1
|
Posttranslational Modification of Sox11 Regulates RGC Survival and Axon Regeneration. eNeuro 2021; 8:ENEURO.0358-20.2020. [PMID: 33441400 PMCID: PMC7890524 DOI: 10.1523/eneuro.0358-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
The failure of adult CNS neurons to survive and regenerate their axons after injury or in neurodegenerative disease remains a major target for basic and clinical neuroscience. Recent data demonstrated in the adult mouse that exogenous expression of Sry-related high-mobility-box 11 (Sox11) promotes optic nerve regeneration after optic nerve injury but exacerbates the death of a subset of retinal ganglion cells (RGCs), α-RGCs. During development, Sox11 is required for RGC differentiation from retinal progenitor cells (RPCs), and we found that mutation of a single residue to prevent SUMOylation at lysine 91 (K91) increased Sox11 nuclear localization and RGC differentiation in vitro. Here, we explored whether this Sox11 manipulation similarly has stronger effects on RGC survival and optic nerve regeneration. In vitro, we found that non-SUMOylatable Sox11K91A leads to RGC death and suppresses axon outgrowth in primary neurons. We furthermore found that Sox11K91A more strongly promotes axon regeneration but also increases RGC death after optic nerve injury in vivo in the adult mouse. RNA sequence (RNA-seq) data showed that Sox11 and Sox11K91A increase the expression of key signaling pathway genes associated with axon growth and regeneration but downregulated Spp1 and Opn4 expression in RGC cultures, consistent with negatively regulating the survival of α-RGCs and ipRGCs. Thus, Sox11 and its SUMOylation site at K91 regulate gene expression, survival and axon growth in RGCs, and may be explored further as potential regenerative therapies for optic neuropathy.
Collapse
|
2
|
SOX4 activates CXCL12 in hepatocellular carcinoma cells to modulate endothelial cell migration and angiogenesis in vivo. Oncogene 2020; 39:4695-4710. [PMID: 32404985 DOI: 10.1038/s41388-020-1319-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
The overexpression of SOX4 in various kinds of cancer cells was associated with poor prognosis for patients. The role of SOX4 in angiogenesis and tumor microenvironment modulation was recently documented in breast cancer but remains unclear in hepatocellular carcinoma (HCC). In our study, the clinical relevance of SOX4 overexpression in HCC and its role in the tumor microenvironment were investigated. The overexpression of SOX4 (SOX4high) in tumor lesions was associated with higher microvessel density (P = 0.012), tumor thrombosis formation (P = 0.012), distant metastasis (P < 0.001), and an independent prognostic factor for disease-free survival in HCC patients (P = 0.048). Endogenous SOX4 knockout in Hep3B cells by the CRISPR/cas9 system reduced the expression of CXCL12, which, in turn, attenuated chemotaxis in human umbilical vein endothelial cells, tube formation in vitro, reduced tumor growth, reticular fiber production, and angiogenesis in vivo in a xenograft mouse model. Treatment with an antagonist targeting CXCR4 (AMD3100), a receptor of CXCL12, inhibited chemotaxis and tube formation in endothelial cells in vitro. The CXCL12 promoter was activated by ectopic expression of a Flag-tagged SOX4 plasmid, endogenous SOX4 knockdown abolished promoter activity of CXCL12 as shown by luciferase assays, and an association with the CXCL12 promoter was identified via chromatin immunoprecipitation in HCC cells. In conclusion, SOX4 modulates the CXCL12 promoter in HCC cells. The secretory CXCL12, in turn, modulates CXCR4 in endothelial cells, reticular fibers to regulate the tumor microenvironment and modulate neovascularization, which might contribute to the distant metastasis of tumors.
