1
|
Bokulić E, Medenica T, Bobić-Rasonja M, Milković-Periša M, Jovanov-Milošević N, Judaš M, Sedmak G. The expression of transcription factors in the human fetal subthalamic nucleus suggests its origin from the first hypothalamic prosomere. Brain Struct Funct 2025; 230:33. [PMID: 39831906 DOI: 10.1007/s00429-025-02893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
In this study, we analyzed the spatio-temporal pattern of expression of specific transcription factors (PITX2, FOXA1, BARHL1, FOXP1, FOXP2) in the human fetal subthalamic nucleus and its neighboring structures from 11 postconceptional weeks (PCW) to 3 postnatal months. We found that all analyzed transcription factors are expressed already during the early fetal period (at 11 PCW). Both FOXP1- and FOXP2-immunoreactive cells were found in the subthalamic nucleus as well as in the striatum, thalamus, reticular nucleus, but not in the zona incerta. FOXP2-ir cells were also found in the lateral hypothalamic-supramamillary area (LHA-SMA) and internal pallidal segment.On the other hand, PITX2, FOXA1 and BARHL1 were expressed exclusively in the subthalamic nucleus and LHA-SMA, from 11 PCW until the birth, the only exception being gradual loss of BARHL1 expression in the LHA-SMA during the late fetal period.Our findings present the first evidence in the human fetal brain that neurons of the subthalamic nucleus do not originate in the diencephalon, as was proposed by classical histological studies, but instead share a common hypothalamic (hp1 prosomere) origin with neurons of the LHA-SMA group, as proposed by the prosomeric model of brain development.
Collapse
Grants
- UIP-2017-05-7578 Hrvatska Zaklada za Znanost
- UIP-2017-05-7578 Hrvatska Zaklada za Znanost
- IP-2019-04-3182 Hrvatska Zaklada za Znanost
- IP-2019-04-3182 Hrvatska Zaklada za Znanost
- IP-2019-04-3182 Hrvatska Zaklada za Znanost
- UIP-2017-05-7578 Hrvatska Zaklada za Znanost
- UIP-2017-05-7578 Hrvatska Zaklada za Znanost
- KK.01.1.1.01.007 European Union through the European Regional Development Fund, Operational Program Competitiveness, and Cohesion
- KK.01.1.1.01.007 European Union through the European Regional Development Fund, Operational Program Competitiveness, and Cohesion
- KK.01.1.1.01.007 European Union through the European Regional Development Fund, Operational Program Competitiveness, and Cohesion
- KK.01.1.1.01.007 European Union through the European Regional Development Fund, Operational Program Competitiveness, and Cohesion
- KK.01.1.1.01.007 European Union through the European Regional Development Fund, Operational Program Competitiveness, and Cohesion
- KK.01.1.1.01.007 European Union through the European Regional Development Fund, Operational Program Competitiveness, and Cohesion
- KK.01.1.1.01.007 European Union through the European Regional Development Fund, Operational Program Competitiveness, and Cohesion
- 10106-22-3115 Sveučilište u Zagrebu
- 10106-22-3115 Sveučilište u Zagrebu
- 10106-22-3115 Sveučilište u Zagrebu
Collapse
Affiliation(s)
- Ema Bokulić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical, and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tila Medenica
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical, and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mihaela Bobić-Rasonja
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical, and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Milković-Periša
- Department of Pathology and Cytology, School of Medicine, University of Zagreb, University Hospital Center Zagreb, Zagreb, Croatia
| | - Nataša Jovanov-Milošević
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical, and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Miloš Judaš
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical, and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Scientific Centre of Excellence for Basic, Clinical, and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
2
|
Minto MS, Sotelo-Fonseca JE, Ramesh V, West AE. Genome binding properties of Zic transcription factors underlie their changing functions during neuronal maturation. BMC Biol 2024; 22:189. [PMID: 39218853 PMCID: PMC11367862 DOI: 10.1186/s12915-024-01989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The Zic family of transcription factors (TFs) promote both proliferation and maturation of cerebellar granule neurons (CGNs), raising the question of how a single, constitutively expressed TF family can support distinct developmental processes. Here we use an integrative experimental and bioinformatic approach to discover the regulatory relationship between Zic TF binding and changing programs of gene transcription during postnatal CGN differentiation. RESULTS We first established a bioinformatic pipeline to integrate Zic ChIP-seq data from the developing mouse cerebellum with other genomic datasets from the same tissue. In newborn CGNs, Zic TF binding predominates at active enhancers that are co-bound by developmentally regulated TFs including Atoh1, whereas in mature CGNs, Zic TF binding consolidates toward promoters where it co-localizes with activity-regulated TFs. We then performed CUT&RUN-seq in differentiating CGNs to define both the time course of developmental shifts in Zic TF binding and their relationship to gene expression. Mapping Zic TF binding sites to genes using chromatin looping, we identified the set of Zic target genes that have altered expression in RNA-seq from Zic1 or Zic2 knockdown CGNs. CONCLUSIONS Our data show that Zic TFs are required for both induction and repression of distinct, developmentally regulated target genes through a mechanism that is largely independent of changes in Zic TF binding. We suggest that the differential collaboration of Zic TFs with other TF families underlies the shift in their biological functions across CGN development.
