1
|
Adega F, Borges A, Chaves R. Cat Mammary Tumors: Genetic Models for the Human Counterpart. Vet Sci 2016; 3:vetsci3030017. [PMID: 29056725 PMCID: PMC5606576 DOI: 10.3390/vetsci3030017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/06/2016] [Accepted: 08/11/2016] [Indexed: 12/18/2022] Open
Abstract
The records are not clear, but Man has been sheltering the cat inside his home for over 12,000 years. The close proximity of this companion animal, however, goes beyond sharing the same roof; it extends to the great similarity found at the cellular and molecular levels. Researchers have found a striking resemblance between subtypes of feline mammary tumors and their human counterparts that goes from the genes to the pathways involved in cancer initiation and progression. Spontaneous cat mammary pre-invasive intraepithelial lesions (hyperplasias and neoplasias) and malignant lesions seem to share a wide repertoire of molecular features with their human counterparts. In the present review, we tried to compile all the genetics aspects published (i.e., chromosomal alterations, critical cancer genes and their expression) regarding cat mammary tumors, which support the cat as a valuable alternative in vitro cell and animal model (i.e., cat mammary cell lines and the spontaneous tumors, respectively), but also to present a critical point of view of some of the issues that really need to be investigated in future research.
Collapse
Affiliation(s)
- Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real 5001-801, Portugal.
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa 1749-016, Portugal.
| | - Ana Borges
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real 5001-801, Portugal.
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa 1749-016, Portugal.
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real 5001-801, Portugal.
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa 1749-016, Portugal.
| |
Collapse
|
2
|
Additive impact of HER2-/PTK6-RNAi on interactions with HER3 or IGF-1R leads to reduced breast cancer progression in vivo. Mol Oncol 2014; 9:282-94. [PMID: 25241146 DOI: 10.1016/j.molonc.2014.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/06/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022] Open
Abstract
The human epidermal growth factor receptor 2 (HER2) and the protein tyrosine kinase 6 (PTK6) are often co- and over-expressed in invasive breast cancers. At early diagnosis, only distinct groups, such as HER2-or hormone receptor-positive benefit from a targeted therapy. However, a part of these tumours develops resistance within a year of administration of the drug but the majority of the patients depends on general therapies with severe side effects. A PTK6-directed approach does not yet exist. In our present study, we successfully demonstrate, in vitro and in vivo, a significantly additive reduction of tumourigenesis of breast cancer cells simultaneously depleted of both HER2 and PTK6. In comparison with single RNAi approaches, the combined RNAi (co-RNAi) led to a stronger reduced phosphorylation of tumour-promoting proteins. Moreover, the co-RNAi additively decreased cell migration as well as two and three dimensional cell proliferation in vitro. The in vivo experiments showed an additive reduction (p < 0.00001) in the growth of xenografts due to the co-RNAi compared with HER2 or PTK6 RNAi alone. Interestingly, the complexes of HER2 or PTK6 with tumour-relevant interaction partners, such as HER3 or the insulin-like growth factor receptor 1 (IGF-1R), respectively, were also reduced in xenografts although their protein expression levels were not affected following the co-RNAi of HER2 and PTK6. Our present study reveals the potential of using combined HER2- and PTK6- knockdown as a powerful strategy for the treatment of breast cancers. Therefore, the combined inhibition of these proteins may represent an attractive tool for efficient therapy of breast cancers.
Collapse
|
3
|
Santos S, Baptista CS, Abreu RMV, Bastos E, Amorim I, Gut IG, Gärtner F, Chaves R. ERBB2 in cat mammary neoplasias disclosed a positive correlation between RNA and protein low expression levels: a model for erbB-2 negative human breast cancer. PLoS One 2013; 8:e83673. [PMID: 24386251 PMCID: PMC3873372 DOI: 10.1371/journal.pone.0083673] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 11/06/2013] [Indexed: 02/01/2023] Open
Abstract
Human ERBB2 is a proto-oncogene that codes for the erbB-2 epithelial growth factor receptor. In human breast cancer (HBC), erbB-2 protein overexpression has been repeatedly correlated with poor prognosis. In more recent works, underexpression of this gene has been described in HBC. Moreover, it is also recognised that oncogenes that are commonly amplified or deleted encompass point mutations, and some of these are associated with HBC. In cat mammary lesions (CMLs), the overexpression of ERBB2 (27%-59.6%) has also been described, mostly at the protein level and although cat mammary neoplasias are considered to be a natural model of HBC, molecular information is still scarce. In the present work, a cat ERBB2 fragment, comprising exons 10 to 15 (ERBB2_10-15) was achieved for the first time. Allelic variants and genomic haplotype analyses were also performed, and differences between normal and CML populations were observed. Three amino acid changes, corresponding to 3 non-synonymous genomic sequence variants that were only detected in CMLs, were proposed to damage the 3D structure of the protein. We analysed the cat ERBB2 gene at the DNA (copy number determination), mRNA (expression levels assessment) and protein levels (in extra- and intra protein domains) in CML samples and correlated the last two evaluations with clinicopathological features. We found a positive correlation between the expression levels of the ERBB2 RNA and erbB-2 protein, corresponding to the intracellular region. Additionally, we detected a positive correlation between higher mRNA expression and better clinical outcome. Our results suggest that the ERBB2 gene is post-transcriptionally regulated and that proteins with truncations and single point mutations are present in cat mammary neoplastic lesions. We would like to emphasise that the recurrent occurrence of low erbB-2 expression levels in cat mammary tumours, suggests the cat mammary neoplasias as a valuable model for erbB-2 negative HBC.
