1
|
Schumacher MA. Peripheral Neuroinflammation and Pain: How Acute Pain Becomes Chronic. Curr Neuropharmacol 2024; 22:6-14. [PMID: 37559537 PMCID: PMC10716877 DOI: 10.2174/1570159x21666230808111908] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 08/11/2023] Open
Abstract
The number of individuals suffering from severe chronic pain and its social and financial impact is staggering. Without significant advances in our understanding of how acute pain becomes chronic, effective treatments will remain out of reach. This mini review will briefly summarize how critical signaling pathways initiated during the early phases of peripheral nervous system inflammation/ neuroinflammation establish long-term modifications of sensory neuronal function. Together with the recruitment of non-neuronal cellular elements, nociceptive transduction is transformed into a pathophysiologic state sustaining chronic peripheral sensitization and pain. Inflammatory mediators, such as nerve growth factor (NGF), can lower activation thresholds of sensory neurons through posttranslational modification of the pain-transducing ion channels transient-receptor potential TRPV1 and TRPA1. Performing a dual role, NGF also drives increased expression of TRPV1 in sensory neurons through the recruitment of transcription factor Sp4. More broadly, Sp4 appears to modulate a nociceptive transcriptome including TRPA1 and other genes encoding components of pain transduction. Together, these findings suggest a model where acute pain evoked by peripheral injury-induced inflammation becomes persistent through repeated cycles of TRP channel modification, Sp4-dependent overexpression of TRP channels and ongoing production of inflammatory mediators.
Collapse
Affiliation(s)
- Mark A Schumacher
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, California, 94143 USA
| |
Collapse
|
2
|
Zhang SY, Gan X, Shen B, Jiang J, Shen H, Lei Y, Liang Q, Bai C, Huang C, Wu W, Guo Y, Song Y, Chen J. 6PPD and its metabolite 6PPDQ induce different developmental toxicities and phenotypes in embryonic zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131601. [PMID: 37182464 DOI: 10.1016/j.jhazmat.2023.131601] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
The automobile tire antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its quinone metabolite 6PPDQ have recently received much attention for their acute aquatic toxicity. The present study investigated the mechanistic developmental toxicity of 6PPD and 6PPDQ in embryonic zebrafish. Neither compound induced significant mortality but significantly decreased spontaneous embryo movement and heart rate. Both compounds induced malformations with different phenotypes; the 6PPD-exposed larvae manifested a myopia-like phenotype with a convex eyeball and fusion vessels, while the 6PPDQ-exposed embryonic zebrafish manifested enlarged intestine and blood-coagulated gut, activated neutrophils, and overexpressed enteric neurons. mRNA-Seq and quantitative real-time PCR assays showed that 6PPD- and 6PPDQ-induced distinct differential gene expression aligned with their toxic phenotype. 6PPD activated the retinoic acid metabolic gene cyp26a, but 6PPDQ activated adaptive cellular response to xenobiotics gene cyp1a. 6PPD suppressed the gene expression of the eye involved in retinoic acid metabolism, phototransduction, photoreceptor function and visual perception. In contrast, 6PPDQ perturbed genes involved in inward rectifier K+ and voltage-gated ion channels activities, K+ import across the plasma membrane, iron ion binding, and intestinal immune network for IgA production. The current study advances the present understanding the reason of why many fish species are so adversely impacted by 6PPD and 6PPDQ.
Collapse
Affiliation(s)
- Shu-Yun Zhang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China; School of Medicine, Taizhou University, Taizhou, 318000, PR China
| | - Xiufeng Gan
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Baoguo Shen
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Jian Jiang
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Huimin Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, PR China
| | - Yuhang Lei
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Qiuju Liang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Chenglian Bai
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Changjiang Huang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Wencan Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, PR China.
