Thompson RC, Herscovitch M, Zhao I, Ford TJ, Gilmore TD. NF-kappaB down-regulates expression of the B-lymphoma marker CD10 through a miR-155/PU.1 pathway.
J Biol Chem 2010;
286:1675-82. [PMID:
20947507 DOI:
10.1074/jbc.m110.177063]
[Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell-surface protein CD10 is a prognostic marker for diffuse large B-cell lymphoma (DLBCL), where high expression of CD10 is found in the germinal center B-cell (GCB) subtype and CD10 expression is low or absent in the activated B-cell (ABC) subtype. As compared with the GCB subtype, patients with ABC DLBCL have a poorer prognosis after standard treatment, and ABC tumor cells have higher NF-κB activity. Herein, we show that increased expression of the NF-κB target micro-RNA miR-155 is correlated with reduced expression of transcription factor PU.1 and CD10 in several B-lymphoma cell lines. Moreover, electromobility shift assays and luciferase reporter assays indicate that PU.1 can directly activate expression from the CD10 promoter. Expression of a DLBCL-derived mutant of the adaptor CARD11 (a constitutive activator of NF-κB) in the GCB-like human BJAB cell line or v-Rel in the chicken DT40 B-lymphoma cell line causes reduced expression of PU.1. The CARD11 mutant also causes a decrease in CD10 levels in BJAB cells. Similarly, overexpression of miR-155, which is known to down-regulate PU.1, leads to reduced expression of CD10 in BJAB cells. Finally, we show that CD10 expression is reduced in BJAB cells after treatment with the NF-κB inducer lipopolysaccharide (LPS). Additionally, miR-155 is induced by LPS treatment or expression of the CARD11 mutant in BJAB cells. These results point to an NF-κB-dependent mechanism for down-regulation of CD10 in B-cell lymphoma: namely, that increased NF-κB activity leads to increased miR-155, which results in decreased PU.1, and consequently reduced CD10 mRNA and protein.
Collapse