1
|
Oladosu OJ, Reyer H, Weikard R, Grafl B, Liebhart D, Metges CC, Kühn C, Daş G. Hepatic transcriptomic analysis reveals differential regulation of metabolic and immune pathways in three strains of chickens with distinct growth rates exposed to mixed parasite infections. Vet Res 2024; 55:125. [PMID: 39342330 PMCID: PMC11439216 DOI: 10.1186/s13567-024-01378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/25/2024] [Indexed: 10/01/2024] Open
Abstract
During parasite infections, the liver may prioritise immune-related pathways over its metabolic functions. Intestinal infections caused by Ascaridia galli and Heterakis gallinarum impair feed intake, nutrient absorption, and weight gain. Histomonas meleagridis, vectored by H. gallinarum, can also damage liver tissues, potentially impairing liver functions. This study examined the hepatic gene expression in three strains of chickens: Ross-308 (R), Lohmann Brown Plus (LB), and Lohmann Dual (LD), 2 weeks after an experimental infection (n = 18) with both A. galli and H. gallinarum or kept as uninfected control (n = 12). Furthermore, H. gallinarum infection led to a co-infection with H. meleagridis. The mixed infections reduced feed intake and the average daily weight gain (P < 0.001). The infections also increased the plasma concentrations of alpha (1)-acid glycoprotein and the antibody titre against H. meleagridis (P = 0.049), with no strain differences (P > 0.05). For host molecular response, 1887 genes were differentially expressed in LD, while 275 and 25 genes were differentially expressed in R and LB, respectively. The up-regulated genes in R and LD were mostly related to inflammatory and adaptive immune responses, while down-regulated genes in LD were involved in metabolic pathways, including gluconeogenesis. Despite performance differences among the strains, worm burdens were similar, but hepatic molecular responses differed significantly. Moreover, there was an indication of a shift in hepatic functions towards immune-related pathways. We, therefore, conclude that the liver shifts its functions from metabolic to immune-related activities in chickens when challenged with mixed parasite species.
Collapse
Affiliation(s)
- Oyekunle John Oladosu
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Rosemarie Weikard
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Beatrice Grafl
- Clinic for Poultry and Fish Medicine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Dieter Liebhart
- Clinic for Poultry and Fish Medicine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Cornelia C Metges
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Christa Kühn
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
- Agricultural and Environmental Faculty, University Rostock, Justus-Von-Liebig-Weg 6, 18059, Rostock, Germany
| | - Gürbüz Daş
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
2
|
Zhong J, Qiu M, Meng Y, Wang P, Chen S, Wang L. Single-cell multi-omics sequencing reveals the immunological disturbance underlying STAT3-V637M Hyper-IgE syndrome. Int Immunopharmacol 2023; 122:110624. [PMID: 37480751 DOI: 10.1016/j.intimp.2023.110624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
Hyper-IgE syndrome (HIES) is a primary immunodeficiency characterized by, among others, the excessive production of IgE and repetitive bacterial/fungal infections. Mutations in STAT3, a transcription factor that orchestrates immune responses, may cause HIES, but the underlying mechanisms are not fully understood. Here, we used multi-omic approaches to comprehensively decipher the immune disturbance in a male HIES patient harboring STAT3-V637M. In his peripheral blood mononuclear cell (PBMC) we found significant clonal expansion of CD8 T cells (with increased CD8 subunits expression, potentially enhancing responsiveness to MHC I molecules), but not in his CD4 T cells and B cells. Although his B cells exhibited a higher potential in producing immunoglobulin, elevated SPIC binding might bias the products toward IgE isotype. Immune checkpoint inhibitors, including CTLA4, LAG3, were overexpressed in his PBMC-CD4 T cells, accompanied by reduced CD28 and IL6ST (gp130) expression. In his CD4 T cells, integrative analyses predicted upstream transcription factors (including ETV6, KLF13, and RORA) for LAG3, IL6ST, and CD28, respectively. The down-regulation of phagocytosis and nitric oxide synthesis-related genes in his PBMC-monocytes seem to be the culprit of his disseminated bacterial/fungal infection. Counterintuitively, in his PBMC we predicted increased STAT3 binding in both naïve and mature CD4 compartments, although this was not observed in most of his PBMC. In his bronchoalveolar lavage fluid (BALF), we found two macrophage subtypes with anti-bacterial properties, which were identified by CXCL8/S100A8/S100A9, or SOD2, respectively. Together, we described how the immune cell landscape was disturbed in STAT3-V637M HIES, providing a resource for further studies.