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Jiangfei Chen
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
3
|
Gu J, Guo L, Zhu Y, Qian L, Shi L, Zhang H, Ji G. Neurodevelopmental Toxicity of Emamectin Benzoate to the Early Life Stage of Zebrafish Larvae ( Danio rerio). Int J Mol Sci 2023; 24:ijms24043757. [PMID: 36835165 PMCID: PMC9964762 DOI: 10.3390/ijms24043757] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Emamectin benzoate (EMB) is a widely used pesticide and feed additive in agriculture and aquaculture. It easily enters the aquatic environment through various pathways, thus causing adverse effects on aquatic organisms. However, there are no systematic studies regarding the effects of EMB on the developmental neurotoxicity of aquatic organisms. Therefore, the aim of this study was to evaluate the neurotoxic effects and mechanisms of EMB at different concentrations (0.1, 0.25, 0.5, 1, 2, 4 and 8 μg/mL) using zebrafish as a model. The results showed that EMB significantly inhibited the hatching rate, spontaneous movement, body length, and swim bladder development of zebrafish embryos, as well as significantly increased the malformation rate of zebrafish larvae. In addition, EMB adversely affected the axon length of motor neurons in Tg (hb9: eGFP) zebrafish and central nervous system (CNS) neurons in Tg (HuC: eGFP) zebrafish and significantly inhibited the locomotor behavior of zebrafish larvae. Meanwhile, EMB induced oxidative damage and was accompanied by increasing reactive oxygen species in the brains of zebrafish larvae. In addition, gene expression involvement in oxidative stress-related (cat, sod and Cu/Zn-sod), GABA neural pathway-related (gat1, gabra1, gad1b, abat and glsa), neurodevelopmental-related (syn2a, gfap, elavl3, shha, gap43 and Nrd) and swim bladder development-related (foxa3, pbxla, mnx1, has2 and elovlla) genes was significantly affected by EMB exposure. In conclusion, our study shows that exposure to EMB during the early life stages of zebrafish significantly increases oxidative damage and inhibits early central neuronal development, motor neuron axon growth and swim bladder development, ultimately leading to neurobehavioral changes in juvenile zebrafish.
Collapse
Affiliation(s)
- Jie Gu
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Liguo Guo
- Innovation Center for Sustainable Forestry in Southen China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanhui Zhu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Lingling Qian
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lili Shi
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Huanchao Zhang
- Innovation Center for Sustainable Forestry in Southen China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (H.Z.); (G.J.)
| | - Guixiang Ji
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- Correspondence: (H.Z.); (G.J.)
| |
Collapse
|
4
|
Qiu L, Wei S, Yang Y, Zhang R, Ru S, Zhang X. Mechanism of bisphenol S exposure on color sensitivity of zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120670. [PMID: 36395908 DOI: 10.1016/j.envpol.2022.120670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Color vision, initiated from cone cells, is vitally essential for identifying environmental information in vertebrate. Although the retinotoxicity of bisphenol S (BPS) has been reported, data on the influence of BPS treatment on cone cells are scarce. In the present study, transgenic zebrafish (Danio rerio) labeling red and ultraviolet (UV) cones were exposed to BPS (0, 1, 10, and 100 μg/L) during the early stages of retinal development, to elucidate the mechanism underlying its retinal cone toxicity of BPS. The results showed that 10 and 100 μg/L BPS induced oxidative DNA damage, structural damage (decreased number of ribbon synapses), mosaic patterning disorder, and altered expression of genes involved in the phototransduction pathway in red and UV cones. Furthermore, BPS exposure also caused abnormal development of key neurons (retinal ganglion cells, optic nerve, and hypothalamus), responsible for transmitting the light-electrical signal to brain, and thereby resulted in inhibition of light-electrical signal transduction, finally diminishing the spectral sensitivity of zebrafish larvae to long- and short-type light signal at 5 day post fertilization. This study highlights the cone-toxicity of environmental relevant concentrations of BPS, and clarifies the mechanism of color vision impairment induced by BPS at the cellular level, updating the understanding of visual behavior driven by environmental factors.
