1
|
Pompili S, Vetuschi A, Latella G, Smakaj A, Sferra R, Cappariello A. PPAR-Gamma Orchestrates EMT, AGE, and Cellular Senescence Pathways in Colonic Epithelium and Restrains the Progression of IBDs. Int J Mol Sci 2023; 24:ijms24108952. [PMID: 37240299 DOI: 10.3390/ijms24108952] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Intestinal fibrosis, the most common complication of inflammatory bowel disease (IBD), is characterized by an uncontrolled deposition of extracellular matrix proteins leading to complications resolvable only with surgery. Transforming growth factor is the key player in the epithelial-mesenchymal transition (EMT) and fibrogenesis process, and some molecules modulating its activity, including peroxisome proliferator-activated receptor (PPAR)-γ and its agonists, exert a promising antifibrotic action. The purpose of this study is to evaluate the contribution of signaling other than EMT, such as the AGE/RAGE (advanced glycation end products/receptor of AGEs) and the senescence pathways, in the etiopathogenesis of IBD. We used human biopsies from control and IBD patients, and we used a mouse model of colitis induced by dextran-sodium-sulfate (DSS), without/with treatments with GED (PPAR-gamma-agonist), or 5-aminosalicylic acid (5-ASA), a reference drug for IBD treatment. In patients, we found an increase in EMT markers, AGE/RAGE, and senescence signaling activation compared to controls. Consistently, we found the overexpression of the same pathways in DSS-treated mice. Surprisingly, the GED reduced all the pro-fibrotic pathways, in some circumstances more efficiently than 5-ASA. Results suggest that IBD patients could benefit from a combined pharmacological treatment targeting simultaneously different pathways involved in pro-fibrotic signals. In this scenario, PPAR-gamma activation could be a suitable strategy to alleviate the signs and symptoms of IBD and also its progression.
Collapse
Affiliation(s)
- Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giovanni Latella
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Amarildo Smakaj
- Department of Geriatrics and Ortopaedic Sciences, University Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Alfredo Cappariello
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
2
|
Nagai S, Kitamura K, Kimura M, Yamamoto H, Katakura A, Shibukawa Y. Functional Expression of Mechanosensitive Piezo1/TRPV4 Channels in Mouse Osteoblasts. THE BULLETIN OF TOKYO DENTAL COLLEGE 2023; 64:1-11. [PMID: 36792153 DOI: 10.2209/tdcpublication.2022-0015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Mechanical stress is an important regulatory factor in bone homeostasis. Mechanical stimulation of osteoblasts has been shown to elicit an increase in the concentration of intracellular free Ca2+ ([Ca2+]i). The pattern of functional expression of mechanosensitive ion channels remains unclear, however. Therefore, the purpose of this study was to investigate the pharmacological characteristics of [Ca2+]i in response to direct mechanical stimulation in osteoblasts. The morphological expression of mechanosensitive ion channels was also examined. Mouse osteoblast-like cells (MC3T3-E1 cells) were loaded with fura-2-acetoxymethyl ester, after which [Ca2+]i was measured. Increased levels of [Ca2+]i were observed in MC3T3-E1 cells in response to direct mechanical stimulation by means of a glass micropipette, but no desensitization. Application of a hypotonic solution also induced an increase in [Ca2+]i but was accompanied by a desensitizing effect. Extracellular Gd3+, GsMTx4, or RN-1734 reversibly inhibited this mechanical stimulation-induced increase in [Ca2+]i, whereas no inhibitory effect was observed with HC030031 or clemizole. When osteoblasts were stimulated with Yoda1, an increase was observed in [Ca2+]i together with a significant desensitizing effect. Immunoreactivity against Piezo1 and TRPV4 channel antibodies was detected in MC3T3-E1 cells. These results suggest that osteoblasts express Piezo1 and TRPV4 channels, which are involved in mechanosensitive processes during mechanical stress.
Collapse
Affiliation(s)
- Sayoko Nagai
- Department of Physiology, Tokyo Dental College.,Department of Oral Pathobiological Science and Surgery, Tokyo Dental College
| | - Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Akira Katakura
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College
| | | |
Collapse
|
3
|
Zappalà A, Romano IR, D’Angeli F, Musumeci G, Lo Furno D, Giuffrida R, Mannino G. Functional Roles of Connexins and Gap Junctions in Osteo-Chondral Cellular Components. Int J Mol Sci 2023; 24:ijms24044156. [PMID: 36835567 PMCID: PMC9967557 DOI: 10.3390/ijms24044156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Gap junctions (GJs) formed by connexins (Cxs) play an important role in the intercellular communication within most body tissues. In this paper, we focus on GJs and Cxs present in skeletal tissues. Cx43 is the most expressed connexin, participating in the formation of both GJs for intercellular communication and hemichannels (HCs) for communication with the external environment. Through GJs in long dendritic-like cytoplasmic processes, osteocytes embedded in deep lacunae are able to form a functional syncytium not only with neighboring osteocytes but also with bone cells located at the bone surface, despite the surrounding mineralized matrix. The functional syncytium allows a coordinated cell activity through the wide propagation of calcium waves, nutrients and anabolic and/or catabolic factors. Acting as mechanosensors, osteocytes are able to transduce mechanical stimuli into biological signals that spread through the syncytium to orchestrate bone remodeling. The fundamental role of Cxs and GJs is confirmed by a plethora of investigations that have highlighted how up- and downregulation of Cxs and GJs critically influence skeletal development and cartilage functions. A better knowledge of GJ and Cx mechanisms in physiological and pathological conditions might help in developing therapeutic approaches aimed at the treatment of human skeletal system disorders.
Collapse
Affiliation(s)
- Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Correspondence: (D.L.F.); (R.G.)
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Correspondence: (D.L.F.); (R.G.)
| | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| |
Collapse
|
4
|
Rotherham M, Nahar T, Broomhall TJ, Telling ND, El Haj AJ. Remote magnetic actuation of cell signalling for tissue engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Chen J, Sang Y, Li J, Zhao T, Liu B, Xie S, Sun W. Low-level controllable blue LEDs irradiation enhances human dental pulp stem cells osteogenic differentiation via transient receptor potential vanilloid 1. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112472. [PMID: 35660312 DOI: 10.1016/j.jphotobiol.2022.112472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Human dental pulp stem cells (hDPSCs) have attracted tremendous attention in tissue regeneration engineering due to their excellent multidirectional differentiation potential. Photobiomodulation (PBM) using low-level light-emitting diodes (LEDs) or lasers has been proved to promote the osteogenesis of mesenchymal stem cells. However, the effect of LEDs on osteogenic differentiation of hDPSCs has little published data. In this work, the effect of blue LEDs with different energy densities of 2, 4, 6, 8, 10 J/cm2 on osteogenic differentiation of hDPSCs was examined by using in vitro ALP staining, ALP activity, mineralization, and real-time PCR. The results showed that compared with the control group, osteogenic differentiation was significantly enhanced in blue LEDs treated groups. As the energy density increased, the level of osteogenesis initially increased and then decreased reaching the highest level at 6 J/cm2. Transient receptor potential vanilloid 1 (TRPV1), a Ca2+ ion channel, was believed to be a potential player in osteogenesis by photobiomodulation. By immunofluorescence assay, calcium influx assay, PCR, and ALP staining, it was shown that blue LEDs irradiation can increase the activity of TRPV1 and intracellular calcium levels similarly to the agonist of TRPV1 capsaicin. Additionally, pretreatment with capsazepine, a selective TRPV1 inhibitor, was able to abrogate the osteogenic effect of blue LEDs. In conclusion, these findings proposed that blue LEDs can promote the osteogenesis of hDPSCs within the appropriate range (4-8 J/cm2) during culture of osteogenic medium, and TRPV1/Ca2+ may be an essential signaling pathway involved in blue LEDs-induced osteogenesis, providing new insights for the use of hDPSCs in tissue regeneration engineering.
