a single cell. GFP-BAX was also found to translocate in all compartments of an RGC including the dendritic arbor and axon. Approximately 6% of translocating RGCs exhibited retrotranslocation of BAX immediately following translocation. Unlike tissue culture cells, which exhibit simultaneous translocation and permeabilization, RGCs exhibited a significant delay between these two stages, similar to detached cells undergoing anoikis. Translocation, with minimal permeabilization could be induced in a subset of RGCs using an inhibitor of Focal Adhesion Kinase (PF573228). Permeabilization after ONC, in a majority of RGCs, could be inhibited with a broad spectrum kinase inhibitor (sunitinib) or a selective inhibitor for p38/MAPK14 (SB203580). Intervention of DLK-JNK axis signaling abrogated GFP-BAX translocation after ONC. Conclusions A comparison between BAX activation kinetics in tissue culture cells and in cells of a complex tissue environment shows distinct differences indicating that caution should be used when translating findings from one condition to the other. RGCs exhibit both a delay between translocation and permeabilization and the ability for translocated BAX to be retrotranslocated, suggesting several stages at which intervention of the activation process could be exploited in the design of a therapeutic strategy.
Collapse
|
3
|
Bcl-2 Family Members and the Mitochondrial Import Machineries: The Roads to Death. Biomolecules 2022; 12:biom12020162. [PMID: 35204663 PMCID: PMC8961529 DOI: 10.3390/biom12020162] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
The localization of Bcl-2 family members at the mitochondrial outer membrane (MOM) is a crucial step in the implementation of apoptosis. We review evidence showing the role of the components of the mitochondrial import machineries (translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM)) in the mitochondrial localization of Bcl-2 family members and how these machineries regulate the function of pro- and anti-apoptotic proteins in resting cells and in cells committed into apoptosis.
Collapse
|
4
|
Gottlieb RA, Piplani H, Sin J, Sawaged S, Hamid SM, Taylor DJ, de Freitas Germano J. At the heart of mitochondrial quality control: many roads to the top. Cell Mol Life Sci 2021; 78:3791-3801. [PMID: 33544154 PMCID: PMC8106602 DOI: 10.1007/s00018-021-03772-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/26/2022]
Abstract
Mitochondrial quality control depends upon selective elimination of damaged mitochondria, replacement by mitochondrial biogenesis, redistribution of mitochondrial components across the network by fusion, and segregation of damaged mitochondria by fission prior to mitophagy. In this review, we focus on mitochondrial dynamics (fusion/fission), mitophagy, and other mechanisms supporting mitochondrial quality control including maintenance of mtDNA and the mitochondrial unfolded protein response, particularly in the context of the heart.
Collapse
Affiliation(s)
- Roberta A Gottlieb
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
| | - Honit Piplani
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Jon Sin
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Savannah Sawaged
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Syed M Hamid
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - David J Taylor
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Juliana de Freitas Germano
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| |
Collapse
|
5
|
Biosensing based on optimized asymmetric optofluidic nanochannel gratings. MICRO AND NANO ENGINEERING 2020. [DOI: 10.1016/j.mne.2020.100056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Hurot C, Brenet S, Buhot A, Barou E, Belloir C, Briand L, Hou Y. Highly sensitive olfactory biosensors for the detection of volatile organic compounds by surface plasmon resonance imaging. Biosens Bioelectron 2019; 123:230-236. [DOI: 10.1016/j.bios.2018.08.072] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022]
|
7
|
Lambert A, Yang Z, Cheng W, Lu Z, Liu Y, Cheng Q. Ultrasensitive Detection of Bacterial Protein Toxins on Patterned Microarray via Surface Plasmon Resonance Imaging with Signal Amplification by Conjugate Nanoparticle Clusters. ACS Sens 2018; 3:1639-1646. [PMID: 30084634 DOI: 10.1021/acssensors.8b00260] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensitive detection and monitoring of biological interactions in a high throughput, multiplexed array format has numerous advantages. We report here a method to enhance detection sensitivity in surface plasmon resonance (SPR) spectroscopy and SPR imaging via the effect of accumulation of conjugated nanoparticles of varying sizes. Bacterial cholera toxin (CT) was chosen for the demonstration of enhanced immunoassay by SPR. After immobilization of CT on a gold surface, specific recognition is achieved by biotinylated anti-CT. The signal is amplified by the attachment of biotinylated 20 nm AuNP via streptavidin bridge, followed by attachment of 5 nm streptavidin-functionalized Fe3O4NP to the AuNP-biotin surface. The continuous surface binding of two differently sized conjugated nanoparticles effectively increases their packing density on surface and significantly improves SPR detection sensitivity, allowing quantitative measurement of CT at very low concentration. The dense packing of conjugated nanoparticles on the surface was confirmed by atomic force microscopy characterization. SPR imaging of the immunoassay for high-throughput analysis utilized an Au-well microarray that attenuated the background resonance interference on the resulting images. A calibration curve of conjugated nanoparticle binding signal amplification for CT detection based on surface coverage has been obtained that shows a correlation in a range from 6.31 × 10-16 to 2.51 × 10-13 mol/cm2 with the limit of detection of 5.01 × 10-16 mol/cm2. The absolute quantity of detection limit using SPR imaging was 0.25 fmol. The versatile nanoparticles and biotin-streptavidin interaction used here should allow adaptation of this enhancement method to many other systems that include DNA, RNA, peptides, and carbohydrates, opening new avenues for ultrasensitive analysis of biomolecules.