Collapse
Affiliation(s)
- Liguo Qiu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Shuhui Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yixin Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Rui Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
5
|
Mafba and Mafbb regulate microglial colonization of zebrafish brain via controlling chemotaxis receptor expression. Proc Natl Acad Sci U S A 2022; 119:e2203273119. [PMID: 36122226 PMCID: PMC9522419 DOI: 10.1073/pnas.2203273119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Microglia are a subpopulation of macrophages residing in the central nervous system (CNS). Because microglial precursors/peripheral macrophages are born in peripheral hematopoietic tissues, the establishment of a microglia pool in the CNS involves two processes: colonization, the homing of macrophages from peripheral tissues to the CNS, and maturation, the differentiation of brain-colonizing macrophages into microglia. This study aims to investigate the molecular mechanisms underlying microglial colonization during early development. Utilizing a zebrafish model system, we show that Mafba and Mafbb, two zebrafish orthologs of mammalian MAFB essential for macrophage differentiation and phagocytosis, regulate microglial colonization of the brain via modulating the lysoPS-Gpr34a signaling pathway during early embryogenesis. Our findings reveal a previously unappreciated genetic mechanism involved in microglial colonization of the brain. Microglia are the central nervous system (CNS)–resident macrophages involved in neural inflammation, neurogenesis, and neural activity regulation. Previous studies have shown that naturally occurring neuronal apoptosis plays a critical role in regulating microglial colonization of the brain in zebrafish. However, the molecular signaling cascades underlying neuronal apoptosis-mediated microglial colonization and the regulation of these cascades remain undefined. Here, we show that basic leucine zipper (b-Zip) transcription factors, Mafba and Mafbb, two zebrafish orthologs of mammalian MAFB, are key regulators in neuronal apoptosis-mediated microglial colonization of the brain in zebrafish. We document that the loss of Mafba and Mafbb function perturbs microglial colonization of the brain. We further demonstrate that Mafba and Mafbb act cell-autonomously and cooperatively to orchestrate microglial colonization, at least in part, by regulating the expression of G protein–coupled receptor 34a (Gpr34a), which directs peripheral macrophage recruitment into the brain through sensing the lysophosphatidylserine (lysoPS) released by the apoptotic neurons. Our study reveals that Mafba and Mafbb regulate neuronal apoptosis-mediated microglial colonization of the brain in zebrafish via the lysoPS-Gpr34a pathway.
Collapse
|
6
|
The tissue-specificity associated region and motif of an emx2 downstream enhancer CNE2.04 in zebrafish. Gene Expr Patterns 2022; 45:119269. [PMID: 35970322 DOI: 10.1016/j.gep.2022.119269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/04/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Expression level of EMX2 plays an important role in the development of nervous system and cancers. CNE2.04, a conserved enhancer downstream of emx2, drives fluorescent protein expression in the similar pattern of emx2. METHODS CNE2.04 truncated or motif-mutated transgenic reporter plasmids were constructed and injected into the zebrafish fertilized egg with Tol2 mRNA at the unicellular stage of zebrafish eggs. The green fluorescence expression patterns were observed at 24, 48, and 72 hpf, and the fluorescence rates of different tissues were counted at 48 hpf. RESULTS Compared to CNE2.04, CNE2.04-R400 had comparable enhancer activity, while the tissue specificity of CNE2.04-L400 was obviously changed. Motif CCCCTC mutation obviously changed the enhancer activity, while motif CCGCTC mutations also changed it. CONCLUSION Due to their correlation with tissue specificity, CNE2.04-R400 is associated with the tissue-specificity of CNE2.04, and motif CCCCTC plays an important role in the enhancer activity of CNE2.04.