Collapse
|
3
|
Ghouili F, Roumaud P, Martin LJ. Gja1 expression is regulated by cooperation between SOX8/SOX9 and cJUN transcription factors in TM4 and 15P-1 Sertoli cell lines. Mol Reprod Dev 2018; 85:875-886. [PMID: 30080944 DOI: 10.1002/mrd.23049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/20/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022]
Abstract
Within the seminiferous tubules of the testis, Gja1-encoded connexin43 plays a critical role in intercellular communication between Sertoli cells. These cells nurture, protect and stimulate the developing germ cells and spermatids. SOX transcription factors are known to play an important role in male fertility and sex determination; however, their physiological function and the identity of their target genes in postnatal Sertoli cells remain to be defined. Members of the activating protein-1 (AP-1) family have been shown to regulate Gja1 expression in myometrial and testicular cells and to physically interact with SOX members, suggesting that these transcription factors may regulate its expression within the testis. Hence, we performed co-transfections of expression plasmids encoding SOX4, SOX8, SOX9 and cJUN with different mouse Gja1 promoter/luciferase reporter constructs within TM4 and 15P-1 Sertoli cells. We showed that a functional cooperation between cJUN and SOX8 or SOX9 regulates Gja1 expression and may involve DNA regulatory elements located between -132 and -26 bp. Such synergy relies on the recruitment of cJUN to the -47 base pair (bp) AP-1 DNA regulatory element of the mouse Gja1 promoter. Hence, SOX and AP-1 members cooperate to regulate Gja1 within testicular Sertoli cells.
Collapse
Affiliation(s)
- Firas Ghouili
- Biology Department, Université de Moncton, Moncton, New-Brunswick, Canada
| | - Pauline Roumaud
- Biology Department, Université de Moncton, Moncton, New-Brunswick, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, New-Brunswick, Canada
| |
Collapse
|
4
|
Abstract
Glaucoma and other optic neuropathies result in optic nerve degeneration and the loss of retinal ganglion cells (RGCs) through complex signaling pathways. Although the mechanisms that regulate RGC development remain unclear, uncovering novel developmental pathways may support new strategies to regenerate the optic nerve or replace RGCs. Here we review recent studies that provide strong evidence that the Sry-related high-mobility-group C (SoxC) subfamily of transcription factors (TFs) are necessary and sufficient for axon guidance and RGC fate specification. These findings also uncover novel SoxC-dependent mechanisms that serve as master regulators during important steps of RGC development. For example, we review work showing that SoxC TFs regulate RGC axon guidance and direction through the optic chiasm towards their appropriate targets in the brain. We also review work demonstrating that Sox11 subcellular localization is, in part, controlled through small ubiquitin-like post-translational modifier (SUMO) and suggest compensatory cross-talk between Sox4 and Sox11. Furthermore, Sox4 overexpression is shown to positively drive RGC differentiation in human induced pluripotent stem cells (hiPSCs). Finally, we discuss how these findings may contribute to the advancement of regenerative and cell-based therapies to treat glaucoma and other optic nerve neuropathies.
Collapse
Affiliation(s)
- Kun-Che Chang
- Department of Ophthalmology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Jonathan Hertz
- Department of Ophthalmology, School of Medicine, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
5
|
Bohl CR, Abrahamyan LG, Wood C. Human Ubc9 is involved in intracellular HIV-1 Env stability after trafficking out of the trans-Golgi network in a Gag dependent manner. PLoS One 2013; 8:e69359. [PMID: 23861967 PMCID: PMC3704627 DOI: 10.1371/journal.pone.0069359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/07/2013] [Indexed: 01/03/2023] Open
Abstract
The cellular E2 Sumo conjugase, Ubc9 interacts with HIV-1 Gag, and is important for the assembly of infectious HIV-1 virions. In the previous study we demonstrated that in the absence of Ubc9, a defect in virion assembly was associated with decreased levels of mature intracellular Envelope (Env) that affected Env incorporation into virions and virion infectivity. We have further characterized the effect of Ubc9 knockdown on HIV Env processing and assembly. We found that gp160 stability in the endoplasmic reticulum (ER) and its trafficking to the trans-Golgi network (TGN) were unaffected, indicating that the decreased intracellular mature Env levels in Ubc9-depleted cells were due to a selective degradation of mature Env gp120 after cleavage from gp160 and trafficked out of the TGN. Decreased levels of Gag and mature Env were found to be associated with the plasma membrane and lipid rafts, which suggest that these viral proteins were not trafficked correctly to the assembly site. Intracellular gp120 were partially rescued when treated with a combination of lysosome inhibitors. Taken together our results suggest that in the absence of Ubc9, gp120 is preferentially degraded in the lysosomes likely before trafficking to assembly sites leading to the production of defective virions. This study provides further insight in the processing and packaging of the HIV-1 gp120 into mature HIV-1 virions.