Collapse
Affiliation(s)
- Sara Santos
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Cláudia S. Baptista
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Veterinary Clinics of University of Porto, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Rui M. V. Abreu
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- CIMO-ESA, Instituto Politécnico de Bragança, Bragança, Portugal
| | - Estela Bastos
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Genetics and Biotechnology, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Irina Amorim
- Institute of Pathology and Immunology, University of Porto, Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Ivo G. Gut
- Centre National de Genotypage, Evry, France
| | - Fátima Gärtner
- Institute of Pathology and Immunology, University of Porto, Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Raquel Chaves
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Genetics and Biotechnology, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- * E-mail:
| |
Collapse
|
4
|
Arnold T, Michlmayr A, Baumann S, Burghuber C, Pluschnig U, Bartsch R, Steger G, Gnant M, Bergmann M, Bachleitner-Hofmann T, Oehler R. Plasma HMGB-1 after the initial dose of epirubicin/docetaxel in cancer. Eur J Clin Invest 2013; 43:286-91. [PMID: 23410002 DOI: 10.1111/eci.12043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/17/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND The response of breast cancer patients to neoadjuvant chemotherapy (NCT) is highly heterogeneous, and reliable predictive instruments remain to be defined. High-mobility group box-1 (HMGB-1) protein is a cell death marker, which is easily detectable in plasma. We hypothesized that the initial dose of NCT with epirubicin/docetaxel induces changes in plasma HMGB-1 which could allow for an early prediction of response to therapy. MATERIALS AND METHODS First, we analysed whether epirubicin/docetaxel releases HMGB-1 from HCC1143 breast cancer cells in vitro. Thereafter, plasma HMGB-1 levels before and 1-4 days after the first dose of epirubicin/docetaxel-based NCT were determined in 41 breast cancer patients and correlated with pathological response to treatment. RESULTS Treatment of HCC1143 cells with epirubicin/docetaxel resulted in a significant HMGB-1 release in vitro. In vivo, HMGB-1 levels increased significantly only in responders (pathological complete response or partial remission, n = 22) but not in nonresponders (stable or progressive disease, n = 19). CONCLUSION Our data suggest that early dynamic changes of plasma HMGB1 could be a promising biomarker to predict the final response to NCT in breast cancer patients.
Collapse
Affiliation(s)
- Tobias Arnold
- Surgical Research Laboratories, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ludyga N, Anastasov N, Rosemann M, Seiler J, Lohmann N, Braselmann H, Mengele K, Schmitt M, Höfler H, Aubele M. Effects of simultaneous knockdown of HER2 and PTK6 on malignancy and tumor progression in human breast cancer cells. Mol Cancer Res 2013; 11:381-92. [PMID: 23364537 DOI: 10.1158/1541-7786.mcr-12-0378] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancer is the most common malignancy in women of the Western world. One prominent feature of breast cancer is the co- and overexpression of HER2 and protein tyrosine kinase 6 (PTK6). According to the current clinical cancer therapy guidelines, HER2-overexpressing tumors are routinely treated with trastuzumab, a humanized monoclonal antibody targeting HER2. Approximately, 30% of HER2-overexpressing breast tumors at least initially respond to the anti-HER2 therapy, but a subgroup of these tumors develops resistance shortly after the administration of trastuzumab. A PTK6-targeted therapy does not yet exist. Here, we show for the first time that the simultaneous knockdown in vitro, compared with the single knockdown of HER2 and PTK6, in particular in the trastuzumab-resistant JIMT-1 cells, leads to a significantly decreased phosphorylation of crucial signaling proteins: mitogen-activated protein kinase 1/3 (MAPK 1/3, ERK 1/2) and p38 MAPK, and (phosphatase and tensin homologue deleted on chromosome ten) PTEN that are involved in tumorigenesis. In addition, dual knockdown strongly reduced the migration and invasion of the JIMT-1 cells. Moreover, the downregulation of HER2 and PTK6 led to an induction of p27, and the dual knockdown significantly diminished cell proliferation in JIMT-1 and T47D cells. In vivo experiments showed significantly reduced levels of tumor growth following HER2 or PTK6 knockdown. Our results indicate a novel strategy also for the treatment of trastuzumab resistance in tumors. Thus, the inhibition of these two signaling proteins may lead to a more effective control of breast cancer.