Collapse
|
7
|
Sheehan K, Lee J, Chong J, Zavala K, Sharma M, Philipsen S, Maruyama T, Xu Z, Guan Z, Eilers H, Kawamata T, Schumacher M. Transcription factor Sp4 is required for hyperalgesic state persistence. PLoS One 2019; 14:e0211349. [PMID: 30811405 PMCID: PMC6392229 DOI: 10.1371/journal.pone.0211349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
Understanding how painful hypersensitive states develop and persist beyond the initial hours to days is critically important in the effort to devise strategies to prevent and/or reverse chronic painful states. Changes in nociceptor transcription can alter the abundance of nociceptive signaling elements, resulting in longer-term change in nociceptor phenotype. As a result, sensitized nociceptive signaling can be further amplified and nocifensive behaviors sustained for weeks to months. Building on our previous finding that transcription factor Sp4 positively regulates the expression of the pain transducing channel TRPV1 in Dorsal Root Ganglion (DRG) neurons, we sought to determine if Sp4 serves a broader role in the development and persistence of hypersensitive states in mice. We observed that more than 90% of Sp4 staining DRG neurons were small to medium sized, primarily unmyelinated (NF200 neg) and the majority co-expressed nociceptor markers TRPV1 and/or isolectin B4 (IB4). Genetically modified mice (Sp4+/-) with a 50% reduction of Sp4 showed a reduction in DRG TRPV1 mRNA and neuronal responses to the TRPV1 agonist-capsaicin. Importantly, Sp4+/- mice failed to develop persistent inflammatory thermal hyperalgesia, showing a reversal to control values after 6 hours. Despite a reversal of inflammatory thermal hyperalgesia, there was no difference in CFA-induced hindpaw swelling between CFA Sp4+/- and CFA wild type mice. Similarly, Sp4+/- mice failed to develop persistent mechanical hypersensitivity to hind-paw injection of NGF. Although Sp4+/- mice developed hypersensitivity to traumatic nerve injury, Sp4+/- mice failed to develop persistent cold or mechanical hypersensitivity to the platinum-based chemotherapeutic agent oxaliplatin, a non-traumatic model of neuropathic pain. Overall, Sp4+/- mice displayed a remarkable ability to reverse the development of multiple models of persistent inflammatory and neuropathic hypersensitivity. This suggests that Sp4 functions as a critical control point for a network of genes that conspire in the persistence of painful hypersensitive states.
Collapse
Affiliation(s)
- Kayla Sheehan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Jessica Lee
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Jillian Chong
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Kathryn Zavala
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Manohar Sharma
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tomoyuki Maruyama
- Department of Anesthesiology, Wakayama Medical University, Wakayama, Japan
| | - Zheyun Xu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Helge Eilers
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Tomoyuki Kawamata
- Department of Anesthesiology, Wakayama Medical University, Wakayama, Japan
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Wu X, Shen W, Zhang B, Meng A. The genetic program of oocytes can be modified in vivo in the zebrafish ovary. J Mol Cell Biol 2018; 10:479-493. [PMID: 30060229 DOI: 10.1093/jmcb/mjy044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/28/2018] [Indexed: 12/23/2022] Open
Abstract
Oocytes, the irreplaceable gametes for generating a new organism, are matured in the ovary of living female animals. It is unknown whether any genetic manipulations can be applied to immature oocytes inside the living ovaries. As a proof-of-concept, we here demonstrate genetic amendments of zebrafish immature oocytes within the ovary. Oocyte microinjection in situ (OMIS) stimulates tissue repair responses, but some of the microinjected immature oocytes are matured, ovulated and fertilizable. By OMIS-mediated Cas9 approach, ntla and gata5 loci of oocytes arrested at prophase I of meiosis are successfully edited before fertilization. Through OMIS, high efficiency of biallelic mutations in single or multiple loci using Cas9/gRNAs allows immediate manifestation of mutant phenotypes in F0 embryos and multiple transgenes can co-express the reporters in F0 embryos with patterns similar to germline transgenic embryos. Furthermore, maternal knockdown of dnmt1 by antisense morpholino via OMIS results in a dramatic decrease of global DNA methylation level at the dome stage and causes embryonic lethality prior to segmentation period. Therefore, OMIS opens a door to efficiently modify the genome and provides a possibility to repair genetically abnormal oocytes in situ.