Collapse
Affiliation(s)
- Jiacheng Zhong
- Shenzhen Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital, Shenzhen 518055, Guangdong, China; Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, Guangdong, China
| | - Minzhi Qiu
- Health Management Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Yu Meng
- Department of Quality Control, Shenzhen People's Hospital, Shenzhen 518055, Guangdong, China
| | - Peizhong Wang
- Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Shanze Chen
- Shenzhen Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital, Shenzhen 518055, Guangdong, China; Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, Guangdong, China.
| | - Lingwei Wang
- Shenzhen Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital, Shenzhen 518055, Guangdong, China; Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, Guangdong, China.
| |
Collapse
|
3
|
Spi-C positively regulates RANKL-mediated osteoclast differentiation and function. Exp Mol Med 2020; 52:691-701. [PMID: 32341419 PMCID: PMC7210314 DOI: 10.1038/s12276-020-0427-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
Spi-C is an SPI-group erythroblast transformation-specific domain transcription factor expressed during B-cell development. Here, we report that Spi-C is a novel receptor activator of nuclear factor-κB ligand (RANKL)-inducible protein that positively regulates RANKL-mediated osteoclast differentiation and function. Knockdown of Spi-C decreased the expression of RANKL-induced nuclear factor of activated T-cells, cytoplasmic 1, receptor activator of nuclear factor-κB (RANK), and tartrate-resistant acid phosphatase (TRAP), resulting in a marked decrease in the number of TRAP-positive multinucleated cells. Spi-C-transduced bone marrow-derived monocytes/macrophages (BMMs) displayed a significant increase in osteoclast formation in the presence of RANKL. In addition, Spi-C-depleted cells failed to show actin ring formation or bone resorption owing to a marked reduction in the expression of RANKL-mediated dendritic cell-specific transmembrane protein and the d2 isoform of vacuolar (H+) ATPase V0 domain, which are known osteoclast fusion-related genes. Interestingly, RANKL stimulation induced the translocation of Spi-C from the cytoplasm into the nucleus during osteoclastogenesis, which was specifically blocked by inhibitors of p38 mitogen-activated protein kinase (MAPK) or PI3 kinase. Moreover, Spi-C depletion prevented RANKL-induced MAPK activation and the degradation of inhibitor of κB-α (IκBα) in BMMs. Collectively, these results suggest that Spi-C is a novel positive regulator that promotes both osteoclast differentiation and function. A gene-controlling protein called Spi-C promotes the development of bone-processing cells called osteoclasts; details of the molecular mechanisms involved will aid understanding of Spi-C’s role in bone health and disease. Osteoclasts degrade bone during the normal process of bone remodeling, balanced by the activity of osteoblast cells that form new bone. Excessive osteoclast activity can cause the bone loss associated with various bone diseases including early-onset osteoporosis. Researchers in South Korea led by Soo Young Lee at Ewha Womans University and Na Kyung Lee at Soonchunhyang University, Asan, found that Spi-C promotes osteoclast development by activating genes that code for key proteins of a signaling pathway known to be crucial for bone health. Drugs that interfere with Spi-C activity may therefore offer a new approach for treating bone disease.
