1
|
DNA Helicases as Safekeepers of Genome Stability in Plants. Genes (Basel) 2019; 10:genes10121028. [PMID: 31835565 PMCID: PMC6947026 DOI: 10.3390/genes10121028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic information of all organisms is coded in double-stranded DNA. DNA helicases are essential for unwinding this double strand when it comes to replication, repair or transcription of genetic information. In this review, we will focus on what is known about a variety of DNA helicases that are required to ensure genome stability in plants. Due to their sessile lifestyle, plants are especially exposed to harmful environmental factors. Moreover, many crop plants have large and highly repetitive genomes, making them absolutely dependent on the correct interplay of DNA helicases for safeguarding their stability. Although basic features of a number of these enzymes are conserved between plants and other eukaryotes, a more detailed analysis shows surprising peculiarities, partly also between different plant species. This is additionally of high relevance for plant breeding as a number of these helicases are also involved in crossover control during meiosis and influence the outcome of different approaches of CRISPR/Cas based plant genome engineering. Thus, gaining knowledge about plant helicases, their interplay, as well as the manipulation of their pathways, possesses the potential for improving agriculture. In the long run, this might even help us cope with the increasing obstacles of climate change threatening food security in completely new ways.
Collapse
|
2
|
Kwon YI, Abe K, Endo M, Osakabe K, Ohtsuki N, Nishizawa-Yokoi A, Tagiri A, Saika H, Toki S. DNA replication arrest leads to enhanced homologous recombination and cell death in meristems of rice OsRecQl4 mutants. BMC PLANT BIOLOGY 2013; 13:62. [PMID: 23586618 PMCID: PMC3648487 DOI: 10.1186/1471-2229-13-62] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/03/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Mammalian BLM helicase is involved in DNA replication, DNA repair and homologous recombination (HR). These DNA transactions are associated tightly with cell division and are important for maintaining genome stability. However, unlike in mammals, cell division in higher plants is restricted mainly to the meristem, thus genome maintenance at the meristem is critical. The counterpart of BLM in Arabidopsis (AtRecQ4A) has been identified and its role in HR and in the response to DNA damage has been confirmed. However, the function of AtRecQ4A in the meristem during replication stress has not yet been well elucidated. RESULTS We isolated the BLM counterpart gene OsRecQl4 from rice and analyzed its function using a reverse genetics approach. Osrecql4 mutant plants showed hypersensitivity to DNA damaging agents and enhanced frequency of HR compared to wild-type (WT) plants. We further analyzed the effect of aphidicolin--an inhibitor of S-phase progression via its inhibitory effect on DNA polymerases--on genome stability in the root meristem in osrecql4 mutant plants and corresponding WT plants. The following effects were observed upon aphidicolin treatment: a) comet assay showed induction of DNA double-strand breaks (DSBs) in mutant plants, b) TUNEL assay showed enhanced DNA breaks at the root meristem in mutant plants, c) a recombination reporter showed enhanced HR frequency in mutant calli, d) propidium iodide (PI) staining of root tips revealed an increased incidence of cell death in the meristem of mutant plants. CONCLUSIONS These results demonstrate that the aphidicolin-sensitive phenotype of osrecql4 mutants was in part due to induced DSBs and cell death, and that OsRecQl4 plays an important role as a caretaker, maintaining genome stability during DNA replication stress in the rice meristem.
Collapse
Affiliation(s)
- Yong-Ik Kwon
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
- Graduate School of Nanobioscience, Yokohama City University, 22-2, Seto, Kanazawa, Yokohama, 236-0027, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Yokohama, 244-0813, Japan
| | - Kiyomi Abe
- Functional Plant Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Masaki Endo
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Keishi Osakabe
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura, Saitama, 338-8570, Japan
| | - Namie Ohtsuki
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Ayako Nishizawa-Yokoi
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Akemi Tagiri
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hiroaki Saika
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Seiichi Toki
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
- Graduate School of Nanobioscience, Yokohama City University, 22-2, Seto, Kanazawa, Yokohama, 236-0027, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Yokohama, 244-0813, Japan
| |
Collapse
|
3
|
Krupinska K, Melonek J, Krause K. New insights into plastid nucleoid structure and functionality. PLANTA 2013; 237:653-64. [PMID: 23212213 DOI: 10.1007/s00425-012-1817-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/09/2012] [Indexed: 05/04/2023]
Abstract
Investigations over many decades have revealed that nucleoids of higher plant plastids are highly dynamic with regard to their number, their structural organization and protein composition. Membrane attachment and environmental cues seem to determine the activity and functionality of the nucleoids and point to a highly regulated structure-function relationship. The heterogeneous composition and the many functions that are seemingly associated with the plastid nucleoids could be related to the high number of chromosomes per plastid. Recent proteomic studies have brought novel nucleoid-associated proteins into the spotlight and indicated that plastid nucleoids are an evolutionary hybrid possessing prokaryotic nucleoid features and eukaryotic (nuclear) chromatin components, several of which are dually targeted to the nucleus and chloroplasts. Future studies need to unravel if and how plastid-nucleus communication depends on nucleoid structure and plastid gene expression.