Collapse
Affiliation(s)
- Xiaotong Wu
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bingjie Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
9
|
Xu J, Wang T, Wu Y, Jin W, Wen Z. Microglia Colonization of Developing Zebrafish Midbrain Is Promoted by Apoptotic Neuron and Lysophosphatidylcholine. Dev Cell 2016; 38:214-22. [PMID: 27424497 DOI: 10.1016/j.devcel.2016.06.018] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/13/2016] [Accepted: 06/15/2016] [Indexed: 02/08/2023]
Abstract
Microglia are CNS-resident macrophages and play important roles in neural development and function. However, how microglial precursors born in peripheral tissues colonize the CNS remains undefined. Using in vivo imaging and genetic manipulation of zebrafish, we showed that microglial precursors enter the optic tectum of the midbrain, where the majority of microglia reside during early development, via the lateral periphery between the eyes and brain and the ventral periphery of the brain in a circulation-independent manner. The colonization of the optic tectum by microglial precursors is dynamic and driven by apoptotic neuronal death, which occurs naturally in the midbrain during neurogenesis. We further show that lysophosphatidylcholine, a phospholipid known to be released from apoptotic cells, can promote microglial precursor entry into the brain via its cognate receptors grp132b. Our study reveals that microglia colonization of developing zebrafish midbrain is triggered by apoptotic neuronal death, possibly via releasing lysophosphatidylcholine.
Collapse
Affiliation(s)
- Jin Xu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Tienan Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Yi Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Wan Jin
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China.
| |
Collapse
|
10
|
Wang C, Chen X, Shi W, Wang F, Du Z, Li X, Yao Y, Liu T, Shao T, Li G, Hao A. 2-Bromopalmitate impairs neural stem/progenitor cell proliferation, promotes cell apoptosis and induces malformation in zebrafish embryonic brain. Neurotoxicol Teratol 2015; 50:53-63. [DOI: 10.1016/j.ntt.2015.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/15/2015] [Accepted: 06/01/2015] [Indexed: 01/13/2023]
|
11
|
Roy NM, DeWolf S, Schutt A, Wright A, Steele L. Neural alterations from lead exposure in zebrafish. Neurotoxicol Teratol 2014; 46:40-8. [DOI: 10.1016/j.ntt.2014.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 12/21/2022]
|
12
|
Watanabe T, Aonuma H. Tissue-specific promoter usage and diverse splicing variants of found in neurons, an ancestral Hu/ELAV-like RNA-binding protein gene of insects, in the direct-developing insect Gryllus bimaculatus. INSECT MOLECULAR BIOLOGY 2014; 23:26-41. [PMID: 24382152 DOI: 10.1111/imb.12057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Hu/ELAV-like RNA-binding proteins (RBPs) are involved in the post-transcriptional regulation of RNA metabolism including splicing, transport, translational control and turnover. The Hu/ELAV-like RBP genes are predominantly expressed in neurons, and are therefore used as common neuronal markers in many animals. Although the expression patterns and functions of the Hu/ELAV-like RBP genes have been extensively studied in the model insect Drosophila melanogaster, little is known in basal direct-developing insects. In the present study, we performed an identification and expression analysis of the found in neurons (fne) gene, an ancestral insect Hu/ELAV-like RBP gene, in the cricket Gryllus bimaculatus. Contrary to expectation that the Gryllus fne transcript would be predominantly expressed in the nervous system, expression analysis revealed that the Gryllus fne gene is expressed broadly. In addition, we discovered that alternative promoter usage directs tissue-specific and embryonic stage-dependent regulation of fne expression, and that alternative splicing contributes to the generation of diverse sets of fne transcripts. Our data provide novel insights into the evolutionary diversification of the Hu/ELAV-like RBP gene family in insects.
Collapse
Affiliation(s)
- T Watanabe
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
13
|
Abstract
The sense of touch allows an organism to detect and respond to physical environmental stimuli. Mechanosensitive proteins play a crucial role in this process by converting the mechanical cue into a biological response. Recently, the Piezo family of stretch-activated ion channels has been identified as genuine mechanosensitive proteins. We set out to determine whether any of these genes are involved in touch response during zebrafish development. In situ hybridization indicates that piezo2b is specifically expressed in a subset of neurons (Rohon-Beard cells) responsible for detecting light touch. Using morpholino-mediated knockdown, we specifically targeted piezo2b and determined that it is involved in mediating touch-evoked response.