Collapse
Affiliation(s)
- Alexander Lambert
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhanjun Yang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Wei Cheng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhenda Lu
- College of Engineering and Applied Science, Nanjing University, Nanjing 210023, China
| | - Ying Liu
- Department of Chemistry, Nanjing University, Nanjing 210023, China
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
8
|
Dell’Orco D, Koch KW. Fingerprints of Calcium-Binding Protein Conformational Dynamics Monitored by Surface Plasmon Resonance. ACS Chem Biol 2016; 11:2390-7. [PMID: 27380526 DOI: 10.1021/acschembio.6b00470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface plasmon resonance (SPR) spectroscopy is widely used to probe interactions involving biological macromolecules by detecting changes in the refractive index in a metal/dielectric interface following the dynamic formation of a molecular complex. In past years, SPR-based experimental approaches were developed to monitor conformational changes induced by the binding of small analytes to proteins coupled to the surface of commercially available sensor chips. A significant contribution to our understanding of the phenomenon came from the study of several Ca(2+)-sensor proteins operating in diverse cellular scenarios, in which the conformational switch is triggered by specific Ca(2+) signals. Structural and physicochemical analyses demonstrated that the SPR signal not only depends on the change in protein size upon Ca(2+)-binding but likely originates from variations in the hydration shell structure. The resulting changes in the dielectric properties of water or of the protein-water interface eventually reflect different crowding conditions on the SPR sensor chip, which mimic the cellular environment. SPR could hence be used to monitor conformational transitions in proteins, especially when a significant variation in the hydrophobicity of the solvent-exposed protein surface occurs, thus leading to changes in the dielectric milieu of the whole sensor chip surface. We review recent work in which SPR has been successfully employed to provide a fingerprint of the conformational change dynamics in proteins under native and altered conditions, which include post-translational modifications, copresence of competing analytes, and point mutations of single amino acids associated with genetic diseases.
Collapse
Affiliation(s)
- Daniele Dell’Orco
- Department
of Neurosciences, Biomedicine and Movement Sciences, Section of Biological
Chemistry, University of Verona, I-37134 Verona, Italy
| | - Karl-Wilhelm Koch
- Department
of Neurosciences, Biochemistry Group, University of Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
9
|
Surface plasmon resonance: a versatile technique for biosensor applications. SENSORS 2015; 15:10481-510. [PMID: 25951336 PMCID: PMC4481982 DOI: 10.3390/s150510481] [Citation(s) in RCA: 606] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 02/07/2023]
Abstract
Surface plasmon resonance (SPR) is a label-free detection method which has emerged during the last two decades as a suitable and reliable platform in clinical analysis for biomolecular interactions. The technique makes it possible to measure interactions in real-time with high sensitivity and without the need of labels. This review article discusses a wide range of applications in optical-based sensors using either surface plasmon resonance (SPR) or surface plasmon resonance imaging (SPRI). Here we summarize the principles, provide examples, and illustrate the utility of SPR and SPRI through example applications from the biomedical, proteomics, genomics and bioengineering fields. In addition, SPR signal amplification strategies and surface functionalization are covered in the review.