Collapse
Affiliation(s)
- Melyssa S Minto
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, 27710, USA
- Omics, Epidemiology and Analytics Program, RTI International, Research Triangle Park, NC, 27709, USA
| | | | - Vijyendra Ramesh
- Department of Neurobiology, Duke University, Durham, NC, 27710, USA
| | - Anne E West
- Department of Neurobiology, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
3
|
Costes V, Sellem E, Marthey S, Hoze C, Bonnet A, Schibler L, Kiefer H, Jaffrezic F. Multi-omics data integration for the identification of biomarkers for bull fertility. PLoS One 2024; 19:e0298623. [PMID: 38394258 PMCID: PMC10890740 DOI: 10.1371/journal.pone.0298623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Bull fertility is an important economic trait, and the use of subfertile semen for artificial insemination decreases the global efficiency of the breeding sector. Although the analysis of semen functional parameters can help to identify infertile bulls, no tools are currently available to enable precise predictions and prevent the commercialization of subfertile semen. Because male fertility is a multifactorial phenotype that is dependent on genetic, epigenetic, physiological and environmental factors, we hypothesized that an integrative analysis might help to refine our knowledge and understanding of bull fertility. We combined -omics data (genotypes, sperm DNA methylation at CpGs and sperm small non-coding RNAs) and semen parameters measured on a large cohort of 98 Montbéliarde bulls with contrasting fertility levels. Multiple Factor Analysis was conducted to study the links between the datasets and fertility. Four methodologies were then considered to identify the features linked to bull fertility variation: Logistic Lasso, Random Forest, Gradient Boosting and Neural Networks. Finally, the features selected by these methods were annotated in terms of genes, to conduct functional enrichment analyses. The less relevant features in -omics data were filtered out, and MFA was run on the remaining 12,006 features, including the 11 semen parameters and a balanced proportion of each type of-omics data. The results showed that unlike the semen parameters studied the-omics datasets were related to fertility. Biomarkers related to bull fertility were selected using the four methodologies mentioned above. The most contributory CpGs, SNPs and miRNAs targeted genes were all found to be involved in development. Interestingly, fragments derived from ribosomal RNAs were overrepresented among the selected features, suggesting roles in male fertility. These markers could be used in the future to identify subfertile bulls in order to increase the global efficiency of the breeding sector.
Collapse
Affiliation(s)
- Valentin Costes
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
- R&D Department, ELIANCE, 149 rue de Bercy, Paris, France
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France
| | - Eli Sellem
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
- R&D Department, ELIANCE, 149 rue de Bercy, Paris, France
| | - Sylvain Marthey
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Chris Hoze
- R&D Department, ELIANCE, 149 rue de Bercy, Paris, France
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France
| | - Aurélie Bonnet
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
- R&D Department, ELIANCE, 149 rue de Bercy, Paris, France
| | | | - Hélène Kiefer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - Florence Jaffrezic
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France
| |
Collapse
|
4
|
Minto M, Sotelo-Fonseca JE, Ramesh V, West AE. Genome binding properties of Zic transcription factors underlie their changing functions during neuronal maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574185. [PMID: 38260638 PMCID: PMC10802290 DOI: 10.1101/2024.01.04.574185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background The Zic family of transcription factors (TFs) promote both proliferation and maturation of cerebellar granule neurons (CGNs), raising the question of how a single, constitutively expressed TF family can support distinct developmental processes. Here we use an integrative experimental and bioinformatic approach to discover the regulatory relationship between Zic TF binding and changing programs of gene transcription during CGN differentiation. Results We first established a bioinformatic pipeline to integrate Zic ChIP-seq data from the developing mouse cerebellum with other genomic datasets from the same tissue. In newborn CGNs, Zic TF binding predominates at active enhancers that are co-bound by developmentally-regulated TFs including Atoh1, whereas in mature CGNs, Zic TF binding consolidates toward promoters where it co-localizes with activity-regulated TFs. We then performed CUT&RUN-seq in differentiating CGNs to define both the time course of developmental shifts in Zic TF binding and their relationship to gene expression. Mapping Zic TF binding sites to genes using chromatin looping, we identified the set of Zic target genes that have altered expression in RNA-seq from Zic1 or Zic2 knockdown CGNs. Conclusion Our data show that Zic TFs are required for both induction and repression of distinct, developmentally regulated target genes through a mechanism that is largely independent of changes in Zic TF binding. We suggest that the differential collaboration of Zic TFs with other TF families underlies the shift in their biological functions across CGN development.