Collapse
|
14
|
Antoine TE, Jones KS, Dale RM, Shukla D, Tiwari V. Zebrafish: modeling for herpes simplex virus infections. Zebrafish 2013; 11:17-25. [PMID: 24266790 DOI: 10.1089/zeb.2013.0920] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
For many years, zebrafish have been the prototypical model for studies in developmental biology. In recent years, zebrafish has emerged as a powerful model system to study infectious diseases, including viral infections. Experiments conducted with herpes simplex virus type-1 in adult zebrafish or in embryo models are encouraging as they establish proof of concept with viral-host tropism and possible screening of antiviral compounds. In addition, the presence of human homologs of viral entry receptors in zebrafish such as 3-O sulfated heparan sulfate, nectins, and tumor necrosis factor receptor superfamily member 14-like receptor bring strong rationale for virologists to test their in vivo significance in viral entry in a zebrafish model and compare the structure-function basis of virus zebrafish receptor interaction for viral entry. On the other end, a zebrafish model is already being used for studying inflammation and angiogenesis, with or without genetic manipulations, and therefore can be exploited to study viral infection-associated pathologies. The major advantage with zebrafish is low cost, easy breeding and maintenance, rapid lifecycle, and a transparent nature, which allows visualizing dissemination of fluorescently labeled virus infection in real time either at a localized region or the whole body. Further, the availability of multiple transgenic lines that express fluorescently tagged immune cells for in vivo imaging of virus infected animals is extremely attractive. In addition, a fully developed immune system and potential for receptor-specific knockouts further advocate the use of zebrafish as a new tool to study viral infections. In this review, we focus on expanding the potential of zebrafish model system in understanding human infectious diseases and future benefits.
Collapse
Affiliation(s)
- Thessicar Evadney Antoine
- 1 Departments of Ophthalmology and Visual Sciences & Microbiology/Immunology, University of Illinois at Chicago , Chicago, Illinois
| | | | | | | | | |
Collapse
|
15
|
Kawasaki T, Kurauchi K, Higashihata A, Deguchi T, Ishikawa Y, Yamauchi M, Sasanuma M, Hori H, Tsutsumi M, Wakamatsu Y, Yuba S, Kinoshita M. Transgenic medaka fish which mimic the endogenous expression of neuronal kinesin, KIF5A. Brain Res 2012; 1480:12-21. [PMID: 22975131 DOI: 10.1016/j.brainres.2012.08.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/22/2012] [Accepted: 08/27/2012] [Indexed: 11/19/2022]
Abstract
Intracellular transport is spatiotemporally controlled by microtubule-dependent motor proteins, including kinesins. In order to elucidate the mechanisms controlling kinesin expression, it is important to analyze their genomic regulatory regions. In this study, we cloned the neuronal tissue-specific kinesin in medaka fish and generated transgenic fish which mimic endogenous neuronal kinesin expression in order to elucidate the mechanisms which regulate kinesin expression. Searches for medaka neuronal orthologues by RT-PCR identified a candidate gene expressed only in neuronal tissues. Using BAC clones, we determined the cDNA sequence and the gene structure of the candidate neuronal kinesin. Evolutionary analysis indicated that the candidate gene encoded medaka KIF5Aa. The endogenous medaka orthologue was found to be expressed only in the nervous system, including the brain and spinal cord, while expression of KIF5Ab was not exclusive to neuronal tissues. Transgenic (Tg) medaka that expressed EGFP under the control of the 6.9 kbp 5' and 1.9kbp 3' flanking regions of the KIF5Aa gene showed characteristic expression throughout the nervous system, including the brain, spinal cord, olfactory pit, eye and cranial nerve. Immunohistological analysis showed that EGFP expression in Tg fish co-localized with expression of HuC/D, a neuronal marker. These results demonstrate that the 6.9 kbp 5' and 1.9 kbp 3' flanking regions of medaka KIF5Aa have neuronal-specific promoter activity mimicking endogenous expression of medaka KIF5Ab. This transgenic fish strain will be useful for further functional analysis of the effects of these regulatory regions on gene expression.