Collapse
Affiliation(s)
- Christopher R. Bohl
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Lincoln, Nebraska, United States of America
| | - Levon G. Abrahamyan
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Lincoln, Nebraska, United States of America
| | - Charles Wood
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
6
|
The role of SRY-related HMG box transcription factor 4 (SOX4) in tumorigenesis and metastasis: friend or foe? Oncogene 2012; 32:3397-409. [PMID: 23246969 DOI: 10.1038/onc.2012.506] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/18/2012] [Accepted: 09/18/2012] [Indexed: 12/29/2022]
Abstract
Development and progression of cancer are mediated by alterations in transcriptional networks, resulting in a disturbed balance between the activity of oncogenes and tumor suppressor genes. Transcription factors have the capacity to regulate global transcriptional profiles, and are consequently often found to be deregulated in their expression and function during tumorigenesis. Sex-determining region Y-related high-mobility-group box transcription factor 4 (SOX4) is a member of the group C subfamily of the SOX transcription factors and has a critical role during embryogenesis, where its expression is widespread and controls the development of numerous tissues. SOX4 expression is elevated in a wide variety of tumors, including leukemia, colorectal cancer, lung cancer and breast cancer, suggesting a fundamental role in the development of these malignancies. In many cancers, deregulated expression of this developmental factor has been correlated with increased cancer cell proliferation, cell survival, inhibition of apoptosis and tumor progression through the induction of an epithelial-to-mesenchymal transition and metastasis. However, in a limited subset of tumors, SOX4 has also been reported to act as a tumor suppressor. These opposing roles suggest that the outcome of SOX4 activation depends on the cellular context and the tumor origin. Indeed, SOX4 expression, transcriptional activity and target gene specificity can be controlled by signaling pathways, including the transforming growth factor-β and the WNT pathway, as well as at the post-translational level through regulation of protein stability and interaction with specific cofactors, such as TCF, syntenin-1 and p53. Here, we provide an overview of our current knowledge concerning the role of SOX4 in tumor development and progression.
Collapse
|
7
|
Zhu Y, Li Y, Wei J, Liu X. The role of Sox genes in lung morphogenesis and cancer. Int J Mol Sci 2012; 13:15767-83. [PMID: 23443092 PMCID: PMC3546660 DOI: 10.3390/ijms131215767] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/26/2012] [Accepted: 11/14/2012] [Indexed: 12/17/2022] Open
Abstract
The human lung consists of multiple cell types derived from early embryonic compartments. The morphogenesis of the lung, as well as the injury repair of the adult lung, is tightly controlled by a network of signaling pathways with key transcriptional factors. Lung cancer is the third most cancer-related death in the world, which may be developed due to the failure of regulating the signaling pathways. Sox (sex-determining region Y (Sry) box-containing) family transcriptional factors have emerged as potent modulators in embryonic development, stem cells maintenance, tissue homeostasis, and cancerogenesis in multiple processes. Recent studies demonstrated that the members of the Sox gene family played important roles in the development and maintenance of lung and development of lung cancer. In this context, we summarize our current understanding of the role of Sox family transcriptional factors in the morphogenesis of lung, their oncogenic potential in lung cancer, and their potential impact in the diagnosis, prognosis, and targeted therapy of lung cancer.
Collapse
Affiliation(s)
- Yongzhao Zhu
- Key Laboratory of the Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life science, Ningxia University, Yinchuan 750021, China; E-Mails: (Y.Z.); (Y.L.)
- Institute of Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yong Li
- Key Laboratory of the Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life science, Ningxia University, Yinchuan 750021, China; E-Mails: (Y.Z.); (Y.L.)
| | - Jun Wei
- Institute of Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan 750004, China
- Authors to whom correspondence should be addressed; E-Mails: (J.W.); or (X.L.); Tel.: +86-951-674-3751 (J.W.); +86-951-206-2037 (X.L); Fax: +86-951-206-2699 (X.L.)
| | - Xiaoming Liu
- Key Laboratory of the Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life science, Ningxia University, Yinchuan 750021, China; E-Mails: (Y.Z.); (Y.L.)