Collapse
Affiliation(s)
- Melyssa Minto
- Duke University, Program in Computational Biology and Bioinformatics, Durham, NC 27710
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC 27709
| | | | | | - Anne E. West
- Duke University, Department of Neurobiology, Durham, NC 27710
| |
Collapse
|
5
|
Lsd1 as a therapeutic target in Gfi1-activated medulloblastoma. Nat Commun 2019; 10:332. [PMID: 30659187 PMCID: PMC6338772 DOI: 10.1038/s41467-018-08269-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/21/2018] [Indexed: 01/22/2023] Open
Abstract
Drugs that modify the epigenome are powerful tools for treating cancer, but these drugs often have pleiotropic effects, and identifying patients who will benefit from them remains a major clinical challenge. Here we show that medulloblastomas driven by the transcription factor Gfi1 are exquisitely dependent on the enzyme lysine demethylase 1 (Kdm1a/Lsd1). We demonstrate that Lsd1 physically associates with Gfi1, and that these proteins cooperate to inhibit genes involved in neuronal commitment and differentiation. We also show that Lsd1 is essential for Gfi1-mediated transformation: Gfi1 proteins that cannot recruit Lsd1 are unable to drive tumorigenesis, and genetic ablation of Lsd1 markedly impairs tumor growth in vivo. Finally, pharmacological inhibitors of Lsd1 potently inhibit growth of Gfi1-driven tumors. These studies provide important insight into the mechanisms by which Gfi1 contributes to tumorigenesis, and identify Lsd1 inhibitors as promising therapeutic agents for Gfi1-driven medulloblastoma. Medulloblastoma is one of the most prevalent malignant brain tumors in children and has very poor prognosis. In this study, the authors show, using a mouse model of medulloblastoma, that Gfi1 promotes tumor growth by recruiting Lsd1, that this interaction inhibits genes involved in neuronal differentiation, and that Lsd1 may be a therapeutic target in Gfi1-activated tumors.
Collapse
|
6
|
Takeuchi M, Yamaguchi S, Sakakibara Y, Hayashi T, Matsuda K, Hara Y, Tanegashima C, Shimizu T, Kuraku S, Hibi M. Gene expression profiling of granule cells and Purkinje cells in the zebrafish cerebellum. J Comp Neurol 2016; 525:1558-1585. [DOI: 10.1002/cne.24114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/03/2016] [Accepted: 09/04/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Miki Takeuchi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology; Nagoya University; Nagoya Aichi 464-8601 Japan
| | - Shingo Yamaguchi
- Division of Biological Science, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Yoshimasa Sakakibara
- Division of Biological Science, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Takuto Hayashi
- Division of Biological Science, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Koji Matsuda
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology; Nagoya University; Nagoya Aichi 464-8601 Japan
- Division of Biological Science, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Yuichiro Hara
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies; Kobe Hyogo 650-0047 Japan
| | - Chiharu Tanegashima
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies; Kobe Hyogo 650-0047 Japan
| | - Takashi Shimizu
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology; Nagoya University; Nagoya Aichi 464-8601 Japan
- Division of Biological Science, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies; Kobe Hyogo 650-0047 Japan
| | - Masahiko Hibi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology; Nagoya University; Nagoya Aichi 464-8601 Japan
- Division of Biological Science, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| |
Collapse
|
7
|
Martinez-Lopez JE, Moreno-Bravo JA, Madrigal MP, Martinez S, Puelles E. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog. Front Neuroanat 2015; 9:12. [PMID: 25741244 PMCID: PMC4330881 DOI: 10.3389/fnana.2015.00012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/27/2015] [Indexed: 11/20/2022] Open
Abstract
In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral (DV) axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral (BL) domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the BL domain and demonstrated that the development of the BL domain highly depends on Shh.