Collapse
Affiliation(s)
- Takashi Kawasaki
- Health Research Institute, National institute of Advanced Industrial Science and Technology (AIST), Nakoji, Amagasaki 661-0974, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The leukemia associated nuclear corepressor ETO homologue genes MTG16 and MTGR1 are regulated differently in hematopoietic cells. BMC Mol Biol 2012; 13:11. [PMID: 22443175 PMCID: PMC3364894 DOI: 10.1186/1471-2199-13-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 03/23/2012] [Indexed: 01/09/2023] Open
Abstract
Background MTG16, MTGR1 and ETO are nuclear transcriptional corepressors of the human ETO protein family. MTG16 is implicated in hematopoietic development and in controlling erythropoiesis/megakaryopoiesis. Furthermore, ETO homologue genes are 3'participants in leukemia fusions generated by chromosomal translocations responsible of hematopoietic dysregulation. We tried to identify structural and functional promoter elements of MTG16 and MTGR1 genes in order to find associations between their regulation and hematopoiesis. Results 5' deletion examinations and luciferase reporter gene studies indicated that a 492 bp sequence upstream of the transcription start site is essential for transcriptional activity by the MTG16 promoter. The TATA- and CCAAT-less promoter with a GC box close to the start site showed strong reporter activity when examined in erythroid/megakaryocytic cells. Mutation of an evolutionary conserved GATA -301 consensus binding site repressed promoter function. Furthermore, results from in vitro antibody-enhanced electrophoretic mobility shift assay and in vivo chromatin immunoprecipitation indicated binding of GATA-1 to the GATA -301 site. A role of GATA-1 was also supported by transfection of small interfering RNA, which diminished MTG16 expression. Furthermore, expression of the transcription factor HERP2, which represses GATA-1, produced strong inhibition of the MTG16 promoter reporter consistent with a role of GATA-1 in transcriptional activation. The TATA-less and CCAAT-less MTGR1 promoter retained most of the transcriptional activity within a -308 to -207 bp region with a GC-box-rich sequence containing multiple SP1 binding sites reminiscent of a housekeeping gene with constitutive expression. However, mutations of individual SP1 binding sites did not repress promoter function; multiple active SP1 binding sites may be required to safeguard constitutive MTGR1 transcriptional activity. The observed repression of MTG16/MTGR1 promoters by the leukemia associated AML1-ETO fusion gene may have a role in hematopoietic dysfunction of leukemia. Conclusions An evolutionary conserved GATA binding site is critical in transcriptional regulation of the MTG16 promoter. In contrast, the MTGR1 gene depends on a GC-box-rich sequence for transcriptional regulation and possible ubiquitous expression. Our results demonstrate that the ETO homologue promoters are regulated differently consistent with hematopoietic cell-type- specific expression and function.
Collapse
|
17
|
Kizil C, Kaslin J, Kroehne V, Brand M. Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol 2012; 72:429-61. [DOI: 10.1002/dneu.20918] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Dou C, Zhang J. Effects of lead on neurogenesis during zebrafish embryonic brain development. JOURNAL OF HAZARDOUS MATERIALS 2011; 194:277-282. [PMID: 21868162 DOI: 10.1016/j.jhazmat.2011.07.106] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 07/10/2011] [Accepted: 07/26/2011] [Indexed: 05/31/2023]
Abstract
Lead neurotoxicity has caused wide public concern in recent decades, yet little is known about its effects on cellular and molecular mechanisms during the sensitive early life stages of animals. This study examines neurological deficits caused by lead acetate (Pb) during early embryonic stages in the zebrafish (Danio rerio) and further explores its potential molecular mechanism. Zebrafish embryos showed varying levels of toxicity, which was proportional to the concentration of Pb to which the embryos were exposed. Following Pb exposure (0.2mM), embryos showed obvious neurotoxic symptoms with "sluggish" action, slow swimming movements and slow escape action. Whole mount in situ hybridization showed that gfap and huC gene expression patterns decreased significantly throughout the brains of the Pb-treated embryos, particularly in the diencephalon region. RT-PCR further proved the downregulation of the two genes. However, ngn1 and crestin gene expression patterns were similar in both the Pb-treated embryos and the control embryos. The TUNEL assay demonstrated that the reduction of nerve cells was due to increased apoptosis of neuron and glia cells. In conclusion, these findings identify that Pb-induced neurotoxicity can be caused by impaired neurogenesis, resulting in markedly increased apoptosis of special types of neural cells, neuron and glia cells.