Collapse
Affiliation(s)
- Natalie Ludyga
- Institut für Pathologie, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Valabrega G, Capellero S, Cavalloni G, Zaccarello G, Petrelli A, Migliardi G, Milani A, Peraldo-Neia C, Gammaitoni L, Sapino A, Pecchioni C, Moggio A, Giordano S, Aglietta M, Montemurro F. HER2-positive breast cancer cells resistant to trastuzumab and lapatinib lose reliance upon HER2 and are sensitive to the multitargeted kinase inhibitor sorafenib. Breast Cancer Res Treat 2010; 130:29-40. [PMID: 21153051 DOI: 10.1007/s10549-010-1281-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 11/23/2010] [Indexed: 11/30/2022]
Abstract
Trastuzumab has changed the prognosis of HER2 positive breast cancers. Despite this progress, resistance to trastuzumab occurs in most patients. Newer anti-HER2 therapies, like the dual tyrosine-kinase inhibitor (TKI) lapatinib, show significant antitumor activity, indicating that HER2 can be still exploited as a target after trastuzumab failure. However, since a high proportion of patients fail to respond to these alternative strategies, it is possible that cell escape from HER2 targeting may rely on HER2 independent pathways. The knowledge of these pathways deserve to be exploited to develop new therapies. We characterized two human HER2 overexpressing breast cancer cell lines resistant to trastuzumab and lapatinib (T100 and JIMT-1) from a molecular and biological point of view. Indeed, we assessed both in vitro and in vivo the activity of the multitarget inhibitor sorafenib. In both cell lines, the previously proposed mechanisms did not explain resistance to HER2 inhibitors. Notably, silencing HER2 by shRNA did not affect the growth of our cells, suggesting loss of reliance upon HER2. Moreover, we identified alterations in two antiapoptotic proteins Mcl-1 and Survivin which are known to be targets of the multikinase inhibitor sorafenib. Moreover, sorafenib, strongly inhibited the in vitro growth of T100 and JIMT-1 cells, through the downregulation of both Mcl-1 and Survivin. Similar results were obtained in JIMT-1 xenografts subcutaneously injected in NOD SCID mice. We provide preclinical evidence that tumor cells resistant to trastuzumab and lapatinib may rely on HER2 independent pathways that can be efficiently inhibited by sorafenib.
Collapse
Affiliation(s)
- Giorgio Valabrega
- Department of Oncological Sciences, Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, Candiolo, TO, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Li C, Cao S, Liu Z, Ye X, Chen L, Meng S. RNAi-mediated downregulation of uPAR synergizes with targeting of HER2 through the ERK pathway in breast cancer cells. Int J Cancer 2010; 127:1507-16. [PMID: 20063318 DOI: 10.1002/ijc.25159] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Overexpression of urokinase plasminogen activator receptor (uPAR) or HER2 (erbB-2) in breast cancer is associated with a poor prognosis. We previously reported that gene amplification and overexpression of HER2 and uPAR occur in 70% of HER2-amplified tumor cells from blood or tissue of patients with breast cancer. In this study, we first examined whether depletion of HER2 and uPAR synergized in suppression of the growth of breast cancer cells that overexpress both HER2 and uPAR (SKBR3 and ZR 751). The results showed that depletion of either HER2 or uPAR by RNA interference suppressed cell growth and induced cell apoptosis, but that these effects were significantly enhanced in cells depleted of both HER2 and uPAR. Mechanistic analysis demonstrated that silencing of HER2 and uPAR caused suppression of MAPK signal pathways, resulting in decrease of ERK activity and prompting a high p38/ERK activity ratio. The level of the phosphorylated form of ERK was decreased in cells depleted of HER2, uPAR or both, and the effect in cells depleted of both is the most evident. Moreover, downregulation of uPAR synergized with trastuzumab to suppress the growth and induce apoptosis of SKBR3 and ZR 751 cells. uPAR RNAi significantly enhanced the effect of trastuzumab on inhibition of MAPK signal pathways. In conclusion, targeting HER2 and uPAR has a synergistic inhibitory effect on breast cancer cells. Our results provide evidence that simultaneous downregulation of HER2 and uPAR may offer an effective tool for breast cancer therapy.