Collapse
Affiliation(s)
- Karin Krupinska
- Institute of Botany, University of Kiel, Olshausenstraße 40, 24098, Kiel, Germany.
| | | | | |
Collapse
|
4
|
Kwon YI, Abe K, Osakabe K, Endo M, Nishizawa-Yokoi A, Saika H, Shimada H, Toki S. Overexpression of OsRecQl4 and/or OsExo1 enhances DSB-induced homologous recombination in rice. PLANT & CELL PHYSIOLOGY 2012; 53:2142-52. [PMID: 23161853 DOI: 10.1093/pcp/pcs155] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
During homologous recombination (HR)-mediated DNA double-strand break (DSB) repair in eukaryotes, an initial step is the creation of a 3'-single-stranded DNA (ssDNA) overhang via resection of a 5' end. Rad51 polymerizes on this ssDNA to search for a homologous sequence, and the gapped sequence is then repaired using an undamaged homologous DNA strand as template. Recent studies in eukaryotes indicate that resection of the DSB site is promoted by the cooperative action of RecQ helicase family proteins: Bloom helicase (BLM) in mammals or Sgs1 in yeast, and exonuclease 1 (Exo1). However, the role of RecQ helicase and exonuclease during the 5'-resection process of HR in plant cells has not yet been defined. Here, we demonstrate that overexpression of rice proteins OsRecQl4 (BLM counterpart) and/or OsExo1 (Exo1 homolog) can enhance DSB processing, as evaluated by recombination substrate reporter lines in rice. These results could be applied to construct an efficient gene targeting system in rice.
Collapse
Affiliation(s)
- Yong-Ik Kwon
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Knoll A, Puchta H. The role of DNA helicases and their interaction partners in genome stability and meiotic recombination in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1565-79. [PMID: 21081662 DOI: 10.1093/jxb/erq357] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
DNA helicases are enzymes that are able to unwind DNA by the use of the energy-equivalent ATP. They play essential roles in DNA replication, DNA repair, and DNA recombination in all organisms. As homologous recombination occurs in somatic and meiotic cells, the same proteins may participate in both processes, albeit not necessarily with identical functions. DNA helicases involved in genome stability and meiotic recombination are the focus of this review. The role of these enzymes and their characterized interaction partners in plants will be summarized. Although most factors are conserved in eukaryotes, plant-specific features are becoming apparent. In the RecQ helicase family, Arabidopsis thaliana RECQ4A has been shown before to be the functional homologue of the well-researched baker's yeast Sgs1 and human BLM proteins. It was surprising to find that its interaction partners AtRMI1 and AtTOP3α are absolutely essential for meiotic recombination in plants, where they are central factors of a formerly underappreciated dissolution step of recombination intermediates. In the expanding group of anti-recombinases, future analysis of plant helicases is especially promising. While no FBH1 homologue is present, the Arabidopsis genome contains homologues of both SRS2 and RTEL1. Yeast and mammals, on the other hand. only possess homologues of either one or the other of these helicases. Plants also contain several other classes of helicases that are known from other organisms to be involved in the preservation of genome stability: FANCM is conserved with parts of the human Fanconi anaemia proteins, as are homologues of the Swi2/Snf2 family and of PIF1.
Collapse
Affiliation(s)
- Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | |
Collapse
|
6
|
Abstract
Five human RecQ helicases (WRN, BLM, RECQ4, RECQ5, RECQ1) exist in humans. Of these, three are genetically linked to diseases of premature aging and/or cancer. Neither RECQ1 nor RECQ5 has yet been implicated in a human disease. However, cellular studies and genetic analyses of model organisms indicate that RECQ1 (and RECQ5) play an important role in the maintenance of genomic stability. Biochemical studies of purified RECQ1 protein demonstrate that the enzyme catalyzes DNA unwinding and strand annealing, and these activities are likely to be important for its role in DNA repair. RECQ1 also physically and functionally interacts with proteins involved in genetic recombination. In this review, we will summarize our current knowledge of RECQ1 roles in cellular nucleic acid metabolism and propose avenues of investigation for future studies.