Collapse
Affiliation(s)
- Jesus E Martinez-Lopez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez, Consejo Superior de Investigaciones Científicas (UMH-CSIC) Alicante, Spain
| | - Juan A Moreno-Bravo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez, Consejo Superior de Investigaciones Científicas (UMH-CSIC) Alicante, Spain
| | - M Pilar Madrigal
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez, Consejo Superior de Investigaciones Científicas (UMH-CSIC) Alicante, Spain
| | - Salvador Martinez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez, Consejo Superior de Investigaciones Científicas (UMH-CSIC) Alicante, Spain ; Instituto Murciano de Investigacion Biomedica IMIB-Arrixaca (CIBERSAM) Murcia, Spain
| | - Eduardo Puelles
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez, Consejo Superior de Investigaciones Científicas (UMH-CSIC) Alicante, Spain
| |
Collapse
|
8
|
Marzban H, Del Bigio MR, Alizadeh J, Ghavami S, Zachariah RM, Rastegar M. Cellular commitment in the developing cerebellum. Front Cell Neurosci 2015; 8:450. [PMID: 25628535 PMCID: PMC4290586 DOI: 10.3389/fncel.2014.00450] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/12/2014] [Indexed: 12/11/2022] Open
Abstract
The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Marc R Del Bigio
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada ; Department of Pathology, University of Manitoba Winnipeg, MB, Canada
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Robby M Zachariah
- Department of Biochemistry and Medical Genetics, University of Manitoba Winnipeg, MB, Canada ; Regenerative Medicine Program, University of Manitoba Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, University of Manitoba Winnipeg, MB, Canada ; Regenerative Medicine Program, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
9
|
Pshennikova ES, Voronina AS. Detection of the Xvent-2 transcription factor in early development of Xenopus laevis. Mol Biol 2008. [DOI: 10.1134/s0026893308060101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Barhl1 regulatory sequences required for cell-specific gene expression and autoregulation in the inner ear and central nervous system. Mol Cell Biol 2008; 28:1905-14. [PMID: 18212062 DOI: 10.1128/mcb.01454-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of the nervous system requires the concerted actions of multiple transcription factors, yet the molecular events leading to their expression remain poorly understood. Barhl1, a mammalian homeodomain transcription factor of the BarH class, is expressed by developing inner ear hair cells, cerebellar granule cells, precerebellar neurons, and collicular neurons. Targeted gene inactivation has demonstrated a crucial role for Barhl1 in the survival and/or migration of these sensory cells and neurons. Here we report the regulatory sequences of Barhl1 necessary for directing its proper spatiotemporal expression pattern in the inner ear and central nervous system (CNS). Using a transgenic approach, we have found that high-level and cell-specific expression of Barhl1 within the inner ear and CNS depends on both its 5' promoter and 3' enhancer sequences. Further transcriptional, binding, and mutational analyses of the 5' promoter have identified two homeoprotein binding motifs that can be occupied and activated by Barhl1. Moreover, proper Barhl1 expression in inner ear hair cells and cerebellar and precerebellar neurons requires the presence of Atoh1. Together, these data delineate useful Barhl1 regulatory sequences that direct strong and specific gene expression to inner ear hair cells and CNS sensory neurons, establish a role for autoregulation in the maintenance of Barhl1 expression, and identify Atoh1 as a key upstream regulator.
Collapse
|
11
|
Reig G, Cabrejos ME, Concha ML. Functions of BarH transcription factors during embryonic development. Dev Biol 2006; 302:367-75. [PMID: 17098224 DOI: 10.1016/j.ydbio.2006.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/06/2006] [Accepted: 10/05/2006] [Indexed: 10/24/2022]
Abstract
This paper reviews the developmental role of a group of homeobox-containing genes firstly described in the early nineties as critical factors regulating eye development in Drosophila. These genes received the name of BarH due to the Drosophila "Bar" mutant phenotype and, since then, vertebrate homologues (named BarH-like or Barhl) have been described in a number of species of fish, amphibians and mammals. During embryonic development, BarH/Barhl are expressed primarily in the central nervous system where they play essential roles in decisions of cell fate, migration and survival. Transcriptional regulation mediated by these proteins involves either repression or activation mechanisms. In Drosophila, BarH is involved in morphogenesis and fate determination of the eye and external sensory organs, in regional prepatterning of the notum, and in formation and specification of distal leg segments. Vertebrate Barhl shares some functional properties with the fly counterparts, such as the ability to interact with basic helix-loop-helix (bHLH) proneural proteins, and plays crucial roles during cell type specification within the retina, acquisition of commissural neuron identity in the spinal cord, migration of cerebellar cells, and in cell survival within the neural plate, cochlea and cerebellum.
Collapse
Affiliation(s)
- Germán Reig
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, Chile
| | | | | |
Collapse
|