Collapse
Affiliation(s)
- Changfei Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
8
|
Wang YQ, Chen TM, Lei Y, Feng HL, Wang K, Zhang Y. CGI-100 specific shRNA inhibits proliferation and induces differentiation in leukemia K562 cells. Chin J Cancer Res 2010. [DOI: 10.1007/s11670-010-0126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
9
|
Corso S, Ghiso E, Cepero V, Sierra JR, Migliore C, Bertotti A, Trusolino L, Comoglio PM, Giordano S. Activation of HER family members in gastric carcinoma cells mediates resistance to MET inhibition. Mol Cancer 2010; 9:121. [PMID: 20500904 PMCID: PMC2892452 DOI: 10.1186/1476-4598-9-121] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 05/26/2010] [Indexed: 11/25/2022] Open
Abstract
Background Gastric cancer is the second leading cause of cancer mortality in the world. The receptor tyrosine kinase MET is constitutively activated in many gastric cancers and its expression is strictly required for survival of some gastric cancer cells. Thus, MET is considered a good candidate for targeted therapeutic intervention in this type of tumor, and MET inhibitors recently entered clinical trials. One of the major problems of therapies targeting tyrosine kinases is that many tumors are not responsive to treatment or eventually develop resistance to the drugs. Perspective studies are thus mandatory to identify the molecular mechanisms that could cause resistance to these therapies. Results Our in vitro and in vivo results demonstrate that, in MET-addicted gastric cancer cells, the activation of HER (Human Epidermal Receptor) family members induces resistance to MET silencing or inhibition by PHA-665752 (a selective kinase inhibitor). We provide molecular evidences highlighting the role of EGFR, HER3, and downstream signaling pathways common to MET and HER family in resistance to MET inhibitors. Moreover, we show that an in vitro generated gastric cancer cell line resistant to MET-inhibition displays overexpression of HER family members, whose activation contributes to maintenance of resistance. Conclusions Our findings predict that gastric cancer tumors bearing constitutive activation of HER family members are poorly responsive to MET inhibition, even if this receptor is constitutively active. Moreover, the appearance of these alterations might also be responsible for the onset of resistance in initially responsive tumors.
Collapse
Affiliation(s)
- Simona Corso
- Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo (Torino), Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fu WJ, Li JC, Wu XY, Yang ZB, Mo ZN, Huang JW, Xia GW, Ding Q, Liu KD, Zhu HG. Small interference RNA targeting Krüppel-like factor 8 inhibits the renal carcinoma 786-0 cells growth in vitro and in vivo. J Cancer Res Clin Oncol 2010; 136:1255-65. [PMID: 20182889 DOI: 10.1007/s00432-010-0776-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 01/14/2010] [Indexed: 12/20/2022]
Abstract
PURPOSE Krüppel-like factor 8 (KLF8) plays an important role in oncogenic transformation and is highly overexpressed in several types of human cancer. We investigated the expression of KLF8 in renal cell carcinoma (RCC) tissues and the role of small interference RNA targeting KLF8 on growth, cell cycle, and apoptosis of human renal carcinoma cell line 786-0 in vitro and in vivo. METHODS The expression of KLF8 protein and mRNA in human renal carcinoma samples was detected by immunochemistry and reverse transcription polymerase chain reaction (RT-PCR). The effects of small interference RNA (siRNA) targeting KLF8 on growth, invasiveness, cell cycle, and apoptosis of 786-0 cells were evaluated by MTT assay, Matrigel Invasion Assay, and flow cytometry in vitro. We also investigated effect of siRNA targeting KLF8 on growth of 786-0 cells in nude mice in vivo. RESULTS Immunohistochemistry and RT-PCR results showed the expression of KLF8 protein and mRNA in RCC specimens was significantly higher than that in the adjacent non-tumorous renal tissues (P < 0.001). KLF8-siRNA depressed the cellular growth and invasion of 786-0 cells in vitro. The flow cytometry results revealed that KLF8-siRNA could induce an increase in G0/G1 phase cells and induce cell apoptosis. Intratumor injection of siRNA targeting KLF8 inhibited the growth of 786-0 cells in vivo in nude mice tumor model. CONCLUSIONS KLF8 possibly involved in regulating the cell growth, invasion, apoptosis, and proliferation of renal carcinoma cancer cells. Blocking the KLF8 channel might be a potential therapeutic strategy for RCC.