Collapse
|
7
|
Abstract
Maintenance of genome stability is essential for the accurate propagation of genetic information and cell growth and survival. Organisms have therefore developed efficient strategies to prevent DNA lesions and rearrangements. Much of the information concerning these strategies has been obtained through the study of bacterial and nuclear genomes. Comparatively, little is known about how organelle genomes maintain a stable structure. Here, we report that the plastid-localized Whirly ssDNA-binding proteins are required for plastid genome stability in Arabidopsis. We show that a double KO of the genes AtWhy1 and AtWhy3 leads to the appearance of plants with variegated green/white/yellow leaves, symptomatic of nonfunctional chloroplasts. This variegation is maternally inherited, indicating defects in the plastid genome. Indeed, in all variegated lines examined, reorganized regions of plastid DNA are amplified as circular and/or head-tail concatemers. All amplified regions are delimited by short direct repeats of 10-18 bp, strongly suggesting that these regions result from illegitimate recombination between repeated sequences. This type of recombination occurs frequently in plants lacking both Whirlies, to a lesser extent in single KO plants and rarely in WT individuals. Maize mutants for the ZmWhy1 Whirly protein also show an increase in the frequency of illegitimate recombination. We propose a model where Whirlies contribute to plastid genome stability by protecting against illegitimate repeat-mediated recombination.
Collapse
|
8
|
Sakaguchi K, Ishibashi T, Uchiyama Y, Iwabata K. The multi-replication protein A (RPA) system--a new perspective. FEBS J 2009; 276:943-63. [PMID: 19154342 DOI: 10.1111/j.1742-4658.2008.06841.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Replication protein A (RPA) complex has been shown, using both in vivo and in vitro approaches, to be required for most aspects of eukaryotic DNA metabolism: replication, repair, telomere maintenance and homologous recombination. Here, we review recent data concerning the function and biological importance of the multi-RPA complex. There are distinct complexes of RPA found in the biological kingdoms, although for a long time only one type of RPA complex was believed to be present in eukaryotes. Each complex probably serves a different role. In higher plants, three distinct large and medium subunits are present, but only one species of the smallest subunit. Each of these protein subunits forms stable complexes with their respective partners. They are paralogs as complex. Humans possess two paralogs and one analog of RPA. The multi-RPA system can be regarded as universal in eukaryotes. Among eukaryotic kingdoms, paralogs, orthologs, analogs and heterologs of many DNA synthesis-related factors, including RPA, are ubiquitous. Convergent evolution seems to be ubiquitous in these processes. Using recent findings, we review the composition and biological functions of RPA complexes.
Collapse
Affiliation(s)
- Kengo Sakaguchi
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan.
| | | | | | | |
Collapse
|
9
|
Genome-wide analyses of Geraniaceae plastid DNA reveal unprecedented patterns of increased nucleotide substitutions. Proc Natl Acad Sci U S A 2008; 105:18424-9. [PMID: 19011103 DOI: 10.1073/pnas.0806759105] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Angiosperm plastid genomes are generally conserved in gene content and order with rates of nucleotide substitutions for protein-coding genes lower than for nuclear protein-coding genes. A few groups have experienced genomic change, and extreme changes in gene content and order are found within the flowering plant family Geraniaceae. The complete plastid genome sequence of Pelargonium X hortorum (Geraniaceae) reveals the largest and most rearranged plastid genome identified to date. Highly elevated rates of sequence evolution in Geraniaceae mitochondrial genomes have been reported, but rates in Geraniaceae plastid genomes have not been characterized. Analysis of nucleotide substitution rates for 72 plastid genes for 47 angiosperm taxa, including nine Geraniaceae, show that values of dN are highly accelerated in ribosomal protein and RNA polymerase genes throughout the family. Furthermore, dN/dS is significantly elevated in the same two classes of plastid genes as well as in ATPase genes. A relatively high dN/dS ratio could be interpreted as evidence of two phenomena, namely positive or relaxed selection, neither of which is consistent with our current understanding of plastid genome evolution in photosynthetic plants. These analyses are the first to use protein-coding sequences from complete plastid genomes to characterize rates and patterns of sequence evolution for a broad sampling of photosynthetic angiosperms, and they reveal unprecedented accumulation of nucleotide substitutions in Geraniaceae. To explain these remarkable substitution patterns in the highly rearranged Geraniaceae plastid genomes, we propose a model of aberrant DNA repair coupled with altered gene expression.