Collapse
Affiliation(s)
- Jiaqi Chen
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China; Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yimeng Sang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jiaying Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China; Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Tian Zhao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China; Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Bin Liu
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Sijing Xie
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Weibin Sun
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
6
|
Arimoto S, Hasegawa T, Iwata E, Takeda D, Akashi M. Effect of compression on mandibular fracture haematoma-derived cells. Br J Oral Maxillofac Surg 2022; 60:1216-1223. [PMID: 35811262 DOI: 10.1016/j.bjoms.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022]
Abstract
Mechanical stress induces a variety of biochemical and morphological reactions in bone cell biology. This study aimed to investigate appropriate pressures of osteogenesis on the biological responses of 3-dimensional cultured human mandibular fracture haematoma-derived cells by compressive loading. Six patients with mandibular fractures who underwent open reduction and internal fixation were included in the study. During the operation, fracture haematomas that formed fibrin clots were manually removed before irrigation. First, pressures were applied to human mandibular fracture haematoma-derived cell-seeded collagen sponges. The sponges were subjected to mechanical compression using loading equipment applied at no compression, 0.5, or 1 mm. Compressive loading was applied to the samples prior to compression for 0, 6, 12, or 24 hours. Collagen sponge samples were collected for quantification of mRNA using several parameters including alkaline phosphatase (ALP), osteopontin (OPN), osterix (OSX), runt-related gene 2 (RUNX2), protein level, and immunocytochemistry (anti-sclerostin). Among these the 0.5 mm compression group compared with the control and 1.0 mm compression groups upregulated mRNA expression of OPN and OSX after 24 hours. Additionally, compared with the control group, a significantly higher OSX gene expression was observed in both the 0.5 mm and 1.0 mm groups after 6, 12, and 24 hours of compression (p < 0.05). However, no significant differences were observed regarding ALP and RUNX2 expression. These results indicated increased stimulation of osteogenesis of the mandibular fracture-line gap in the 0.5 mm compression group compared with the control and 1.0 mm compression groups.
Collapse
Affiliation(s)
- Satomi Arimoto
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Japan
| | - Takumi Hasegawa
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Japan.
| | - Eiji Iwata
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Japan
| | - Daisuke Takeda
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Japan
| | - Masaya Akashi
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Japan
| |
Collapse
|
7
|
Kim AG, Kim TW, Kwon WK, Lee KH, Jeong S, Hwang MH, Choi H. Microfluidic Chip with Low Constant-Current Stimulation (LCCS) Platform: Human Nucleus Pulposus Degeneration In Vitro Model for Symptomatic Intervertebral Disc. MICROMACHINES 2021; 12:1291. [PMID: 34832700 PMCID: PMC8621874 DOI: 10.3390/mi12111291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023]
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP) in the lumbar spine. This phenomenon is caused by several processes, including matrix degradation in IVD tissues, which is mediated by matrix metalloproteinases (MMPs) and inflammatory responses, which can be mediated by interactions among immune cells, such as macrophages and IVD cells. In particular, interleukin (IL)-1 beta (β), which is a master regulator secreted by macrophages, mediates the inflammatory response in nucleus pulposus cells (NP) and plays a significant role in the development or progression of diseases. In this study, we developed a custom electrical stimulation (ES) platform that can apply low-constant-current stimulation (LCCS) signals to microfluidic chips. Using this platform, we examined the effects of LCCS on IL-1β-mediated inflammatory NP cells, administered at various currents (5, 10, 20, 50, and 100 μA at 200 Hz). Our results showed that the inflammatory response, induced by IL-1β in human NP cells, was successfully established. Furthermore, 5, 10, 20, and 100 μA LCCS positively modulated inflamed human NP cells' morphological phenotype and kinetic properties. LCCS could affect the treatment of degenerative diseases, revealing the applicability of the LCCS platform for basic research of electroceuticals.
Collapse
Affiliation(s)
- An-Gi Kim
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul 08308, Korea; (A.-G.K.); (T.-W.K.)
| | - Tae-Won Kim
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul 08308, Korea; (A.-G.K.); (T.-W.K.)
| | - Woo-Keun Kwon
- Department of Neurosurgery, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea;
| | - Kwang-Ho Lee
- Division of Mechanical and Biomedical, Mechatronics, and Materials Science and Engineering, College of Engineering, Kangwon National University, Chuncheon 24341, Korea;
| | - Sehoon Jeong
- Department of Healthcare Information Technology, Inje University, Gimhae 50834, Korea;
| | - Min-Ho Hwang
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul 08308, Korea; (A.-G.K.); (T.-W.K.)
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul 08308, Korea; (A.-G.K.); (T.-W.K.)
| |
Collapse
|
8
|
Drapal V, Gamble JM, Robinson JL, Tamerler C, Arnold PM, Friis EA. Integration of clinical perspective into biomimetic bioreactor design for orthopedics. J Biomed Mater Res B Appl Biomater 2021; 110:321-337. [PMID: 34510706 PMCID: PMC9292211 DOI: 10.1002/jbm.b.34929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022]
Abstract
The challenges to accommodate multiple tissue formation metrics in conventional bioreactors have resulted in an increased interest to explore novel bioreactor designs. Bioreactors allow researchers to isolate variables in controlled environments to quantify cell response. While current bioreactor designs can effectively provide either mechanical, electrical, or chemical stimuli to the controlled environment, these systems lack the ability to combine all these stimuli simultaneously to better recapitulate the physiological environment. Introducing a dynamic and systematic combination of biomimetic stimuli bioreactor systems could tremendously enhance its clinical relevance in research. Thus, cues from different tissue responses should be studied collectively and included in the design of a biomimetic bioreactor platform. This review begins by providing a summary on the progression of bioreactors from simple to complex designs, focusing on the major advances in bioreactor technology and the approaches employed to better simulate in vivo conditions. The current state of bioreactors in terms of their clinical relevance is also analyzed. Finally, this review provides a comprehensive overview of individual biophysical stimuli and their role in establishing a biomimetic microenvironment for tissue engineering. To date, the most advanced bioreactor designs only incorporate one or two stimuli. Thus, the cell response measured is likely unrelated to the actual clinical performance. Integrating clinically relevant stimuli in bioreactor designs to study cell response can further advance the understanding of physical phenomenon naturally occurring in the body. In the future, the clinically informed biomimetic bioreactor could yield more efficiently translatable results for improved patient care.
Collapse
Affiliation(s)
- Victoria Drapal
- Bioengineering Program, University of Kansas, Lawrence, Kansas, USA
| | - Jordan M Gamble
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Jennifer L Robinson
- Bioengineering Program, University of Kansas, Lawrence, Kansas, USA.,Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Candan Tamerler
- Bioengineering Program, University of Kansas, Lawrence, Kansas, USA.,Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas, USA.,Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas, USA
| | - Paul M Arnold
- Carle School of Medicine, University of Illinois-Champaign Urbana, Champaign, Illinois, USA
| | - Elizabeth A Friis
- Bioengineering Program, University of Kansas, Lawrence, Kansas, USA.,Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas, USA.,Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
9
|
Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells 2021; 10:cells10092383. [PMID: 34572032 PMCID: PMC8471159 DOI: 10.3390/cells10092383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.
Collapse
|
10
|
Pouraghaei Sevari S, Kim JK, Chen C, Nasajpour A, Wang CY, Krebsbach PH, Khademhosseini A, Ansari S, Weiss PS, Moshaverinia A. Whitlockite-Enabled Hydrogel for Craniofacial Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35342-35355. [PMID: 34297530 DOI: 10.1021/acsami.1c07453] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Growth-factor-free bone regeneration remains a challenge in craniofacial engineering. Here, we engineered an osteogenic niche composed of a commercially modified alginate hydrogel and whitlockite microparticles (WHMPs), which impart tunable physicochemical properties that can direct osteogenesis of human gingival mesenchymal stem cells (GMSCs). Our in vitro studies demonstrate that WHMPs induce osteogenesis of GMSCs more effectively than previously demonstrated hydroxyapatite microparticles (HApMPs). Alginate-WHMP hydrogels showed higher elasticity without any adverse effects on the viability of the encapsulated GMSCs. Moreover, the alginate-WHMP hydrogels upregulate the mitogen-activated protein kinase (MAPK) pathway, which in turn orchestrates several osteogenic markers, such as RUNX2 and OCN, in the encapsulated GMSCs. Concurrent coculture studies with human osteoclasts demonstrate that GMSCs encapsulated in alginate-WHMP hydrogels downregulate osteoclastic activity, potentially due to release of Mg2+ ions from the WHMPs along with secretion of osteoprotegerin from the GMSCs. In vivo studies demonstrated that the GMSCs encapsulated in our osteogenic niche were able to promote bone repair in calvarial defects in murine models. Altogether, our results confirmed the development of a promising treatment modality for craniofacial bone regeneration based on an injectable growth-factor-free hydrogel delivery system.