- Authors to whom correspondence should be addressed; E-Mails: (J.W.); or (X.L.); Tel.: +86-951-674-3751 (J.W.); +86-951-206-2037 (X.L); Fax: +86-951-206-2699 (X.L.)
| |
Collapse
|
8
|
Sun W, Hudson NJ, Reverter A, Waardenberg AJ, Tellam RL, Vuocolo T, Byrne K, Dalrymple BP. An Always Correlated gene expression landscape for ovine skeletal muscle, lessons learnt from comparison with an "equivalent" bovine landscape. BMC Res Notes 2012; 5:632. [PMID: 23148653 PMCID: PMC3543716 DOI: 10.1186/1756-0500-5-632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/07/2012] [Indexed: 11/21/2022] Open
Abstract
Background We have recently described a method for the construction of an informative gene expression correlation landscape for a single tissue, longissimus muscle (LM) of cattle, using a small number (less than a hundred) of diverse samples. Does this approach facilitate interspecies comparison of networks? Findings Using gene expression datasets from LM samples from a single postnatal time point for high and low muscling sheep, and from a developmental time course (prenatal to postnatal) for normal sheep and sheep exhibiting the Callipyge muscling phenotype gene expression correlations were calculated across subsets of the data comparable to the bovine analysis. An “Always Correlated” gene expression landscape was constructed by integrating the correlations from the subsets of data and was compared to the equivalent landscape for bovine LM muscle. Whilst at the high level apparently equivalent modules were identified in the two species, at the detailed level overlap between genes in the equivalent modules was limited and generally not significant. Indeed, only 395 genes and 18 edges were in common between the two landscapes. Conclusions Since it is unlikely that the equivalent muscles of two closely related species are as different as this analysis suggests, within tissue gene expression correlations appear to be very sensitive to the samples chosen for their construction, compounded by the different platforms used. Thus users need to be very cautious in interpretation of the differences. In future experiments, attention will be required to ensure equivalent experimental designs and use cross-species gene expression platform to enable the identification of true differences between different species.
Collapse
Affiliation(s)
- Wei Sun
- Animal Science and Technology College, Yangzhou University, Yangzhou 225009, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Since posttranslational modification (PTM) by the small ubiquitin-related modifiers (SUMOs) was discovered over a decade ago, a huge number of cellular proteins have been found to be reversibly modified, resulting in alteration of differential cellular pathways. Although the molecular consequences of SUMO attachment are difficult to predict, the underlying principle of SUMOylation is altering inter- and/or intramolecular interactions of the modified substrate, changing localization, stability, and/or activity. Unsurprisingly, many different pathogens have evolved to exploit the cellular SUMO modification system due to its functional flexibility and far-reaching functional downstream consequences. Although the extensive knowledge gained so far is impressive, a definitive conclusion about the role of SUMO modification during virus infection in general remains elusive and is still restricted to a few, yet promising concepts. Based on the available data, this review aims, first, to provide a detailed overview of the current state of knowledge and, second, to evaluate the currently known common principles/molecular mechanisms of how human pathogenic microbes, especially viruses and their regulatory proteins, exploit the host cell SUMO modification system.
Collapse
|
10
|
Jafarnejad SM, Wani AA, Martinka M, Li G. Prognostic significance of Sox4 expression in human cutaneous melanoma and its role in cell migration and invasion. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2741-52. [PMID: 20952589 DOI: 10.2353/ajpath.2010.100377] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Sox4 transcription factor is involved in various cellular processes, such as embryonic development and differentiation. Deregulated expression of Sox4 in several human cancers has been reported to date, but its role in melanoma is unknown. We explored the role of Sox4 in melanoma pathogenesis in vivo and in vitro. Using tissue microarray, we evaluated Sox4 expression in 180 melanocytic lesions and investigated its role in melanoma cell migration and invasion. Sox4 expression was remarkably reduced in metastatic melanoma compared with dysplastic nevi (P < 0.05) and primary melanoma (P < 0.01). This reduction was correlated with a poorer disease-specific survival of melanoma patients (P = 0.039). Multivariate Cox regression analysis revealed that reduced Sox4 expression is an independent prognostic factor (P = 0.049). Knockdown of Sox4 enhanced melanoma cell invasion, migration, and stress fiber formation. The increased migration and invasion on Sox4 knockdown depends on the presence of nuclear factor (NF)-κB p50 and is abrogated when p50 is knocked down. We further observed inhibition of NF-κB p50 transcription by Sox4, in addition to a reverse pattern of expression of Sox4 and NF-κB p50 in different stages of melanocytic lesions. Our results suggest that Sox4 regulates melanoma cell migration and invasion in an NF-κB p50-dependent manner and may serve as a prognostic marker and potential therapeutic target for human melanoma.