Collapse
|
10
|
Chen H, Samadder PP, Tanaka Y, Ohira T, Okuizumi H, Yamaoka N, Miyao A, Hirochika H, Ohira T, Tsuchimoto S, Ohtsubo H, Nishiguchi M. OsRecQ1, a QDE-3 homologue in rice, is required for RNA silencing induced by particle bombardment for inverted repeat DNA, but not for double-stranded RNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:274-286. [PMID: 18564381 DOI: 10.1111/j.1365-313x.2008.03587.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Based on the nucleotide sequence of QDE-3 in Neurospora crassa, which is involved in RNA silencing, rice (Oryza sativa) mutant lines disrupted by the insertion of the rice retrotransposon Tos17 were selected. Homozygous individuals from the M(1) and M(2) generations were screened and used for further analyses. The expression of the gene was not detected in leaves or calli of the mutant lines, in contrast to the wild type (WT). Induction of RNA silencing by particle bombardment was performed to investigate any effects of the OsRecQ1 gene on RNA silencing with silencing inducers of the GFP (green fluorescence protein)/GUS (beta-glucuronidase) gene in the mutant lines. The results showed that OsRecQ1 is required for RNA silencing induced by particle bombardment for inverted-repeat DNA, but not for double-stranded RNA (dsRNA). The levels of transcripts from inverted-repeat DNA were much lower in the mutant lines than those in the WT. Furthermore, no effects were observed in the accumulation of endogenous microRNAs (miR171 and miR156) and the production of the short interspersed nuclear element retroelement by small interfering RNA. On the basis of these results, we propose that OsRecQ1 may participate in the process that allows inverted repeat DNA to be transcribed into dsRNA, which can trigger RNA silencing.
Collapse
MESH Headings
- Amino Acid Sequence
- Cells, Cultured
- DNA Helicases/genetics
- Fungal Proteins/genetics
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Green Fluorescent Proteins
- Molecular Sequence Data
- Mutagenesis, Insertional
- Oryza/genetics
- Plant Epidermis/genetics
- Plants, Genetically Modified/genetics
- Plasmids
- RNA Interference
- RNA, Double-Stranded/genetics
- RNA, Plant/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Short Interspersed Nucleotide Elements
Collapse
Affiliation(s)
- Hui Chen
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Partha P Samadder
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Yoshikazu Tanaka
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Tatsuya Ohira
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Hisato Okuizumi
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Naoto Yamaoka
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Akio Miyao
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Hirohiko Hirochika
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Takayuki Ohira
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Suguru Tsuchimoto
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Hisako Ohtsubo
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Masamichi Nishiguchi
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| |
Collapse
|
11
|
Scortecci KC, Lima AFO, Carvalho FM, Silva UB, Agnez-Lima LF, Batistuzzo de Medeiros SR. A characterization of a MutM/Fpg ortholog in sugarcane--A monocot plant. Biochem Biophys Res Commun 2007; 361:1054-60. [PMID: 17686457 DOI: 10.1016/j.bbrc.2007.07.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 07/25/2007] [Indexed: 11/20/2022]
Abstract
Plant genomic projects, such as Arabidopsis thaliana, rice, and maize, have provided excellent tools for comparative genome analysis on Base Excision DNA Repair (BER). A data-mining study associated with the SUCEST Genome project identified two EST clusters that shared homology to the bacteria MutM/Fpg protein. Comparative analyses presented here show a duplication of the MutM/Fpg gene in sugarcane, wheat and rice. The complementation assays show that both cDNAs from sugarcane are able to complement the Fpg and MutY-glycosylase deficiency in a double mutant Escherichia coli strain (CC104mutMmutY), reducing the spontaneous mutation frequency by 10-fold. The expression analyses by semi-quantitative RT-PCR show that these two mRNAs have different expression levels.
Collapse
Affiliation(s)
- Katia C Scortecci
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Brazil.
| | | | | | | | | | | |
Collapse
|
12
|
Mimida N, Kitamoto H, Osakabe K, Nakashima M, Ito Y, Heyer WD, Toki S, Ichikawa H. Two alternatively spliced transcripts generated from OsMUS81, a rice homolog of yeast MUS81, are up-regulated by DNA-damaging treatments. PLANT & CELL PHYSIOLOGY 2007; 48:648-54. [PMID: 17327258 DOI: 10.1093/pcp/pcm029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
OsMUS81, a rice homolog of the yeast MUS81 endonuclease gene, produced two alternative transcripts, OsMUS81alpha and OsMUS81beta. OsMus81alpha contained a Helix-hairpin-Helix (HhH) motif at the N- and C-termini, and a conserved XPF-like motif in the center, while the OsMus81beta isoform lacked the second HhH motif by alternative splicing of a cryptic intron generating a truncated protein. The two transcripts were induced after DNA-damaging treatments such as high intensity light, UV-C and gamma-radiation. The yeast two-hybrid assay detected a strong interaction between OsMus81 and OsRad54 recombinational repair proteins. These findings suggest that OsMus81 functions in maintaining genome integrity through homologous recombination.
Collapse
Affiliation(s)
- Naozumi Mimida
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, 305-8602 Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
DNA replication, recombination, and repair in plastids. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0231] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|