Collapse
Affiliation(s)
- Sevda Pouraghaei Sevari
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jin Koo Kim
- Section of Periodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amir Nasajpour
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Cun-Yu Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul H Krebsbach
- Section of Periodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90049, United States
| | - Sahar Ansari
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S Weiss
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Habuddha V, Suwannasing C, Buddawong A, Seenprachawong K, Duangchan T, Sombutkayasith C, Supokawej A, Weerachatyanukul W, Asuvapongpatana S. Characterization of Thrombospondin Type 1 Repeat in Haliotis diversicolor and Its Possible Role in Osteoinduction. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:641-652. [PMID: 34471969 DOI: 10.1007/s10126-021-10054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Thrombospondin repeats (TSR) are important peptide domains present in the sequences of many extracellular and transmembrane proteins with which a variety of ligands interact. In this study, we characterized HdTSR domains in the ADAMTS3 protein of Thai abalone, Haliotis diversicolor, based on the transcriptomic analysis of its mantle tissues. PCR amplification and localization studies demonstrated the existence of HdTSR transcript and protein in H. diversicolor tissues, particularly in both the inner and outer mantle epithelial folds. We, therefore, generated a short recombinant protein, termed HdTSR1/2, based on the existence of the WxxWxxW or WxxxxW motif (which binds to TGF-β, a known signaling in bone formation/repair) in HdTSR1 and HdTSR2 sequences and used it to test the osteoinduction function in the pre-osteoblastic cell line, MC3T3-E1. This recombinant protein demonstrated the ability to induce the differentiation of MC3T3-E1 cells by the concentration- and time-dependent upregulation of many known osteogenic markers, including RUNX2, COL1A1, OCN, and OPN. We also demonstrated the upregulation of the SMAD2 gene after cell treatment with HdTSR1/2 proteinindicating its possible interaction through TGF-β, which thus activates its downstream signaling cascade and triggers the biomineralization process in the differentiated osteoblastic cells. Together, HdTSR domains existed in an extracellular ADAMTS3 protein in the mantle epithelium of H. diversicolor and played a role in osteoinduction as similar to the other nacreous proteins, opening up its possibility to be developed as an inducing agent of bone repair.
Collapse
Affiliation(s)
- Valainipha Habuddha
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- School of Allied Health Science, Walailak University, Nakhon Si Thammarat, Thailand
| | - Chanyatip Suwannasing
- Department of Radiological Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Aticha Buddawong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- Chulabhorn International College of Medicine, Thammasat University, Khlong Nueng Pathumthani 12121, Rangsit Campus, Thailand
| | - Kanokwan Seenprachawong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University (Salaya Campus), Salaya, Nakhonpathom, Thailand
| | - Thitinat Duangchan
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University (Salaya Campus), Salaya, Nakhonpathom, Thailand
| | | | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University (Salaya Campus), Salaya, Nakhonpathom, Thailand
| | | | | |
Collapse
|
12
|
Yan T, Xie Y, He H, Fan W, Huang F. Role of nitric oxide in orthodontic tooth movement (Review). Int J Mol Med 2021; 48:168. [PMID: 34278439 PMCID: PMC8285047 DOI: 10.3892/ijmm.2021.5001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Nitric oxide (NO) is an ubiquitous signaling molecule that mediates numerous cellular processes associated with cardiovascular, nervous and immune systems. NO also plays an essential role in bone homeostasis regulation. The present review article summarized the effects of NO on bone metabolism during orthodontic tooth movement in order to provide insight into the regulatory role of NO in orthodontic tooth movement. Orthodontic tooth movement is a process in which the periodontal tissue and alveolar bone are reconstructed due to the effect of orthodontic forces. Accumulating evidence has indicated that NO and its downstream signaling molecule, cyclic guanosine monophosphate (cGMP), mediate the mechanical signals during orthodontic-related bone remodeling, and exert complex effects on osteogenesis and osteoclastogenesis. NO has a regulatory effect on the cellular activities and functional states of osteoclasts, osteocytes and periodontal ligament fibroblasts involved in orthodontic tooth movement. Variations of NO synthase (NOS) expression levels and NO production in periodontal tissues or gingival crevicular fluid (GCF) have been found on the tension and compression sides during tooth movement in both orthodontic animal models and patients. Furthermore, NO precursor and NOS inhibitor administration increased and reduced the tooth movement in animal models, respectively. Further research is required in order to further elucidate the underlying mechanisms and the clinical application prospect of NO in orthodontic tooth movement.
Collapse
Affiliation(s)
- Tong Yan
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yongjian Xie
- Department of Orthodontic Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Fang Huang
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
13
|
Huang L, Yang Z, Liu R, Xiao X, Zhou C, Yin X, Zou S, Chen J. Lactoferrin promotes osteogenesis of MC3T3-E1 cells induced by mechanical strain in an extracellular signal-regulated kinase 1/2-dependent manner. Am J Orthod Dentofacial Orthop 2020; 159:e113-e121. [PMID: 33280973 DOI: 10.1016/j.ajodo.2020.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 07/01/2020] [Accepted: 08/01/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION This study aimed to investigate the role of lactoferrin (LF) in the mechanical strain-induced osteogenesis of nontransformed osteoblastic cells (MC3T3-E1 cells) and related mechanism. METHODS MC3T3-E1 cells were cultured in vitro and treated with 100 μg/mL LF, followed by a 2000 μ mechanical strain load. U0126 was used to determine the role of extracellular signal-regulated kinase 1/2 (Erk1/2). Alizarin red S staining was performed to observe the cell mineralization potential. The osteogenic results were analyzed by reverse transcription-polymerase chain reaction and western blotting. RESULTS The expression of Col1, Alp, Ocn, Bsp, and Opn mRNA and p-Erk1/2 proteins was significantly upregulated under mechanical strain load. In addition, mineralized nodule formation was increased. After adding LF, the expression of the biomarkers and the formation of mineralized nodules were further promoted. On treatment with the Erk1/2 inhibitor U0126, the expression of Col1, Alp, and p-Erk1/2 mRNA and protein was significantly downregulated. CONCLUSIONS These findings demonstrate that LF promotes osteogenic activity by activating osteogenesis-related biomarkers, corroborating that the effects of mechanical strain depend on Erk1/2 signaling pathway.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhenjin Yang
- Department of Orthodontics, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Ruojing Liu
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyue Xiao
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jianwei Chen
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Osteocyte apoptosis: the roles and key molecular mechanisms in resorption-related bone diseases. Cell Death Dis 2020; 11:846. [PMID: 33046704 PMCID: PMC7552426 DOI: 10.1038/s41419-020-03059-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/18/2023]
Abstract
Vital osteocytes have been well known to function as an important orchestrator in the preservation of robustness and fidelity of the bone remodeling process. Nevertheless, some key pathological factors, such as sex steroid deficiency and excess glucocorticoids, and so on, are implicated in inducing a bulk of apoptotic osteocytes, subsequently resulting in resorption-related bone loss. As much, osteocyte apoptosis, under homeostatic conditions, is in an optimal state of balance tightly controlled by pro- and anti-apoptotic mechanism pathways. Importantly, there exist many essential signaling proteins in the process of osteocyte apoptosis, which has a crucial role in maintaining a homeostatic environment. While increasing in vitro and in vivo studies have established, in part, key signaling pathways and cross-talk mechanism on osteocyte apoptosis, intrinsic and complex mechanism underlying osteocyte apoptosis occurs in various states of pathologies remains ill-defined. In this review, we discuss not only essential pro- and anti-apoptotic signaling pathways and key biomarkers involved in these key mechanisms under different pathological agents, but also the pivotal role of apoptotic osteocytes in osteoclastogenesis-triggered bone loss, hopefully shedding new light on the attractive and proper actions of pharmacotherapeutics of targeting apoptosis and ensuing resorption-related bone diseases such as osteoporosis and fragility fractures.
Collapse
|
15
|
Phosphodiesterase 10A Is a Mediator of Osteogenic Differentiation and Mechanotransduction in Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells Int 2020; 2020:7865484. [PMID: 32587621 PMCID: PMC7294361 DOI: 10.1155/2020/7865484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 11/17/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (hMSCs) are capable of differentiating into the osteogenic lineage, and for osteogenic differentiation, mechanical loading is a relevant stimulus. Mechanotransduction leads to the formation of second messengers such as cAMP, cGMP, or Ca2+ influx resulting in the activation of transcription factors mediating gene regulation. The second messengers cAMP and cGMP are degraded by phosphodiesterase isoenzymes (PDE), but the role of these enzymes during osteogenic differentiation or mechanotransduction remains unclear. Here, we focused on the isoenzyme phosphodiesterase 10A (PDE10A) and its role during osteogenic commitment and mechanotransduction. We observed a time-dependent decrease of PDE10A expression in hMSC undergoing differentiation towards the osteogenic lineage. PDE10A inhibition by papaverine diminished osteogenic differentiation. While applying mechanical strain via cyclic stretching of hMSCs led to an upregulation of PDE10A gene expression, inhibition of PDE10A using the drug papaverine repressed expression of mechanoresponsive genes. We conclude that PDE10A is a modulator of osteogenic differentiation as well as mechanotransduction in hMSCs. Our data further suggests that the relative increase of cAMP, rather than the absolute cAMP level, is a key driver of the observed effects.