Collapse
|
4
|
Li SKH, Solomon LA, Fulkerson PC, DeKoter RP. Identification of a negative regulatory role for spi-C in the murine B cell lineage. THE JOURNAL OF IMMUNOLOGY 2015; 194:3798-807. [PMID: 25769919 DOI: 10.4049/jimmunol.1402432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/09/2015] [Indexed: 11/19/2022]
Abstract
Spi-C is an E26 transformation-specific family transcription factor that is highly related to PU.1 and Spi-B. Spi-C is expressed in developing B cells, but its function in B cell development and function is not well characterized. To determine whether Spi-C functions as a negative regulator of Spi-B (encoded by Spib), mice were generated that were germline knockout for Spib and heterozygous for Spic (Spib(-/-)Spic(+/-)). Interestingly, loss of one Spic allele substantially rescued B cell frequencies and absolute numbers in Spib(-/-) mouse spleens. Spib(-/-)Spic(+/-) B cells had restored proliferation compared with Spib(-/-) B cells in response to anti-IgM or LPS stimulation. Investigation of a potential mechanism for the Spib(-/-)Spic(+/-) phenotype revealed that steady-state levels of Nfkb1, encoding p50, were elevated in Spib(-/-)Spic(+/-) B cells compared with Spib(-/-) B cells. Spi-B was shown to directly activate the Nfkb1 gene, whereas Spi-C was shown to repress this gene. These results indicate a novel role for Spi-C as a negative regulator of B cell development and function.
Collapse
Affiliation(s)
- Stephen K H Li
- Department of Microbiology and Immunology, Centre for Human Immunology, Schulich School of Medicine and Dentistry, Collaborative Graduate Program in Developmental Biology, Western University, London, Ontario N6A 5C1, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2V5, Canada; and
| | - Lauren A Solomon
- Department of Microbiology and Immunology, Centre for Human Immunology, Schulich School of Medicine and Dentistry, Collaborative Graduate Program in Developmental Biology, Western University, London, Ontario N6A 5C1, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2V5, Canada; and
| | - Patricia C Fulkerson
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Rodney P DeKoter
- Department of Microbiology and Immunology, Centre for Human Immunology, Schulich School of Medicine and Dentistry, Collaborative Graduate Program in Developmental Biology, Western University, London, Ontario N6A 5C1, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2V5, Canada; and
| |
Collapse
|
5
|
FoxA1 directs the lineage and immunosuppressive properties of a novel regulatory T cell population in EAE and MS. Nat Med 2014; 20:272-82. [DOI: 10.1038/nm.3485] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/22/2014] [Indexed: 12/15/2022]
|
6
|
Igarashi H, Kuwahara K, Yoshida M, Xing Y, Maeda K, Nakajima K, Sakaguchi N. GANP suppresses the arginine methyltransferase PRMT5 regulating IL-4-mediated STAT6-signaling to IgE production in B cells. Mol Immunol 2009; 46:1031-41. [DOI: 10.1016/j.molimm.2008.08.272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 08/10/2008] [Accepted: 08/14/2008] [Indexed: 01/03/2023]
|
7
|
Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 2008; 457:318-21. [PMID: 19037245 PMCID: PMC2756102 DOI: 10.1038/nature07472] [Citation(s) in RCA: 328] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 09/30/2008] [Indexed: 12/27/2022]
Abstract
Tissue macrophages comprise a heterogeneous group of cell types differing in location, surface markers and function1. Red pulp macrophages are a distinct splenic subset involved in removing senescent red blood cells2. Transcription factors such as PU.1 and C/EBPα play general roles in myelomonocytic development3,4, but the transcriptional basis for producing tissue macrophage subsets remains unknown. Here we show that Spi-C, a PU.1 related transcription factor, selectively controls the development of red pulp macrophages. Spi-C is highly expressed in red pulp macrophages, but not monocytes, dendritic cells or other tissue macrophages. Spi-C−/− mice exhibit a cell-autonomous defect in the development of red pulp macrophages that is corrected by retroviral Spi-C expression in bone marrow cells, but have normal monocyte and other macrophage subsets. Red pulp macrophages highly express genes involved in capturing circulating hemoglobin and iron regulation. Spi-C−/− mice show normal trapping of red blood cells in the spleen, but fail to phagocytose these red blood cells efficiently, and develop an iron overload localized selectively to splenic red pulp. Thus, Spi-C controls development of red pulp macrophages required for red blood cell recycling and iron homeostasis.