Collapse
Affiliation(s)
- Seyed Mehdi Jafarnejad
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
11
|
Plafker KS, Nguyen L, Barneche M, Mirza S, Crawford D, Plafker SM. The ubiquitin-conjugating enzyme UbcM2 can regulate the stability and activity of the antioxidant transcription factor Nrf2. J Biol Chem 2010; 285:23064-74. [PMID: 20484052 DOI: 10.1074/jbc.m110.121913] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor nuclear factor E2-related factor 2 (Nrf2) induces the expression of antioxidant gene products that neutralize reactive oxygen species and restore redox homeostasis. Nrf2 is constitutively degraded by the ubiquitin proteolytic system in unperturbed cells, but this turnover is arrested in response to oxidative stress, thereby leading to Nrf2 accumulation. Yet, a mechanistic understanding of how Nrf2 stabilization and transcriptional activation are coupled remains to be determined. We have discovered that the ubiquitin-conjugating enzyme UbcM2 is a novel regulator of Nrf2. Recombinant Nrf2 and UbcM2 form a complex upon alkylation of a non-catalytic cysteine in UbcM2, Cys-136. Substitution of this cysteine with a phenylalanine (C136F) to mimic cysteine oxidation/alkylation results in constitutive binding of UbcM2 to Nrf2 and an increased half-life of the transcription factor in vivo. We provide evidence that UbcM2 and Nrf2 form a nuclear complex utilizing the DNA binding, Neh1 domain, of Nrf2. Finally, we demonstrate that UbcM2 can enhance the transcriptional activity of endogenous Nrf2 and that Cys-136 and the active-site cysteine, Cys-145, jointly contribute to this regulation. Collectively, these data identify UbcM2 as a novel component of the Nrf2 regulatory circuit and position cysteine 136 as a putative redox sensor in this signaling pathway. This work implicates UbcM2 in the restoration of redox homeostasis following oxidative stress.
Collapse
Affiliation(s)
- Kendra S Plafker
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | |
Collapse
|
12
|
Hur W, Rhim H, Jung CK, Kim JD, Bae SH, Jang JW, Yang JM, Oh ST, Kim DG, Wang HJ, Lee SB, Yoon SK. SOX4 overexpression regulates the p53-mediated apoptosis in hepatocellular carcinoma: clinical implication and functional analysis in vitro. Carcinogenesis 2010; 31:1298-307. [PMID: 20400479 DOI: 10.1093/carcin/bgq072] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND AIMS The underlying molecular mechanisms of hepatocellular carcinoma (HCC) remain poorly understood due to its complex development process. The human T cell-specific transcription factor sex-determining region Y-related high-mobility group (HMG) box 4 (SOX4) has been linked to development and tumorigenesis. In this study, we characterized the roles of SOX4 in regulation of the p53 transcription activity and evaluated the expression patterns and prognostic value of the transcription factor SOX4 in HCC. METHODS The expression levels of human SOX4 were examined in HCC samples obtained from 58 patients having curative partial hepatectomy. The interaction and effects of SOX4 on the p53 pathway were assessed in HCC cell lines. Luciferase reporter assay to examine p53-mediated transcription of target genes was performed. The association of SOX4 expression level with tumor recurrence and overall survival was evaluated. RESULTS We showed that the HMG box domain of SOX4 interacted with p53, resulting in the inhibition of p53-mediated transcription by the Bax promoter. More importantly, SOX4 overexpression led to a significant repression of p53-induced Bax expression and subsequent repression of p53-mediated apoptosis induced by gamma-irradiation. In clinicopathological analysis, nuclear overexpression of SOX4 was observed in 37 out of 58 (63.8%) HCC samples, and this correlated with diminished risk of recurrence (P = 0.014) and improved overall survival time (P = 0.045) in HCC patients. CONCLUSION These results suggest that SOX4 contributes to hepatocarcinogenesis by inhibiting p53-mediated apoptosis and that its overexpression might be a useful prognostic marker for survival after surgical resection.
Collapse
Affiliation(s)
- Wonhee Hur
- Department of Internal Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kormish JD, Sinner D, Zorn AM. Interactions between SOX factors and Wnt/beta-catenin signaling in development and disease. Dev Dyn 2010; 239:56-68. [PMID: 19655378 DOI: 10.1002/dvdy.22046] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The SOX family of transcription factors have emerged as modulators of canonical Wnt/beta-catenin signaling in diverse development and disease contexts. There are over 20 SOX proteins encoded in the vertebrate genome and recent evidence suggests that many of these can physically interact with beta-catenin and modulate the transcription of Wnt-target genes. The precise mechanisms by which SOX proteins regulate beta-catenin/TCF activity are still being resolved and there is evidence to support a number of models including: protein-protein interactions, the binding of SOX factors to Wnt-target gene promoters, the recruitment of co-repressors or co-activators, modulation of protein stability, and nuclear translocation. In some contexts, Wnt signaling also regulates SOX expression resulting in feedback regulatory loops that fine-tune cellular responses to beta-catenin/TCF activity. In this review, we summarize the examples of Sox-Wnt interactions and examine the underlying mechanisms of this potentially widespread and underappreciated mode of Wnt-regulation.