Collapse
|
16
|
Variation of the Cytokine Profiles in Gingival Crevicular Fluid Between Different Groups of Periodontally Healthy Teeth. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020. [DOI: 10.2478/sjecr-2019-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Profiling of biomarkers of physiological process represents an integrative part in optimisation of diagnostic markers in order to adjust the diagnostic ranges to the potential effects of the local factors such occlusal forces in case of periodontal tissues. The objective of this study was estimation of IL-1β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12, IL-13, IL-17, IL-22, TNFα and IFNγ concentrations in gingival crevicular fluid samples (GCF) between different groups of teeth. Two hundred fifty-nine systemically healthy non-smokers having at least one vital tooth without restorations, with healthy periodontal tissues, were clinically examined and the GCF sample was retrieved. The cytokine levels were estimated using flow cytometry and compared between central incisors (CI), lateral incisors, canines, first premolars, second premolars, first molars and second molars. Cytokine profiles varied between different groups of teeth with tendency of increase in proinflammatory cytokines from anterior teeth toward molars. Molars might be considered teeth with natural predisposition for faster bone resorption while the adjustment of diagnostic range of periodontal biomarkers for anterior or posterior teeth should be considered within diagnostic context. Cytokine profiles varied between different groups of teeth with tendency of increase in proinflammatory cytokines from anterior teeth toward molars. Molars might be considered teeth with natural predisposition for faster bone resorption while the adjustment of diagnostic range of periodontal biomarkers for anterior or posterior teeth should be considered within diagnostic context.
Collapse
|
17
|
Marciniak J, Lossdörfer S, Knaup I, Bastian A, Craveiro RB, Jäger A, Wolf M. Orthodontic cell stress modifies proinflammatory cytokine expression in human PDL cells and induces immunomodulatory effects via TLR-4 signaling in vitro. Clin Oral Investig 2019; 24:1411-1419. [PMID: 31691860 DOI: 10.1007/s00784-019-03111-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Biomechanical orthodontics loading of the periodontium initiates a cascade of inflammatory signaling events that induce periodontal remodeling and finally facilitate orthodontic tooth movement. Pattern recognition receptors such as toll-like receptors (TLRs) have been well characterized for their ability to induce the activation of inflammatory, immunomodulatory cytokines. Here, we examined whether the cellular response of human periodontal ligament (hPDL) cells to mechanical stress involves TLR-4 signaling in vitro. MATERIALS AND METHODS Confluent hPDL cells were cultured in the presence of 5 μg/ml TLR-4 antibody (TLR-4ab) for 1 h prior to the induction of compressive forces by the use of round glass plates for 24 h. At harvest, interleukin-6 and interleukin-8 (IL-6, IL-8) mRNA and protein expression were analyzed by real-time PCR and ELISA. The immunomodulatory role of mechanical cell stress and TLR-4 signaling was addressed in co-culture experiments of hPDL and THP-1 cells targeting monocyte adhesion and by culturing osteoclastic precursors (RAW 264.7) in the presence of the conditioned medium of hPDL cells that had been mechanically loaded before. RESULTS Basal expression of IL-6 and IL-8 was not affected by TLR-4ab, but increased significantly upon mechanical loading of hPDL cells. When cells were mechanically stressed in the presence of TLR-4ab, the effect seen for loading alone was markedly reduced. Likewise, monocyte adhesion and osteoclastic differentiation were enhanced significantly by mechanical stress of hPDL cells and this effect was partially inhibited by TLR-4ab. CONCLUSIONS The results of the present study indicate a proinflammatory and immunomodulatory influence of mechanical loading on hPDL cells. Intracellular signaling involves a TLR-4-dependent pathway. CLINICAL RELEVANCE These findings hold out the prospect of interfering with the cellular response to mechanical cell stress in order to minimize undesired side effects of orthodontic tooth movement.
Collapse
Affiliation(s)
- Jana Marciniak
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.,Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Stefan Lossdörfer
- Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Isabel Knaup
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Asisa Bastian
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Rogerio B Craveiro
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Andreas Jäger
- Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
18
|
Jin J, Bakker AD, Wu G, Klein-Nulend J, Jaspers RT. Physicochemical Niche Conditions and Mechanosensing by Osteocytes and Myocytes. Curr Osteoporos Rep 2019; 17:235-249. [PMID: 31428977 PMCID: PMC6817749 DOI: 10.1007/s11914-019-00522-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Bone and muscle mass increase in response to mechanical loading and biochemical cues. Bone-forming osteoblasts differentiate into early osteocytes which ultimately mature into late osteocytes encapsulated in stiff calcified matrix. Increased muscle mass originates from muscle stem cells (MuSCs) enclosed between their plasma membrane and basal lamina. Stem cell fate and function are strongly determined by physical and chemical properties of their microenvironment, i.e., the cell niche. RECENT FINDINGS The cellular niche is a three-dimensional structure consisting of extracellular matrix components, signaling molecules, and/or other cells. Via mechanical interaction with their niche, osteocytes and MuSCs are subjected to mechanical loads causing deformations of membrane, cytoskeleton, and/or nucleus, which elicit biochemical responses and secretion of signaling molecules into the niche. The latter may modulate metabolism, morphology, and mechanosensitivity of the secreting cells, or signal to neighboring cells and cells at a distance. Little is known about how mechanical loading of bone and muscle tissue affects osteocytes and MuSCs within their niches. This review provides an overview of physicochemical niche conditions of (early) osteocytes and MuSCs and how these are sensed and determine cell fate and function. Moreover, we discuss how state-of-the-art imaging techniques may enhance our understanding of these conditions and mechanisms.
Collapse
Affiliation(s)
- Jianfeng Jin
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Richard T Jaspers
- Laboratory for Myology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Shipley T, Farouk K, El-Bialy T. Effect of high-frequency vibration on orthodontic tooth movement and bone density. J Orthod Sci 2019; 8:15. [PMID: 31497574 PMCID: PMC6702681 DOI: 10.4103/jos.jos_17_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES: Previous reports have shown that high-frequency vibration can increase bone remodeling and accelerate tooth movement. The aim of this study was to evaluate the effects of high-frequency vibration on treatment phase tooth movement, and post-treatment bone density at initiation of retention, with cone-beam computed tomography (CBCT). MATERIALS AND METHODS: Thirty patients with initial Class I skeletal relationships, initial minimum-moderate crowding (3–5 mm), treated to completion with clear aligners and adjunctive high-frequency vibration, (HFV group) or no vibration, (Control group) were evaluated. The patients were instructed to change aligners as soon as they become loose. Changes in bone density associated with orthodontic treatment were evaluated using i-CAT cone-beam computed tomography (CBCT) and InVivo Anatomage® software to quantify density using Hounsfield units (HU) between treated teeth in 10 different regions. HU values were averaged and compared against baseline (T1) and between the groups at initiation of retention (T2). RESULTS: The average time for aligner change was 5.2 days in the HFV group, and 8.7 days in the control group (P = 0.0001). There was significant T1 to T2 increase of HU values in the upper arch (P = 0.0001) and the lower arch (P = 0.008) in the HFV group. There was no significant change in average HU values in the upper (P = 0.83) or lower arches (P = 0.33) in the control group. The intergroup comparison revealed a significant difference in the upper, (P = 0.0001) and lower arches (P = 0.007). CONCLUSION: High-frequency vibration adjunctive to clear aligners, allowed early aligner changes that led to shorter treatment time in minimum-moderate crowded cases. At initiation of retention, the HFV group demonstrated statistically significant increase as compared with pre-treatment bone density, whereas control subjects showed no significant change from pre-treatment bone density.