Collapse
|
10
|
Borrebaeck CAK, Wingren C. High-throughput proteomics using antibody microarrays: an update. Expert Rev Mol Diagn 2014; 7:673-86. [PMID: 17892372 DOI: 10.1586/14737159.7.5.673] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Antibody-based microarrays are a rapidly emerging technology that has advanced from the first proof-of-concept studies to demanding serum protein profiling applications during recent years, displaying great promise within disease proteomics. Miniaturized micro- and nanoarrays can be fabricated with an almost infinite number of antibodies carrying the desired specificities. While consuming only minute amounts of reagents, multiplexed and ultrasensitive assays can be performed targeting high- as well as low-abundance analytes in complex nonfractionated proteomes. The microarray images generated can then be converted into protein expression profiles or protein atlases, revealing a detailed composition of the sample. The technology will provide unique opportunities for fields such as disease diagnostics, biomarker discovery, patient stratification, predicting disease recurrence and drug target discovery. This review describes an update of high-throughput proteomics, using antibody-based microarrays, focusing on key technological advances and novel applications that have emerged over the last 3 years.
Collapse
Affiliation(s)
- Carl A K Borrebaeck
- Lund University, Department of Immunotechnology & CREATE Health, BMC D13, SE-221 84 Lund, Sweden.
| | | |
Collapse
|
11
|
Cawley K, Logue SE, Gorman AM, Zeng Q, Patterson J, Gupta S, Samali A. Disruption of microRNA biogenesis confers resistance to ER stress-induced cell death upstream of the mitochondrion. PLoS One 2013; 8:e73870. [PMID: 23977393 PMCID: PMC3747093 DOI: 10.1371/journal.pone.0073870] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 07/29/2013] [Indexed: 01/08/2023] Open
Abstract
Global downregulation of microRNAs (miRNAs) is a common feature of human tumors and has been shown to enhance cancer progression. Several components of the miRNA biogenesis machinery (XPO5, DICER and TRBP) have been shown to act as haploinsufficient tumor suppressors. How the deregulation of miRNA biogenesis promotes tumor development is not clearly understood. Here we show that loss of miRNA biogenesis increased resistance to endoplasmic reticulum (ER) stress-induced cell death. We observed that HCT116 cells with a DICER hypomorphic mutation (Exn5/Exn5) or where DICER or DROSHA were knocked down were resistant to ER stress-induced cell death. Extensive analysis revealed little difference in the unfolded protein response (UPR) of WT compared to Exn5/Exn5 HCT116 cells upon ER stress treatment. However, analysis of the intrinsic apoptotic pathway showed that resistance occurred upstream of the mitochondria. In particular, BAX activation and dissipation of mitochondrial membrane potential was attenuated, and there was altered expression of BCL-2 family proteins. These observations demonstrate a key role for miRNAs as critical modulators of the ER stress response. In our model, downregulation of miRNA biogenesis delays ER stress-induced apoptosis. This suggests that disrupted miRNA biogenesis may contribute to cancer progression by inhibiting ER stress-induced cell death.
Collapse
Affiliation(s)
- Karen Cawley
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
- School of Natural Sciences National University of Ireland, Galway, Ireland
| | - Susan E. Logue
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
- School of Natural Sciences National University of Ireland, Galway, Ireland
| | - Adrienne M. Gorman
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
- School of Natural Sciences National University of Ireland, Galway, Ireland
| | - Qingping Zeng
- MannKind Corporation, Valencia, California, United States of America
| | - John Patterson
- MannKind Corporation, Valencia, California, United States of America
| | - Sanjeev Gupta
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
- School of Medicine, Clinical Science Institute, National University of Ireland, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
- School of Natural Sciences National University of Ireland, Galway, Ireland
- * E-mail:
| |
Collapse
|
12
|
D’Agata R, Spoto G. Surface Plasmon Resonance-Based Methods. DETECTION OF NON-AMPLIFIED GENOMIC DNA 2012. [DOI: 10.1007/978-94-007-1226-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
13
|
Sagle LB, Ruvuna LK, Ruemmele JA, Van Duyne RP. Advances in localized surface plasmon resonance spectroscopy biosensing. Nanomedicine (Lond) 2011; 6:1447-62. [DOI: 10.2217/nnm.11.117] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In recent years, localized surface plasmon resonance (LSPR) spectroscopy advancements have made it a sensitive, flexible tool for probing biological interactions. Here, we describe the basic principles of this nanoparticle-based sensing technique, the ways nanoparticles can be tailored to optimize sensing, and examples of novel LSPR spectroscopy applications. These include detecting small molecules via protein conformational changes and resonance LSPR spectroscopy, as well as coupling LSPR with mass spectrometry to identify bound analytes. The last few sections highlight the advantages of single nanoparticle LSPR, in that it lowers limits of detection, allows multiplexing on the nanometer scale, and enables free diffusion of sensors in solution. The cases discussed herein illustrate creative ways that LSPR spectroscopy has been improved to achieve new sensing capabilities.