Collapse
Affiliation(s)
- Changming Dou
- Key Laboratory of Non-point Sources Pollution Control, Ministry of Agriculture of People's Republic of China, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029, China.
| | | |
Collapse
|
19
|
Trans-2-phenylcyclopropylamine induces nerve cells apoptosis in zebrafish mediated by depression of LSD1 activity. Brain Res Bull 2009; 80:79-84. [PMID: 19410636 DOI: 10.1016/j.brainresbull.2009.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Accepted: 04/22/2009] [Indexed: 01/25/2023]
Abstract
Trans-2-phenylcyclopropylamine (referred to as PCPA hereafter, also known as tranylcypromine and Parnate) is used clinically as an antidepressant. Here, we use a new model-zebrafish (Danio rerio) to study the molecular mechanisms of its adverse reactions in vivo. Following a PCPA exposure (75 microM), embryos showed "sluggish" action (slow swim and slow escape action). Whole mount in situ hybridization showed that sox1a and huc expressions were downregulated in PCPA-treated embryos, which indicated a decrease in the number of nerve cells. TUNEL assay diplayed that the drop of nerve cells number due to excessive apoptosis. Moreover, lysine-specific demethylase 1 morpholino injection (LSD1 MO) also induced increased cellular apoptosis in embryos just as PCPA. RT-PCR at 24hpf evaluated that the absence of LSD1 resulted in increased expression of two p53 target genes (p21 and bax2). These findings demonstrate for the first time that PCPA-induced apoptosis through inhibition of LSD1 demethylase activity and p53-dependent signaling pathway might be required for the maintenance of nerve cell apoptosis.
Collapse
|
20
|
Deschênes-Furry J, Perrone-Bizzozero N, Jasmin BJ. The RNA-binding protein HuD: a regulator of neuronal differentiation, maintenance and plasticity. Bioessays 2006; 28:822-33. [PMID: 16927307 DOI: 10.1002/bies.20449] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
mRNA stability is increasingly recognized as being essential for controlling the expression of a wide variety of transcripts during neuronal development and synaptic plasticity. In this context, the role of AU-rich elements (ARE) contained within the 3' untranslated region (UTR) of transcripts has now emerged as key because of their high incidence in a large number of cellular mRNAs. This important regulatory element is known to significantly modulate the longevity of mRNAs by interacting with available stabilizing or destabilizing RNA-binding proteins (RBP). Thus, in parallel with the emergence of ARE, RBP are also gaining recognition for their pivotal role in regulating expression of a variety of mRNAs. In the nervous system, the member of the Hu family of ARE-binding proteins known as HuD, has recently been implicated in multiple aspects of neuronal function including the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. Through its ability to interact with ARE and stabilize multiple transcripts, HuD has now emerged as an important regulator of mRNA expression in neurons. The present review is designed to provide a comprehensive and updated view of HuD as an RBP in the nervous system. Additionally, we highlight the role of HuD in multiple aspects of a neuron's life from early differentiation to changes in mature neurons during learning paradigms and in response to injury and regeneration. Finally, we describe the current state of knowledge concerning the molecular and cellular events regulating the expression and activity of HuD in neurons.
Collapse
Affiliation(s)
- Julie Deschênes-Furry
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|