Collapse
Affiliation(s)
- Thomas Shipley
- Department of Dentistry, Division of Orthodontics, Arizona School of Dentistry and Oral Health, A.T. Still University, Mesa, Arizona, USA.,Department of Orthodontics, Mesa, Arizona, USA
| | - Khaled Farouk
- Department of Orthodontics, Faculty of Dental Medicine, Al-Azhar University, Cairo, Egypt.,Department of Dentistry, Division of Orthodontics, University of Alberta, Edmonton, Canada
| | - Tarek El-Bialy
- Department of Dentistry, Division of Orthodontics, 7-020D Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
NOTCH Signaling Is Activated through Mechanical Strain in Human Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells Int 2019; 2019:5150634. [PMID: 30936923 PMCID: PMC6413410 DOI: 10.1155/2019/5150634] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/28/2018] [Indexed: 11/18/2022] Open
Abstract
Skeletal development and remodeling of adult bone are critically controlled by activated NOTCH signaling in genetically modified mice. It is yet unclear whether NOTCH signaling is activated by mechanical strain sensed by bone cells. We found that expression of specific NOTCH target genes is induced after in vivo tibial mechanical loading in wild-type mice. We further applied mechanical strain through cyclic stretching in human bone marrow-derived mesenchymal stromal cells (BMSCs) in vitro by using a bioreactor system and detected upregulation of NOTCH target gene expression. Inhibition of the NOTCH pathway in primary BMSCs as well as telomerase-immortalized human BMSCs (hMSC-TERT) through the gamma-secretase inhibitor GSI XII blocked mechanotransduction and modulated actin cytoskeleton organization. Short-hairpin RNA gene silencing identified NOTCH2 as the key receptor mediating NOTCH effects on hMSC-TERT cells. Our data indicate a functional link between NOTCH activation and mechanotransduction in human BMSCs. We suggest that NOTCH signaling is an important contributor to molecular mechanisms that mediate the bone formation response to mechanical strain.
Collapse
|
21
|
de Almeida MDS, Guerra FDR, de Oliveira LP, Vieira CP, Pimentel ER. A Hypothesis for the Anti-Inflammatory and Mechanotransduction Molecular Mechanisms Underlying Acupuncture Tendon Healing. Acupunct Med 2018; 32:178-82. [DOI: 10.1136/acupmed-2013-010455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A previous study demonstrated that acupuncture increases the synthesis and reorganisation of collagen molecules in rat tendons after injury. Clinical studies have shown that acupuncture improves pain and functional activity in patients with tendinopathy. However, the molecular mechanisms underlying these effects are unknown. Recent studies have shown that acupuncture can modulate both anti-inflammatory (AI) and mechanotransduction (MT) molecular pathways. Moreover, the modulation of these pathways can increase type I collagen synthesis, which is the main factor that influences tendon biomechanical properties. Our hypothesis is that acupuncture increases synthesis and subsequent reorganisation of type I collagen during tendon healing by concomitant modulation of the Toll-like receptor-nuclear factor-κB AI pathway, the mitogen-activated protein kinases pathway and the Rho/Rac-F-actin MT pathway. Increased collagen synthesis and reorganisation requires that at least one acupoint is anatomically connected with the site of the injury because of the local tenoblast MT mechanism. Confirmation of this hypothesis will increase the knowledge of acupuncture modulation of the previously mentioned molecular pathways, and such confirmation may also help to establish the relationships between the different types of acupuncture needle stimulation and the influence of acupuncture stimuli on pathway activity levels. In addition, the downstream therapeutic effects of acupuncture therapy may be established. This hypothesis can be verified in a rat tendon healing model, and subsequent clinical protocols for tendon healing can be developed and evaluated as standalone therapies or as a component of a combination therapy.
Collapse
Affiliation(s)
- Marcos dos Santos de Almeida
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, São Paulo, Brazil
| | - Flávia Da Ré Guerra
- Department of Anatomy, Biomedical Science Institute, Federal University of Alfenas—UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Letícia Prado de Oliveira
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, São Paulo, Brazil
| | - Cristiano Pedrozo Vieira
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, São Paulo, Brazil
| | - Edson Rosa Pimentel
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
22
|
Guo Y, Lv Q, Zou XQ, Yan ZX, Yan YX. Mechanical Strain Regulates Osteoblast Proliferation Through Ca 2+-CaMK-CREB Signal Pathway. ACTA ACUST UNITED AC 2018; 31:100-106. [PMID: 28031098 DOI: 10.1016/s1001-9294(16)30033-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective To investigate the effects of mechanical strain on Ca2+-calmodulin dependent kinase (CaMK)-cAMP response element binding protein (CREB) signal pathway and proliferation of osteoblasts.Methods Using a four-point bending device, MC3T3-E1 cells were exposed to mechanical tensile strains of 2500 µs and 5000 µs at 0.5 Hz respectively. The intracellular free Ca2+ ([Ca2+]i) concentration and calmodulin activity were assayed by fluorospectrophotometry, CaMK II β, CREB, and phosphorylated (activated) CREB (p-CREB) were assessed by Western blot, and cells proliferation was assayed with MTT. Pretreatment with verapamil was carried out to block Ca2+ channel, and inhibitor U73122 was used to inhibit phospholipase C (PLC).Results Mechanical strains of 2500 µs and 5000 µs for 1 to 10 minutes both increased [Ca2+]i level of the cells. The 2500 µs strain, a periodicity of 1 h/d for 3 days, activated calmodulin, elevated protein levels of CaMK II β and p-CREB, and promoted cells proliferation, which were attenuated by pretreatment of verapamil or U73122. The effects of 5000 µs strain on calmodulin, CaMK II β, p-CREB and proliferation were contrary to 2500 µs strain.Conclusion The mechanical strain regulates osteoblasts proliferation through Ca2+-CaMK-CREB signal pathway via Ca2+ channel and PLC/IP3 transduction cascades.
Collapse
Affiliation(s)
- Yong Guo
- Depantment of Bioengineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, China; Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, China
| | - Qi Lv
- Experiment Management Center, Logistical College of People Armed Police Forces, Tianjin 300162, China
| | - Xian-Qiong Zou
- Depantment of Bioengineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Zhi-Xiong Yan
- Depantment of Bioengineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Yu-Xian Yan
- Depantment of Bioengineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, China; Experiment Management Center, Logistical College of People Armed Police Forces, Tianjin 300162, China
| |
Collapse
|
23
|
Setia SA, Levine LA. Devices for penile traction: the long and winding road to treating Peyronie's disease. Expert Rev Med Devices 2018; 15:517-526. [PMID: 30016597 DOI: 10.1080/17434440.2018.1502083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Penile traction therapy (PTT) is increasingly being recognized as a viable nonsurgical approach to Peyronie's disease (PD). The goal of this article is to review the current literature on PTT with attention to traction protocols, devices, and outcomes. AREAS COVERED Literature on the pathophysiology of PD, PTT as primary and adjunctive treatment for PD, perioperative use of PTT, and vacuum erection devices are all reviewed. Pertinent literature was obtained from the PubMed database. The key words 'penile traction,' 'mechanotransduction,' and 'Peyronie's disease' were searched and results were narrowed down based on relevance to the review. EXPERT COMMENTARY PTT appears beneficial but the true magnitude of effect is difficult to discern. Most studies are not randomized, have small sample sizes, lack control arms, or have varying traction protocols. Patient compliance is critical and new devices and traction protocols are needed to maximize the benefit of PTT.
Collapse
Affiliation(s)
- Shaan A Setia
- a Rush University Medical Center - Urology , Chicago , Illinois , USA
| | - Laurence A Levine
- a Rush University Medical Center - Urology , Chicago , Illinois , USA
| |
Collapse
|
24
|
Naskar S, Panda AK, Kumaran V, Mehta B, Basu B. Controlled Shear Flow Directs Osteogenesis on UHMWPE-Based Hybrid Nanobiocomposites in a Custom-Designed PMMA Microfluidic Device. ACS APPLIED BIO MATERIALS 2018; 1:414-435. [DOI: 10.1021/acsabm.8b00147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sharmistha Naskar
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Asish Kumar Panda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Viswanathan Kumaran
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Bhupesh Mehta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Bikramjit Basu
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
25
|
Bone remodeling induced by mechanical forces is regulated by miRNAs. Biosci Rep 2018; 38:BSR20180448. [PMID: 29844019 PMCID: PMC6028748 DOI: 10.1042/bsr20180448] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/13/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
The relationship between mechanical force and alveolar bone remodeling is an important issue in orthodontics because tooth movement is dependent on the response of bone tissue to the mechanical force induced by the appliances used. Mechanical cyclical stretch (MCS), fluid shear stress (FSS), compression, and microgravity play different roles in the cell differentiation and proliferation involved in bone remodeling. However, the underlying mechanisms are unclear, particularly the molecular pathways regulated by non-coding RNAs (ncRNAs) that play essential roles in bone remodeling. Amongst the various ncRNAs, miRNAs act as post-transcriptional regulators that inhibit the expression of their target genes. miRNAs are considered key regulators of many biologic processes including bone remodeling. Here, we review the role of miRNAs in mechanical force-induced bone metabolism.