Collapse
Affiliation(s)
- Laura B Sagle
- Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, IL 60208-3113 USA
| | - Laura K Ruvuna
- Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, IL 60208-3113 USA
| | - Julia A Ruemmele
- Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, IL 60208-3113 USA
| | | |
Collapse
|
14
|
Linman MJ, Abbas A, Roberts CC, Cheng Q. Etched glass microarrays with differential resonance for enhanced contrast and sensitivity of surface plasmon resonance imaging analysis. Anal Chem 2011; 83:5936-43. [PMID: 21711025 PMCID: PMC3146635 DOI: 10.1021/ac200881q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the fabrication and characterization of gold-coated etched glass array substrates for surface plasmon resonance imaging (SPRi) analysis with significantly enhanced performance, in particular image contrast and sensitivity. The etching of the glass substrate induces a variation in the resonance condition and thus in the resonance angle between the etched wells and the surrounding area, leading to the isolation of the array spot resonance with a significant reduction of the background signal. FDTD simulations show arrays with large spots and minimal spot-to-spot spacing yield ideal differential resonance conditions, which are verified by experimental results. Simulations also indicate the etched well structure exhibits enhanced SPR electric field intensity by 3-fold as compared to standard planar gold chips. Changes in the bulk sensitivity of the etched arrays have been obtained at the 10(-4) RIU level based on image intensity difference. The strong image contrast allows for improved microarray imaging analysis with easily distinguished signals from background resonance. The etched array chips are demonstrated for SPRi detection of bacterial toxins through the coating of an ultrathin SiO(2) film for direct vesicle fusion that establishes a supported membrane-based biosensing interface. Protein detection with cholera toxin (CT) at 5 nM is obtained, making this chip one of the most sensitive SPR imaging substrates ever reported without a postbinding amplification scheme. Furthermore, the surface can be regenerated by Triton X-100 for repeated cycles of membrane formation, protein binding, and biomolecular removal. The reusability and enhanced performance of the etched glass array chips should find a broad range of applications, opening up new avenues for high-throughput SPR imaging detection with convenience and marked surface sensitivity.
Collapse
Affiliation(s)
- Matthew J. Linman
- Department of Chemistry, University of California, Riverside, California 92521
| | - Abdennour Abbas
- Department of Chemistry, University of California, Riverside, California 92521
| | | | - Quan Cheng
- Department of Chemistry, University of California, Riverside, California 92521
| |
Collapse
|
15
|
Abbas A, Linman MJ, Cheng Q. Patterned resonance plasmonic microarrays for high-performance SPR imaging. Anal Chem 2011; 83:3147-52. [PMID: 21417424 PMCID: PMC3093414 DOI: 10.1021/ac200190b] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report a novel optical platform based on SPR generation and confinement inside a defined three-dimensional microwell geometry that leads to background resonance-free SPR images. The array shows an exceptionally high signal-to-noise ratio (S/N > 80) for imaging analysis and subnanometric thickness resolution. An angular sensitivity of 1°/0.01 RIU has been achieved and the signal to background ratio (S/B) improves to 20, 1 order of magnitude higher than that of the best literature results. The design proves effective for probing-supported lipid membrane arrays in real time with a thickness resolution of 0.24 nm and allows for imaging analysis of microfluidic circuits where resonant spots are separated by only one pixel (∼7 μm). The high image quality and unique chip geometry open up new avenues for array screening and biomicrofluidics using SPRi detection.