Collapse
Affiliation(s)
- Jay D Kormish
- Division of Developmental Biology, Cincinnati Children's Research Foundation and University of Cincinnati Department of Pediatrics, College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
14
|
cDNA cloning and expression of Ubc9 in the developing embryo and ovary of Oriental river prawn, Macrobrachium nipponense. Comp Biochem Physiol B Biochem Mol Biol 2009; 155:288-93. [PMID: 19944179 DOI: 10.1016/j.cbpb.2009.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/19/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
Abstract
The small ubiquitin-like modifier (SUMO) pathway in eukaryotes is an essential biological process involving cellular processes, development and organelle biogenesis. In a sequential enzymatic action, Ubc9 is an important conjunction enzyme in the SUMO pathway. Although the Ubc9 has been found in vertebrates, its expression in crustaceans is little known. In this study, the Ubc9 was identified in the embryo and ovary of a freshwater prawn Macrobrachium nipponense for the first time and it was denoted as MnUbc9. Bioinformatics analyses showed that this gene encodes a protein of 161 amino acids with predicted molecular mass of 18.32kDa. Real-time quantitative PCR analyses demonstrated that the expression levels varied significantly in the developing embryo and ovary. In the embryo, the expression level of MnUbc9 was higher at the cleavage stage (CS) than at the blastula stage (BS), and reached even higher levels at the protozoea stage (PS) and the zoea stage (ZS). In the ovary, the MuUbc9 expression was low at the early stage, but reached the highest at the yolk granule stage (YG), and then abruptly declined at the maturation stage (MA). The differential expressions of MnUbc9 in the embryo and ovary suggest that MnUbc9 may play an important role in embryogenesis and oogenesis of M. nipponense.
Collapse
|
15
|
Ronen O, Malone JP, Kay P, Bivens C, Hall K, Paruchuri LP, Mo YY, Robbins KT, Ran S. Expression of a novel marker, Ubc9, in squamous cell carcinoma of the head and neck. Head Neck 2009; 31:845-55. [PMID: 19309722 DOI: 10.1002/hed.21048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ubiquitin-conjugating enzyme (Ubc9) is a novel enzyme involved in posttranslational modification of cellular proteins. The objective of this study was to determine the expression of Ubc9 in squamous cell carcinoma of the head and neck (SCCHN). METHODS SCCHN specimens were stained with anti-Ubc9 antibodies, scored using a semiquantitative method, and statistically analyzed. RESULTS Forty-six tumors were stained, 26 of which included adjacent mucosa. Ubc9 was significantly upregulated in the malignant and peritumoral tissues compared with mucosa from normal individuals. In peritumoral tissues, Ubc9 expression was detected in the basal and suprabasal epithelial layers. No Ubc9 was detected in epithelial cells in normal mucosa. These differences in Ubc9 expression were statistically significant (p < .0001). Tumor Ubc9 expression significantly correlated with clinical and pathologic stage. CONCLUSIONS Ubc9 is significantly overexpressed in the primary SCCHN tumors and peritumoral mucosa compared with normal epithelial cells. These findings suggest that Ubc9 may play an important role in tumorigenesis and tumor progression of SCCHN.
Collapse
Affiliation(s)
- Ohad Ronen
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Human Ubc9 contributes to production of fully infectious human immunodeficiency virus type 1 virions. J Virol 2009; 83:10448-59. [PMID: 19640976 DOI: 10.1128/jvi.00237-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ubc9 was identified as a cellular protein that interacts with the Gag protein of Mason-Pfizer monkey virus. We show here that Ubc9 also interacts with the human immunodeficiency virus type 1 (HIV-1) Gag protein and that their interaction is important for virus replication. Gag was found to colocalize with Ubc9 predominantly at perinuclear puncta. While cells in which Ubc9 expression was suppressed with RNA interference produced normal numbers of virions, these particles were 8- to 10-fold less infectious than those produced in the presence of Ubc9. The nature of this defect was assayed for dependence on Ubc9 during viral assembly, trafficking, and Env incorporation. The Gag-mediated assembly of virus particles and protease-mediated processing of Gag and Gag-Pol were unchanged in the absence of Ubc9. However, the stability of the cell-associated Env glycoprotein was decreased and Env incorporation into released virions was altered. Interestingly, overexpression of the Ubc9 trans-dominant-negative mutant C93A, which is a defective E2-SUMO-1 conjugase, suggests that this activity may not be required for interaction with Gag, virion assembly, or infectivity. This finding demonstrates that Ubc9 plays an important role in the production of infectious HIV-1 virions.