Collapse
|
26
|
Meng G, Li C, Sun H, Lee I. Multiple calcium patterns of rat osteoblasts under fluidic shear stress. J Orthop Res 2018; 36:2039-2051. [PMID: 29266507 DOI: 10.1002/jor.23843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 12/14/2017] [Indexed: 02/04/2023]
Abstract
The intracellular calcium ([Ca2+ ]i ) response induced by external forces can be diverse and complex. Using primary osteoblasts from Wistar rats, we found multiple patterns of [Ca2+ ]i responses induced by fluidic shear stress (Fss), including homogeneous non-oscillation and heterogeneous oscillations. These multiple-patterned [Ca2+ ]i responses could be influenced by Fss intensity, cell density, and cell differentiation. Our real-time measurements with free calcium, ATP, ATP without calcium, suramin, apyrase, and thapsigargin confirmed homogeneous [Ca2+ ]i patterns and/or heterogeneous [Ca2+ ]i oscillations with respect to the combined degree of external Ca2+ influx, and intracellular Ca2+ release. Our theoretical model supported diverse Fss-induced calcium activities as well. We concluded that a singular factor of Ca2+ influx or release dominated to produce smooth homogeneous patterns, but combined factors produced oscillatory heterogeneous patterns. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2039-2051, 2018.
Collapse
Affiliation(s)
- Guixian Meng
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China.,Academy of Laboratory, Jilin Medical University, Jilin, China
| | - Cunbo Li
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Haiying Sun
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Imshik Lee
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| |
Collapse
|
27
|
Li FF, Zhang B, Cui JH, Chen FL, Ding Y, Feng X. Alterations in β‑catenin/E‑cadherin complex formation during the mechanotransduction of Saos‑2 osteoblastic cells. Mol Med Rep 2018; 18:1495-1503. [PMID: 29901167 PMCID: PMC6072157 DOI: 10.3892/mmr.2018.9146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/24/2017] [Indexed: 11/16/2022] Open
Abstract
Mechanical load application promotes bone formation, while reduced load leads to bone loss. However, the underlying mechanisms that regulate new bone formation are not fully understood. Wnt/β-catenin signaling has an important role in bone formation, bone growth and remodeling. The aim of the present study was to investigate whether mechanical stimuli regulated bone formation through the Wnt/β-catenin signaling pathway. Saos-2 osteoblastic cells were subjected to mechanical strain using a Flexcell strain loading system. The results demonstrated that 12% cyclical tensile stress significantly stimulated Saos-2 cell proliferation, increased the activity of alkaline phosphatase and promoted the formation of mineralized nodules, as determined by MTT and p-nitrophenyl phosphate assays and Alizarin Red S staining, respectively. Furthermore, western blot analysis demonstrated that, following mechanical strain, increased phosphorylation of glycogen synthase kinase-3β and nuclear β-catenin expression was observed in cells, compared with static control culture cells. Results of reporter gene and reverse transcription-polymerase chain reaction assays also demonstrated that mechanical strain significantly increased T-cell factor reporter gene activity and the mRNA expression of cyclooxygenase (COX)-2, cyclin D1, c-fos and c-Jun in Saos-2 cells. Co-immunoprecipitation analysis revealed that elongation mechanical strain activated Wnt/β-catenin signaling and reduced β-catenin and E-cadherin interaction in Saos-2 cells. In conclusion, the results of the current study indicate that mechanical strain may have an important role in the proliferation and differentiation of osteoblasts. The disassociation of the β-catenin/E-cadherin complex in the osteoblast membrane under stretch loading and the subsequent translocation of β-catenin into the nucleus may be an intrinsic mechanical signal transduction mechanism.
Collapse
Affiliation(s)
- Fei-Fei Li
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bo Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ji-Hong Cui
- Laboratory of Tissue Engineering, Department of Biosciences, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Fu-Lin Chen
- Laboratory of Tissue Engineering, Department of Biosciences, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yin Ding
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xue Feng
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
28
|
Markides H, McLaren JS, Telling ND, Alom N, Al-Mutheffer EA, Oreffo ROC, Zannettino A, Scammell BE, White LJ, El Haj AJ. Translation of remote control regenerative technologies for bone repair. NPJ Regen Med 2018; 3:9. [PMID: 29675269 PMCID: PMC5904134 DOI: 10.1038/s41536-018-0048-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 02/22/2018] [Accepted: 03/22/2018] [Indexed: 01/06/2023] Open
Abstract
The role of biomechanical stimuli, or mechanotransduction, in normal bone homeostasis and repair is understood to facilitate effective osteogenesis of mesenchymal stem cells (MSCs) in vitro. Mechanotransduction has been integrated into a multitude of in vitro bone tissue engineering strategies and provides an effective means of controlling cell behaviour towards therapeutic outcomes. However, the delivery of mechanical stimuli to exogenous MSC populations, post implantation, poses a significant translational hurdle. Here, we describe an innovative bio-magnetic strategy, MICA, where magnetic nanoparticles (MNPs) are used to remotely deliver mechanical stimuli to the mechano-receptor, TREK-1, resulting in activation and downstream signalling via an external magnetic array. In these studies, we have translated MICA to a pre-clinical ovine model of bone injury to evaluate functional bone repair. We describe the development of a magnetic array capable of in vivo MNP manipulation and subsequent osteogenesis at equivalent field strengths in vitro. We further demonstrate that the viability of MICA-activated MSCs in vivo is unaffected 48 h post implantation. We present evidence to support early accelerated repair and preliminary enhanced bone growth in MICA-activated defects within individuals compared to internal controls. The variability in donor responses to MICA-activation was evaluated in vitro revealing that donors with poor osteogenic potential were most improved by MICA-activation. Our results demonstrate a clear relationship between responders to MICA in vitro and in vivo. These unique experiments offer exciting clinical applications for cell-based therapies as a practical in vivo source of dynamic loading, in real-time, in the absence of pharmacological agents.
Collapse
Affiliation(s)
- Hareklea Markides
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, ST4 7QB UK
| | - Jane S. McLaren
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Neil D. Telling
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, ST4 7QB UK
| | - Noura Alom
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | | | - Richard O. C. Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD UK
| | - Andrew Zannettino
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute, Adelaide, SA 5000 Australia
| | - Brigitte E. Scammell
- Academic Orthopaedics, Trauma and Sports Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham, NG7 2UH UK
| | - Lisa J. White
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| | - Alicia J. El Haj
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, ST4 7QB UK
| |
Collapse
|
29
|
Staehlke S, Rebl H, Finke B, Mueller P, Gruening M, Nebe JB. Enhanced calcium ion mobilization in osteoblasts on amino group containing plasma polymer nanolayer. Cell Biosci 2018; 8:22. [PMID: 29588849 PMCID: PMC5863460 DOI: 10.1186/s13578-018-0220-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/14/2018] [Indexed: 11/23/2022] Open
Abstract
Background Biomaterial modifications—chemical and topographical—are of particular importance for the integration of materials in biosystems. Cells are known to sense these biomaterial characteristics, but it has remained unclear which physiological processes bio modifications trigger. Hence, the question arises of whether the dynamic of intracellular calcium ions is important for the characterization of the cell–material interaction. In our prior research we could demonstrate that a defined geometrical surface topography affects the cell physiology; this was finally detectable in a reduced intracellular calcium mobilization after the addition of adenosine triphosphate (ATP). Results This new contribution examines the cell physiology of human osteoblasts concerning the relative cell viability and the calcium ion dynamic on different chemical modifications of silicon–titanium (Ti) substrates. Chemical modifications comprising the coating of Ti surfaces with a plasma polymerized allylamine (PPAAm)-layer or with a thin layer of collagen type-I were compared with a bare Ti substrate as well as tissue culture plastic. For this purpose, the human osteoblasts (MG-63 and primary osteoblasts) were seeded onto the surfaces for 24 h. The relative cell viability was determined by colorimetric measurements of the cell metabolism and relativized to the density of cells quantified using crystal violet staining. The calcium ion dynamic of osteoblasts was evaluated by the calcium imaging analysis of fluo-3 stained vital cells using a confocal laser scanning microscope. The positively charged nano PPAAm-layer resulted in enhanced intracellular calcium ion mobilization after ATP-stimulus and cell viability. This study underlines the importance of the calcium signaling for the manifestation of the cell physiology. Conclusions Our current work provides new insights into the intracellular calcium dynamic caused by diverse chemical surface compositions. The calcium ion dynamic appears to be a sensitive parameter for the cell physiology and, thus, may represent a useful approach for evaluating a new biomaterial. In this regard, reliable in vitro-tests of cell behavior at the interface to a material are crucial steps in securing the success of a new biomaterial in medicine.