Collapse
Affiliation(s)
- Abdennour Abbas
- Department of Chemistry, University of California, Riverside, California 92521
| | - Matthew J. Linman
- Department of Chemistry, University of California, Riverside, California 92521
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, California 92521
| |
Collapse
|
16
|
Keyes KT, Ye Y, Lin Y, Zhang C, Perez-Polo JR, Gjorstrup P, Birnbaum Y. Resolvin E1 protects the rat heart against reperfusion injury. Am J Physiol Heart Circ Physiol 2010; 299:H153-64. [PMID: 20435846 DOI: 10.1152/ajpheart.01057.2009] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The purpose of the present study was to assess whether resolvin E1 (RvE1), an anti-inflammatory mediator derived from eicosapentaenoic acid, would limit myocardial infarct size in the rat. The H9c2 cell line was used to assess whether RvE1 has direct protective effects on cardiomyocytes. In in vivo experiments, Male Sprague-Dawley rats underwent 30 min of ischemia/4 h of reperfusion. Before reperfusion, rats received intravenous RvE1 (0, 0.03, 0.1, or 0.3mg/kg). In in vitro experiments, H9c2 cells were incubated with RvE1 (0, 1, 10, 100, or 1000 nM). Cells were subjected to 18 h of incubation under normoxic conditions, 16 h of hypoxia, or 16 h of hypoxia and 2 h of reoxygenation. In vivo, RvE1 dose dependently reduced infarct size (30.7 +/- 1.7% of the area at risk in the control group and 29.1 +/- 1.6%, 14.7 +/- 1.3%, and 9.0 +/- 0.6% in the 0.03, 0.1, and 0.3 mg/kg groups, respectively, P < 0.001). In vitro, RvE1 increased viability and decreased apoptosis in a dose-dependent fashion in cells exposed to hypoxia or hypoxia/reoxygenation. A maximal effect was achieved at a concentration of 100 nM. RvE1 augmented phosphoinositide 3-kinase activity, attenuated caspase-3 activity, and augmented calcium-dependent nitric oxide synthase activity in cells exposed to hypoxia or hypoxia/reoxygenation. RvE1 increased Akt, ERK1/2, and endothelial nitric oxide synthase phosphorylation and attenuated the levels of activated caspase-3 and phosphorylated p38 levels. AG-1478, an EGF receptor tyrosine kinase inhibitor, blocked the protective effect of RvE1 both in vivo and in vitro and attenuated the RvE1-induced increase in Akt and ERK1/2 phosphorylation. In conclusion, RvE1, an anti-inflammatory mediator derived from eicosapentaenoic acid, has a direct protective effect on cardiomyocytes against ischemia-reperfusion injury and limits infarct size when administered intravenously before reperfusion.
Collapse
Affiliation(s)
- K T Keyes
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Antibody-based microarrays are a new powerful proteomic technology that can be used to generate rapid and detailed expression profiles of defined sets of protein analytes in complex samples as well as high-resolution portraits of entire proteomes. Miniaturized micro- and nanoarrays can be printed with numerous antibodies carrying the desired specificities. Multiplexed and ultra-sensitive assays, specifically targeting several analytes in a single experiment, can be performed, while consuming only minute amounts of the sample. The array images generated can then be converted into protein expression profiles, or maps, revealing the detailed composition of the sample. This promising proteomic research tool will thus provide unique opportunities for e.g. disease proteomics, biomarker discovery, disease diagnostics, and patient stratification. This review describes the antibody-based microarray technology and applications thereof.
Collapse
|
18
|
Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 2008; 135:1074-84. [PMID: 19062087 DOI: 10.1016/j.cell.2008.11.010] [Citation(s) in RCA: 451] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 09/15/2008] [Accepted: 11/04/2008] [Indexed: 01/04/2023]
Abstract
In normal circumstances, the Bcl-2 family dutifully governs when cells die. However, the rules of engagement between the pro- and antiapoptotic family members are still contested, and how Bax is transformed from a cytosolic monomer to an outer mitochondrial membrane-permeabilizing oligomer is unclear. With fluorescence techniques and an in vitro system, the combination of tBid and Bax produced dramatic membrane permeabilization. The membrane is not a passive partner in this process beause membranes are required for the protein-protein interactions to occur. Simultaneous measurements of these interactions revealed an ordered series of steps required for outer membrane permeabilization: (1) tBid rapidly binds to membranes, where (2) tBid interacts with Bax, causing (3) Bax insertion into membranes and (4) oligomerization, culminating in (5) membrane permeabilization. Bcl-XL prevents membrane-bound tBid from binding Bax. Bad releases tBid from Bcl-XL, restoring both tBid binding to Bax and membrane permeabilization.