Collapse
Affiliation(s)
- Wei-Jin Fu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yoshizawa T, Hattori Y, Hakoshima M, Koga K, Maitani Y. Folate-linked lipid-based nanoparticles for synthetic siRNA delivery in KB tumor xenografts. Eur J Pharm Biopharm 2008; 70:718-25. [DOI: 10.1016/j.ejpb.2008.06.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 06/13/2008] [Accepted: 06/20/2008] [Indexed: 10/21/2022]
|
12
|
Goldblatt EM, Erickson PA, Gentry ER, Gryaznov SM, Herbert BS. Lipid-conjugated telomerase template antagonists sensitize resistant HER2-positive breast cancer cells to trastuzumab. Breast Cancer Res Treat 2008; 118:21-32. [PMID: 18853252 DOI: 10.1007/s10549-008-0201-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/19/2008] [Indexed: 01/21/2023]
Abstract
HER2 amplification in breast cancer is associated with a more aggressive disease, greater likelihood of recurrence, and decreased survival compared to women with HER2-negative breast cancer. Trastuzumab is a monoclonal antibody that inhibits HER2 activity, making this compound an important therapeutic option for patients with HER2-positive breast cancer. However, resistance to trastuzumab develops rapidly in a large number of breast cancer patients. The objective of this study was to determine whether GRN163L, a telomerase template antagonist currently in clinical trials for cancer treatment, can augment the effects of trastuzumab in breast cancer cells with HER2 amplification. GRN163L was effective in inhibiting telomerase activity and shortening telomeres in HER2-positive breast cancer cells. We show that GRN163L acts synergistically with trastuzumab in inhibiting HER2-positive breast cancer cell growth. More importantly, we show that GRN163L can restore the sensitivity of therapeutic-resistant breast cancer cells to trastuzumab. These findings implicate that telomerase template antagonists have potential use in the treatment of cancers that have developed resistance to traditional cancer therapy.
Collapse
Affiliation(s)
- Erin M Goldblatt
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202-5251, USA
| | | | | | | | | |
Collapse
|
13
|
Ma JJ, Chen BL, Xin XY. Inhibition of multi-drug resistance of ovarian carcinoma by small interfering RNA targeting to MRP2 gene. Arch Gynecol Obstet 2008; 279:149-57. [DOI: 10.1007/s00404-008-0690-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Accepted: 05/08/2008] [Indexed: 11/29/2022]
|
14
|
Böldicke T. Blocking translocation of cell surface molecules from the ER to the cell surface by intracellular antibodies targeted to the ER. J Cell Mol Med 2007; 11:54-70. [PMID: 17367501 PMCID: PMC4401220 DOI: 10.1111/j.1582-4934.2007.00002.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Intracellular antibodies (intrabodies) constitute a potent tool to neutralize the function of target proteins inside specific cell compartments (cytosol, nucleus, mitochondria and ER). The intrabody technology is an attractive alternative to the generation of gene-targeted knockout animals and complements or replaces knockdown techniques such as antisense-RNA, RNAi and RNA aptamers. This article focuses on intrabodies targeted to the ER. Intracellular anti-bodies expressed and retained inside the ER (ER intrabodies) are shown to be highly efficient in blocking the translocation of secreted and cell surface molecules from the ER to the cell surface.The advantage of ER intrabodies over cytoplasmic intrabodies is that they are correctly folded and easier to select. A particular advantage of the intrabody technology over existing ones is the possibility of inhibiting selectively post-translational modifications of proteins.The main applications of ER intrabodies so far have been (i) inactivation of oncogenic receptors and (ii) functional inhibition of virus envelope proteins and virus-receptor molecules on the surface of host cells.In cancer research, the number of in vivo mouse models for evaluation of the therapeutic potential of intrabodies is increasing.In the future, endosomal localized receptors involved in bacterial and viral infections, intracellular oncogenic receptors and enzymes involved in glycosylation of tumour antigens might be new targets for ER intrabodies.
Collapse
Affiliation(s)
- Thomas Böldicke
- Helmholtz Centre for Infection Research, Department of Gene Regulation and Differentiation,Braunschweig, Germany.
| |
Collapse
|