Collapse
Affiliation(s)
- Susanne Staehlke
- Dept. of Cell Biology, University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Henrike Rebl
- Dept. of Cell Biology, University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Birgit Finke
- 2Leibniz-Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Petra Mueller
- Dept. of Cell Biology, University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Martina Gruening
- Dept. of Cell Biology, University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - J Barbara Nebe
- Dept. of Cell Biology, University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany
| |
Collapse
|
30
|
Yang Z, Wang J, Pan Z, Zhang Y. miR-143-3p regulates cell proliferation and apoptosis by targeting IGF1R and IGFBP5 and regulating the Ras/p38 MAPK signaling pathway in rheumatoid arthritis. Exp Ther Med 2018; 15:3781-3790. [PMID: 29581736 PMCID: PMC5863597 DOI: 10.3892/etm.2018.5907] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/12/2018] [Indexed: 01/16/2023] Open
Abstract
It has been demonstrated that the deregulation of microRNAs (miRNAs) affects the development of rheumatoid arthritis (RA). The primary objective of the current study was to determine the role of miR-143-3p in the progression of RA. The expression of miR-143-3p in synovium taken from patients with RA was assessed by reverse transcription-quantitative polymerase chain reaction. The expression of miR-143-3p was higher in synovium tissues of RA than that of osteoarthritis (OA). The decreased expression of miR-143-3p suppressed cell proliferation and promoted apoptosis in vitro. In addition, inhibition of miR-143-3p decreased levels of inflammatory cytokines, as determined by an enzyme-linked immunosorbent assay. IGF1R and IGFBP5 were found to be the target genes of miR-143-3p, and it was demonstrated that miR-143-3p regulated the proliferation and apoptosis of MH7A cells by targeting IGF1R and IGFBP5. Furthermore, TNF-α treatment stimulated the Ras/p38 mitogen activated protein kinase (MAPK) signaling pathway, whereas miR-143-3p inhibition suppressed it. The results of the current study indicate that miR-143-3p may regulate cell proliferation and apoptosis by targeting IGF1R and IGFBP5 expression and regulating the Ras/p38 MAPK signaling pathways. Therefore, miR-143-3p may be a novel therapeutic target in RA.
Collapse
Affiliation(s)
- Zhenguo Yang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Orthopaedics, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250001, P.R. China
| | - Jifu Wang
- Department of Orthopaedics, East Courtyard Area of General Hospital of Shandong Yankuang Group, Zoucheng, Shandong 273500, P.R. China
| | - Zhuangzhuang Pan
- Department of Surgery, Lixia District People's Hospital, Jinan, Shandong 250014, P.R. China
| | - Yihang Zhang
- Graduate Student Education Center, Shandong Academy of Medical Science, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
31
|
Bleedorn JA, Hornberger TA, Goodman CA, Hao Z, Sample SJ, Amene E, Markel MD, Behan M, Muir P. Temporal mechanically-induced signaling events in bone and dorsal root ganglion neurons after in vivo bone loading. PLoS One 2018; 13:e0192760. [PMID: 29486004 PMCID: PMC5828357 DOI: 10.1371/journal.pone.0192760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/30/2018] [Indexed: 11/19/2022] Open
Abstract
Mechanical signals play an integral role in the regulation of bone mass and functional adaptation to bone loading. The osteocyte has long been considered the principle mechanosensory cell type in bone, although recent evidence suggests the sensory nervous system may play a role in mechanosensing. The specific signaling pathways responsible for functional adaptation of the skeleton through modeling and remodeling are not clearly defined. In vitro studies suggest involvement of intracellular signaling through mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and mammalian target of rapamycin (mTOR). However, anabolic signaling responses to bone loading using a whole animal in vivo model have not been studied in detail. Therefore, we examined mechanically-induced signaling events at five time points from 0 to 24 hours after loading using the rat in vivo ulna end-loading model. Western blot analysis of bone for MAPK's, PI3K/Akt, and mTOR signaling, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) to estimate gene expression of calcitonin gene-related protein alpha (CGRP-α), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), c-jun, and c-fos in dorsal root ganglion (DRG) of the brachial intumescence were performed. There was a significant increase in signaling through MAPK's including extracellular signal-related kinase (ERK) and c-Jun N-terminal kinase (JNK) in loaded limbs at 15 minutes after mechanical loading. Ulna loading did not significantly influence expression of the genes of interest in DRG neurons. Bone signaling and DRG gene expression from the loaded and contralateral limbs was correlated (SR>0.40, P<0.05). However, bone signaling did not correlate with expression of the genes of interest in DRG neurons. These results suggest that signaling through the MAPK pathway may be involved in load-induced bone formation in vivo. Further characterization of the molecular events involved in regulation of bone adaptation is needed to understand the timing and impact of loading events, and the contribution of the neuronal signaling to functional adaptation of bone.
Collapse
Affiliation(s)
- Jason A. Bleedorn
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Troy A. Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Craig A. Goodman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria, Australia
| | - Zhengling Hao
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susannah J. Sample
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ermias Amene
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mark D. Markel
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mary Behan
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter Muir
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
32
|
Reitmaier S, Kovtun A, Schuelke J, Kanter B, Lemm M, Hoess A, Heinemann S, Nies B, Ignatius A. Strontium(II) and mechanical loading additively augment bone formation in calcium phosphate scaffolds. J Orthop Res 2018; 36:106-117. [PMID: 28574614 DOI: 10.1002/jor.23623] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/28/2017] [Indexed: 02/04/2023]
Abstract
Calcium phosphate cements (CPCs) are widely used for bone-defect treatment. Current developments comprise the fabrication of porous scaffolds by three-dimensional plotting and doting using biologically active substances, such as strontium. Strontium is known to increase osteoblast activity and simultaneously to decrease osteoclast resorption. This study investigated the short- and long-term in vivo performances of strontium(II)-doted CPC (SrCPC) scaffolds compared to non-doted CPC scaffolds after implantation in unloaded or load-bearing trabecular bone defects in sheep. After 6 weeks, both CPC and SrCPC scaffolds exhibited good biocompatibility and osseointegration. Fluorochrome labeling revealed that both scaffolds were penetrated by newly formed bone already after 4 weeks. Neither strontium doting nor mechanical loading significantly influenced early bone formation. In contrast, after 6 months, bone formation was significantly enhanced in SrCPC compared to CPC scaffolds. Energy dispersive X-ray analysis demonstrated the release of strontium from the SrCPC into the bone. Strontium addition did not significantly influence material resorption or osteoclast formation. Mechanical loading significantly stimulated bone formation in both CPC and SrCPC scaffolds after 6 months without impairing scaffold integrity. The most bone was found in SrCPC scaffolds under load-bearing conditions. Concluding, these results demonstrate that strontium doting and mechanical loading additively stimulated bone formation in CPC scaffolds and that the scaffolds exhibited mechanical stability under moderate load, implying good clinical suitability. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:106-117, 2018.