Collapse
|
8
|
Debnath I, Roundy KM, Dunn DM, Weiss RB, Weis JJ, Weis JH. Defining a transcriptional fingerprint of murine splenic B-cell development. Genes Immun 2008; 9:706-20. [PMID: 18784731 DOI: 10.1038/gene.2008.70] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
B-cell development occurs in a stepwise fashion that can be followed by the expression of B cell-specific surface markers. In this study, we wished to identify proteins that could contribute to the changes in expression of such markers. By using RNA from freshly isolated B220+ cells, we hoped to reduce the effect of artifacts that occur during the isolation and amplification steps necessary to use flow cytometry analysis-sorted subsets in microarray experiments. Analyses comparing expression patterns from B220+ 2-week bone marrow (pro-B, pre-B, immature B cells), 2-week spleen (predominantly transitional cells) and 8-week spleen (mainly mature B cells) yielded hundreds of genes. We also examined the B cell-activating factor (BAFF)-dependent effects on immature splenic B cells by comparing expression patterns in the spleen between 2-week A/J vs 2-week A/WySnJ mice, which lack functional BAFF receptor signaling. Genes that showed the expression differences between spleen and bone marrow samples were then analyzed through quantitative PCR on B-cell subsets isolated using two different sorting protocols. A comparison of the results from our study with the results from other analyses showed not only some overlap of preferentially expressed genes but also an expansion of other genes potentially involved in B-cell development.
Collapse
Affiliation(s)
- I Debnath
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|
9
|
Edemir B, Kurian SM, Eisenacher M, Lang D, Müller-Tidow C, Gabriëls G, Salomon DR, Schlatter E. Activation of counter-regulatory mechanisms in a rat renal acute rejection model. BMC Genomics 2008; 9:71. [PMID: 18261221 PMCID: PMC2262896 DOI: 10.1186/1471-2164-9-71] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 02/08/2008] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Microarray analysis provides a powerful approach to identify gene expression alterations following transplantation. In patients the heterogeneity of graft specimens, co-morbidity, co-medications and the challenges in sample collection and preparation complicate conclusions regarding the underlying mechanisms of graft injury, rejection and immune regulation. RESULTS We used a rat kidney transplantation model with strict transplant and sample preparation procedures to analyze genome wide changes in gene expression four days after syngeneic and allogeneic transplantation. Both interventions were associated with substantial changes in gene expression. After allogeneic transplantation, genes and pathways related to transport and metabolism were predominantly down-regulated consistent with rejection-mediated graft injury and dysfunction. Up-regulated genes were primarily related to the acute immune response including antigen presentation, T-cell receptor signaling, apoptosis, interferon signaling and complement cascades. We observed a cytokine and chemokine expression profile consistent with activation of a Th1-cell response. A novel finding was up-regulation of several regulatory and protective genes after allogeneic transplantation, specifically IL10, Bcl2a1, C4bpa, Ctla4, HO-1 and the SOCS family. CONCLUSION Our data indicate that in parallel with the predicted activation of immune response and tissue injury pathways, there is simultaneous activation of pathways for counter regulatory and protective mechanisms that would balance and limit the ongoing inflammatory/immune responses. The pathophysiological mechanisms behind and the clinical consequences of alterations in expression of these gene classes in acute rejection, injury and dysfunction vs. protection and immunoregulation, prompt further analyses and open new aspects for therapeutic approaches.
Collapse
Affiliation(s)
- Bayram Edemir
- Experimentelle Nephrologie, Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Germany
| | - Sunil M Kurian
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Martin Eisenacher
- Integrierte Funktionelle Genomik, Interdisziplinäres Zentrum für Klinische Forschung, Universitätsklinikum Münster, Germany
| | - Detlef Lang
- Experimentelle Nephrologie, Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Germany
| | - Carsten Müller-Tidow
- Hämatologie und Onkologie, Medizinische Klinik und Poliklinik A, Universitätsklinikum Münster, Germany
| | - Gert Gabriëls
- Experimentelle Nephrologie, Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Germany
| | - Daniel R Salomon
- Hämatologie und Onkologie, Medizinische Klinik und Poliklinik A, Universitätsklinikum Münster, Germany
| | - Eberhard Schlatter
- Experimentelle Nephrologie, Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Germany
| |
Collapse
|