Collapse
|
19
|
Enzyme solid-state support assays: a surface plasmon resonance and mass spectrometry coupled study of immobilized insulin degrading enzyme. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:407-14. [DOI: 10.1007/s00249-008-0384-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 11/06/2008] [Accepted: 11/11/2008] [Indexed: 02/02/2023]
|
20
|
Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging. Biosens Bioelectron 2008; 24:606-12. [DOI: 10.1016/j.bios.2008.06.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 04/18/2008] [Accepted: 06/04/2008] [Indexed: 11/22/2022]
|
21
|
Ji HF, Gao H, Buchapudi KR, Yang X, Xu X, Schulte MK. Microcantilever biosensors based on conformational change of proteins. Analyst 2008; 133:434-43. [PMID: 18365110 DOI: 10.1039/b713330h] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microcantilevers (MCLs) hold a position as a cost-effective and highly sensitive sensor platform for medical diagnostics, environmental analysis and fast throughput analysis. MCLs are unique in that adsorption of analytes on the microcantilever (MCL) surface changes the surface characteristics of the MCL and results in bending of the MCL. Surface stress due to conformation change of proteins and other polymers has been a recent focus of MCL research. Since conformational changes in proteins can be produced through binding of anylates at specific receptor sites, MCLs that respond to conformational change induced surface stress are promising as transducers of chemical information and are ideal for developing microcantilever-based biosensors. The MCL can also potentially be used to investigate conformational change of proteins induced by non-binding events such as post-translational modification and changes in temperature or pH. This review will provide an overview of MCL biosensors based on conformational change of proteins bound to the MCL surface. The models include conformational change of proteins, proteins on membranes, enzymes, DNA and other polymers.
Collapse
Affiliation(s)
- Hai-Feng Ji
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA.
| | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Skommer J, Wlodkowic D, Deptala A. Larger than life: Mitochondria and the Bcl-2 family. Leuk Res 2007; 31:277-86. [PMID: 16911824 DOI: 10.1016/j.leukres.2006.06.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Revised: 06/04/2006] [Accepted: 06/16/2006] [Indexed: 01/09/2023]
Abstract
The intrinsic pathway of apoptosis relies on mitochondrial membrane permeabilization, with Bcl-2 proteins serving as its master regulators. They form a complex network of interactions both within the family and with multiple cellular factors outside the family. The understanding of the processes that regulate mitochondrial breach, and mechanisms that direct the pro- and anti-apoptotic functions of Bcl-2 proteins, should assist the development of novel anticancer therapies. Thus, it is of no surprise that research in the field is gaining momentum. In this review we outline the current concepts on regulatory circuits governing mitochondrial rupture and action of Bcl-2 proteins during cell death, and how this burgeoning knowledge is being translated into the clinics with the hope to combat cancer.
Collapse
Affiliation(s)
- Joanna Skommer
- Department of Clinical Sciences, University of Kuopio, Harjulantie 1 C, 70211 Kuopio, Finland.
| | | | | |
Collapse
|
24
|
Matsui Y, Ueda S, Watanabe J, Kuwabara I, Ogawa O, Nishiyama H. Sensitizing effect of galectin-7 in urothelial cancer to cisplatin through the accumulation of intracellular reactive oxygen species. Cancer Res 2007; 67:1212-20. [PMID: 17283157 DOI: 10.1158/0008-5472.can-06-3283] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To improve chemotherapeutic efficacy in urothelial cancer, it is important to identify predictive markers for chemosensitivity as well as possible molecules accelerating cell killing mechanisms. In this study, we assessed the possibility of galectin-7 to accelerate cis-diamminedichloroplatinum (CDDP)-induced cell killing in vitro and also to predict chemosensitivity against CDDP in urothelial cancer patients. The expression of galectin-7 was analyzed in five bladder cancer cell lines with different p53 status after treatment with CDDP. The roles of galectin-7 in chemosensitivity against CDDP were analyzed by transfection of the galectin-7 gene into several of these cell lines. Furthermore, the relationship between the expression of galectin-7 and the response to neoadjuvant chemotherapy was analyzed in 17 human bladder cancer specimens. Exposure to CDDP induced galectin-7 in cell lines with wild-type p53 but not in those with mutated p53. When the galectin-7 gene was transfected into cell lines with mutated p53, the sensitivity to CDDP increased compared with control transfectants. In addition, galectin-7-transfected cells exhibited more accumulation of intracellular reactive oxygen species and activation of c-Jun NH(2)-terminal kinase (JNK) and Bax than control transfectants. SP600125, an inhibitor of JNK, or antioxidant N-acetyl-L-cysteine inhibited the enhancement of chemosensitivity against CDDP by galectin-7 transfection. In clinical samples, the expression levels of galectin-7 were significantly lower in urothelial carcinomas compared with normal urothelium. When chemosensitivity was tested, its expression levels were higher in the chemosensitive group than in the chemoresistant group. Galectin-7 is a candidate for a predictive marker of chemosensitivity against CDDP, and the targeted expression of galectin-7 might overcome the chemoresistance of urothelial cancer.