Collapse
|
17
|
Induction of SOX4 by DNA damage is critical for p53 stabilization and function. Proc Natl Acad Sci U S A 2009; 106:3788-93. [PMID: 19234109 DOI: 10.1073/pnas.0810147106] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DNA damage response (DDR) acts as a tumorigenesis barrier, and any defects in the DDR machinery may lead to cancer. SOX4 expression is elevated in many types of tumors; however, its role in DDR is still largely unknown. Here, we show that SOX4, a new DNA damage sensor, is required for the activation of p53 tumor suppressor in response to DNA damage. Notably, SOX4 interacts with and stabilizes p53 protein by blocking Mdm2-mediated p53 ubiquitination and degradation. Furthermore, SOX4 enhances p53 acetylation by interacting with p300/CBP and facilitating p300/CBP/p53 complex formation. In concert with these results, SOX4 promotes cell cycle arrest and apoptosis, and it inhibits tumorigenesis in a p53-dependent manner. Therefore, these findings highlight SOX4 as a potential key factor in regulating DDR-associated cancer.
Collapse
|
18
|
Li HY, Liu H, Wang CH, Zhang JY, Man JH, Gao YF, Zhang PJ, Li WH, Zhao J, Pan X, Zhou T, Gong WL, Li AL, Zhang XM. Deactivation of the kinase IKK by CUEDC2 through recruitment of the phosphatase PP1. Nat Immunol 2008; 9:533-41. [PMID: 18362886 DOI: 10.1038/ni.1600] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 02/20/2008] [Indexed: 01/03/2023]
Abstract
Despite rapid progress in elucidating the molecular mechanisms of activation of the kinase IKK, the processes that regulate IKK deactivation are still unknown. Here we demonstrate that CUE domain-containing 2 (CUEDC2) interacted with IKKalpha and IKKbeta and repressed activation of the transcription factor NF-kappaB by decreasing phosphorylation and activation of IKK. Notably, CUEDC2 also interacted with GADD34, a regulatory subunit of protein phosphatase 1 (PP1). We found that IKK, CUEDC2 and PP1 existed in a complex and that IKK was released from the complex in response to inflammatory stimuli such as tumor necrosis factor. CUEDC2 deactivated IKK by recruiting PP1 to the complex. Therefore, CUEDC2 acts as an adaptor protein to target IKK for dephosphorylation and inactivation by recruiting PP1.
Collapse
Affiliation(s)
- Hui-Yan Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lefebvre V, Dumitriu B, Penzo-Méndez A, Han Y, Pallavi B. Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int J Biochem Cell Biol 2007; 39:2195-214. [PMID: 17625949 PMCID: PMC2080623 DOI: 10.1016/j.biocel.2007.05.019] [Citation(s) in RCA: 336] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/24/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
Maintain stemness, commit to a specific lineage, differentiate, proliferate, or die. These are essential decisions that every cell is constantly challenged to make in multi-cellular organisms to ensure proper development, adult maintenance, and adaptability. SRY-related high-mobility-group box (Sox) transcription factors have emerged in the animal kingdom to help cells effect such decisions. They are encoded by 20 genes in humans and mice. They share a highly conserved high-mobility-group box domain that was originally identified in SRY, the sex-determining gene on the Y chromosome, and that has derived from a canonical high-mobility-group domain characteristic of chromatin-associated proteins. The high-mobility-group box domain binds DNA in the minor groove and increases its DNA binding affinity and specificity by interacting with many types of transcription factors. It also bends DNA and may thereby confer on Sox proteins a unique and critical role in the assembly of transcriptional enhanceosomes. Sox proteins fall into eight groups. Most feature a transactivation or transrepression domain and thereby also act as typical transcription factors. Each gene has distinct expression pattern and molecular properties, often redundant with those in the same group and overlapping with those in other groups. As a whole the Sox family controls cell fate and differentiation in a multitude of processes, such as male differentiation, stemness, neurogenesis, and skeletogenesis. We review their specific molecular properties and in vivo roles, stress recent advances in the field, and suggest directions for future investigations.