Collapse
Affiliation(s)
- Yoshiyuki Matsui
- Department of Urology, Kyoto University, Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan 606-8507
| | | | | | | | | | | |
Collapse
|
25
|
SPR imaging as a tool for detecting mucin – anti-mucin interaction. Outline of the development of a sensor for near-patient testing for mucin. Mikrochim Acta 2007. [DOI: 10.1007/s00604-006-0698-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Chinowsky TM, Grow MS, Johnston KS, Nelson K, Edwards T, Fu E, Yager P. Compact, high performance surface plasmon resonance imaging system. Biosens Bioelectron 2006; 22:2208-15. [PMID: 17150350 PMCID: PMC1896101 DOI: 10.1016/j.bios.2006.10.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 10/16/2006] [Accepted: 10/23/2006] [Indexed: 01/16/2023]
Abstract
We report the construction and characterization of a new compact surface plasmon resonance imaging instrument. Surface plasmon resonance imaging is a versatile technique for detection, quantification and visualization of biomolecular binding events which have spatial structure. The imager uses a folded light path, wide-field optics and a tilted detector to implement a high performance optical system in a volume 7 in. x 4 in. x 2 in. A bright diode light source and an image detector with fast frame rate and integrated digital signal processor enable real-time averaging of multiple images for improved signal-to-noise ratio. Operating angle of the imager is adjusted by linear translation of the light source. Imager performance is illustrated using resolution test targets, refractive index test solutions, and competition assays for the antiepileptic drug phenytoin. Microfluidic flowcells are used to enable simultaneous assay of three sample streams. Noise level of refractive index measurements was found to decrease proportional to the square root of the number of pixels averaged, reaching approximately 5 x 10(-7) refractive index units root-mean-square for 160 x 120 pixels image regions imaged for 1s. The simple, compact construction and high performance of the imager will allow the device to be readily applied to a wide range of applications.
Collapse
|
27
|
Moaddel R, Wainer IW. Conformational mobility of immobilized proteins. J Pharm Biomed Anal 2006; 43:399-406. [PMID: 17095178 DOI: 10.1016/j.jpba.2006.08.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 08/20/2006] [Indexed: 11/15/2022]
Abstract
Cellular membrane fragments have been immobilized on the surface of a silica-based liquid chromatographic support and on the surface of glass capillaries to create immobilized receptor and drug transporter columns. These columns have included phases containing one subtype of the nicotinic receptor (alpha3beta2, alpha3beta4, alpha4beta2, alpha4beta4) and the P-glycoprotein transporter. A key question in the application of these columns to drug discovery and development is the ability of the immobilized receptor or transporter to undergo ligand and/or co-factor induced conformational changes. Using frontal affinity chromatographic techniques and non-linear chromatographic techniques it has been demonstrated that the immobilized nicotinic receptors undergo agonist-induced conformational shifts from the resting to desensitized states with corresponding changes in binding affinities and enantioselectivities. Ligand-induced allosteric interactions and ATP-driven conformational changes have also been demonstrated with the immobilized Pgp stationary phase. The results demonstrate that the immobilized proteins retained their ability to undergo conformational mobility and that this is an attractive alternative to allow for the full characterization of multiple protein conformations.
Collapse
Affiliation(s)
- Ruin Moaddel
- Gerontology Research Center, National Institutes in Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825, USA.
| | | |
Collapse
|