Collapse
Affiliation(s)
- Véronique Lefebvre
- Department of Cell Biology, Lerner Research Institute and Orthopaedic Research Center, Cleveland Clinic, 9500 Euclid Avenue (NC10), Cleveland, OH 44195, USA.
| | | | | | | | | |
Collapse
|
20
|
Li Y, Lu J, Prochownik EV. Dual Role for SUMO E2 Conjugase Ubc9 in Modulating the Transforming and Growth-promoting Properties of the HMGA1b Architectural Transcription Factor. J Biol Chem 2007; 282:13363-71. [PMID: 17350957 DOI: 10.1074/jbc.m610919200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the HMGA1 (high mobility group A1) family of architectural transcription factors, HMGA1a and HMGA1b, play important roles in many normal cellular processes and in tumorigenesis. We performed a yeast two-hybrid screen for HMGA1-interacting proteins and identified the SUMO E2 conjugase Ubc9 as one such partner. The Ubc9-interacting domain of HMGA1 is bipartite, consisting of a proline-rich region near the N terminus and an acidic domain at the extreme C terminus, whereas the HMGA1-interacting domain of Ubc9 comprises a single region previously shown to associate with and SUMOylate other transcription factors. Consistent with these findings, endogenous HMGA1 proteins and Ubc9 could be co-immunoprecipitated from several human cell lines. Studies with HMGA1b proteins containing mutations of either or both Ubc9-interacting domains and with Ubc9-depleted cell lines indicated that the proline-rich domain of HMGA1b positively influences transformation and growth, whereas the acidic domain negatively influences these properties. None of the changes in HMGA1 protein functions mediated by Ubc9 appears to require SUMOylation. These findings are consistent with the idea that Ubc9 can act as both a positive and negative regulator of proliferation and transformation via its non-SUMO-dependent interaction with HMGA1 proteins.
Collapse
Affiliation(s)
- Youjun Li
- Section of Hematology/Oncology, Children's Hospital of Pittsburgh, The Department of Molecular Genetics and Biochemistry, the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
21
|
Zhang PJ, Zhao J, Li HY, Man JH, He K, Zhou T, Pan X, Li AL, Gong WL, Jin BF, Xia Q, Yu M, Shen BF, Zhang XM. CUE domain containing 2 regulates degradation of progesterone receptor by ubiquitin-proteasome. EMBO J 2007; 26:1831-42. [PMID: 17347654 PMCID: PMC1847652 DOI: 10.1038/sj.emboj.7601602] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 01/16/2007] [Indexed: 11/09/2022] Open
Abstract
Accumulated evidence indicates that progesterone receptors (PR) are involved in proliferation of breast cancer cells and are implicated in the development of breast cancer. In this paper, a yeast two-hybrid screen for PR led to the identification of CUE domain containing 2 (CUEDC2), whose function is unknown. Our results demonstrate that CUEDC2 interacts with PR and promotes progesterone-induced PR degradation by the ubiquitin-proteasome pathway. The inhibition of endogenous CUEDC2 by siRNA nearly abrogated the progesterone-induced degradation of PR, suggesting that CUEDC2 is involved in progesterone-induced PR ubiquitination and degradation. Moreover, we identify the sumoylation site Lys-388 of PR as the target of CUEDC2-promoted ubiquitination. CUEDC2 decreases the sumoylation while promoting ubiquitination on Lys-388 of PRB. We also show that CUEDC2 represses PR transactivation, inhibits the ability of PR to stimulate rapid MAPK activity, and impairs the effect of progesterone on breast cancer cell growth. Therefore, our results identify a key post-translational mechanism that controls PR protein levels and for the first time provide an important insight into the function of CUEDC2 in breast cancer proliferation.
Collapse
Affiliation(s)
- Pei-Jing Zhang
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Jie Zhao
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Hui-Yan Li
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Jiang-Hong Man
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Kun He
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Xin Pan
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Ai-Ling Li
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Wei-Li Gong
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Bao-Feng Jin
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Qing Xia
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Ming Yu
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Bei-Fen Shen
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Xue-Min Zhang
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Tai-Ping Road 27, Beijing 100850, China. Tel.: +86 10 66930169; Fax: +86 10 68186281; E-mail:
| |
Collapse
|