Collapse
Affiliation(s)
- Sandra Reitmaier
- Trauma Research Center, Institute of Orthopedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, Ulm 89081, Germany
| | - Anna Kovtun
- Trauma Research Center, Institute of Orthopedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, Ulm 89081, Germany
| | - Julian Schuelke
- Trauma Research Center, Institute of Orthopedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, Ulm 89081, Germany
| | - Britta Kanter
- Trauma Research Center, Institute of Orthopedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, Ulm 89081, Germany
| | - Madlin Lemm
- InnoTERE GmbH, Pharmapark Radebeul, Radebeul, Germany
| | - Andreas Hoess
- InnoTERE GmbH, Pharmapark Radebeul, Radebeul, Germany
| | | | - Berthold Nies
- InnoTERE GmbH, Pharmapark Radebeul, Radebeul, Germany
| | - Anita Ignatius
- Trauma Research Center, Institute of Orthopedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, Ulm 89081, Germany
| |
Collapse
|
33
|
Lee J, Kim G. Calcium-Deficient Hydroxyapatite/Collagen/Platelet-Rich Plasma Scaffold with Controlled Release Function for Hard Tissue Regeneration. ACS Biomater Sci Eng 2017; 4:278-289. [DOI: 10.1021/acsbiomaterials.7b00640] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- JiUn Lee
- Department of Biomechatronic Engineering,
College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon, Korea
| | - GeunHyung Kim
- Department of Biomechatronic Engineering,
College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon, Korea
| |
Collapse
|
34
|
Mikami R, Mizutani K, Aoki A, Tamura Y, Aoki K, Izumi Y. Low-level ultrahigh-frequency and ultrashort-pulse blue laser irradiation enhances osteoblast extracellular calcification by upregulating proliferation and differentiation via transient receptor potential vanilloid 1. Lasers Surg Med 2017; 50:340-352. [PMID: 29214666 DOI: 10.1002/lsm.22775] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Low-level laser irradiation (LLLI) exerts various biostimulative effects, including promotion of wound healing and bone formation; however, few studies have examined biostimulation using blue lasers. The purpose of this study was to investigate the effects of low-level ultrahigh-frequency (UHF) and ultrashort-pulse (USP) blue laser irradiation on osteoblasts. STUDY DESIGN/ MATERIALS AND METHODS The MC3T3-E1 osteoblast cell line was used in this study. Following LLLI with a 405 nm newly developed UHF-USP blue laser (80 MHz, 100 fs), osteoblast proliferation, and alkaline phosphatase (ALP) activity were assessed. In addition, mRNA levels of the osteoblast differentiation markers, runt-related transcription factor 2 (Runx2), osterix (Osx), alkaline phosphatase (Alp), and osteopontin (Opn) was evaluated, and extracellular calcification was quantified. To clarify the involvement of transient receptor potential (TRP) channels in LLLI-induced biostimulation, cells were treated prior to LLLI with capsazepine (CPZ), a selective inhibitor of TRP vanilloid 1 (TRPV1), and subsequent proliferation and ALP activity were measured. RESULTS LLLI with the 405 nm UHF-USP blue laser significantly enhanced cell proliferation and ALP activity, compared with the non-irradiated control and LLLI using continuous-wave mode, without significant temperature elevation. LLLI promoted osteoblast proliferation in a dose-dependent manner up to 9.4 J/cm2 and significantly accelerated cell proliferation in in vitro wound healing assay. ALP activity was significantly enhanced at doses up to 5.6 J/cm2 , and expression of Osx and Alp mRNAs was significantly increased compared to that of the control on days 3 and 7 following LLLI at 5.6 J/cm2 . The extent of extracellular calcification was also significantly higher as a result of LLLI 3 weeks after the treatment. Measurement of TRPV1 protein expression on 0, 3, and 7 days post-irradiation revealed no differences between the LLLI and control groups; however, promotion of cell proliferation and ALP activity by LLLI was significantly inhibited by CPZ. CONCLUSION LLLI with a 405 nm UHF-USP blue laser enhances extracellular calcification of osteoblasts by upregulating proliferation and differentiation via TRPV1. Lasers Surg. Med. 50:340-352, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Risako Mikami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yukihiko Tamura
- Department of Bio-Matrix (Pharmacology), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
35
|
Ouyang N, Zhang P, Fu R, Shen G, Jiang L, Fang B. Mechanical strain promotes osteogenic differentiation of bone mesenchymal stem cells from ovariectomized rats via the phosphoinositide 3‑kinase/Akt signaling pathway. Mol Med Rep 2017; 17:1855-1862. [PMID: 29138823 DOI: 10.3892/mmr.2017.8030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/07/2017] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis has become an overwhelming public health problem worldwide. As an elementary physiological factor to regulate bone formation and regeneration, mechanical strain may be used as a non‑invasive intervention in osteoporosis prevention and treatment. However, little is known regarding the underlying mechanism. The aim of the current study was to investigate the effect of continuous mechanical strain (CMS) on osteogenic differentiation of bone mesenchymal stem cells (BMSCs) from ovariectomized rats (OVX BMSCs). In addition, involvement of the phosphatidylinositol 3‑kinase (PI3K)/Akt signaling pathway in biomechanical signal transduction and its function were evaluated. The results demonstrated that OVX BMSCs subjected to CMS exhibited higher alkaline phosphatase (ALP) activity and deeper staining at 24 and 48 h. In addition, CMS upregulated the mRNA expression levels of ALP, collagen type I, runt related transcription factor 2 (Runx2), as well as the protein expression level of Runx2 in a time‑dependent manner. The PI3K/Akt signaling pathway was rapidly activated by CMS, with its phosphorylation level reaching its maximum in a short duration and a large quantity of phosphorylated‑Akt remaining in the nucleus. Pre‑treatment with a selective blocker significantly blocked the strain‑induced activation of PI3K/Akt and reduced the commitment of OVX BMSCs into osteoblasts, demonstrating a dominated regulative effect of PI3K/Akt signaling in strain‑induced osteogenesis. These results indicated that CMS induced the early differentiation of OVX BMSCs towards an osteogenic phenotype by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Ningjuan Ouyang
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Peng Zhang
- The Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Runqing Fu
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Guofang Shen
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Bing Fang
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| |
Collapse
|
36
|
Müller-Deubert S, Seefried L, Krug M, Jakob F, Ebert R. Epidermal growth factor as a mechanosensitizer in human bone marrow stromal cells. Stem Cell Res 2017; 24:69-76. [DOI: 10.1016/j.scr.2017.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/04/2017] [Accepted: 08/13/2017] [Indexed: 01/14/2023] Open
|
37
|
Anchieta RB, Guimarães MVM, Suzuki M, Tovar N, Bonfante EA, Atria P, Coelho PG. Nanomechanical Assessment of Bone Surrounding Implants Loaded for 3 Years in a Canine Experimental Model. J Oral Maxillofac Surg 2017; 76:71-79. [PMID: 28893541 DOI: 10.1016/j.joms.2017.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 11/17/2022]
Abstract
PURPOSE This work evaluated the nanomechanical properties of bone surrounding submerged and immediately loaded implants after 3 years in vivo. It was hypothesized that the nanomechanical properties of bone would markedly increase in immediately and functionally loaded implants compared with submerged implants. MATERIALS AND METHODS The second, third, and fourth right premolars and the first molar of 10 adult Doberman dogs were extracted. After 6 months, 4 implants were placed in 1 side of the mandible. The mesial implant received a cover screw and remained unloaded. The remaining 3 implants received fixed dental prostheses within 48 hours after surgery that remained in occlusal function for 3 years. After sacrifice, the bone was prepared for histologic and nanoindentation analysis. Nanoindentation was carried out under wet conditions on bone areas within the plateaus. Indentations (n = 30 per histologic section) were performed with a maximum load of 300 μN (loading rate, 60 μN per second) followed by a holding and unloading time of 10 and 2 seconds, respectively. Elastic modulus (E) and hardness (H) were computed in giga-pascals. The amount of bone-to-implant contact (BIC) also was evaluated. RESULTS The E and H values for cortical bone regions were higher than those for trabecular bone regardless of load condition, but this difference was not statistically significant (P > .05). The E and H values were higher for loaded implants than for submerged implants (P < .05) for cortical and trabecular bone. For the same load condition, the E and H values for cortical and trabecular bone were not statistically different (P > .05). The loaded and submerged implants presented BIC values (mean ± standard deviation) of 57.4 ± 12.1% and 62 ± 7.5%, respectively (P > .05). CONCLUSION The E and H values of bone surrounding dental implants, measured by nanoindentation, were higher for immediately loaded than for submerged implants.
Collapse
Affiliation(s)
- Rodolfo B Anchieta
- Assistant Professor, Centro Universitario do Norte Paulista (UNORP), São Jose do Rio Preto, SP, Brazil; Visiting Scholar, Department of Biomaterials and Biomimetics, New York University, New York, NY; Department of Restorative Denstistry, Araçatuba, Universidade Estadual Paulista (UNESP), SP, Brazil
| | | | - Marcelo Suzuki
- Associate Professor, Department of Prosthodontics and Operative Dentistry, Tufts University School of Dental Medicine, Boston, MA
| | - Nick Tovar
- Adjunct Assistant Professor, Department of Biomaterials and Biomimetics, New York University, New York, NY
| | - Estevam A Bonfante
- Assistant Professor, Department of Prosthodontics and Periodontology, University of São Paulo, Bauru School of Dentistry, Bauru, SP, Brazil.
| | - Pablo Atria
- Research Professor, Universidad de los Andes, Santiago, Chile
| | - Paulo G Coelho
- Professor, Department of Biomaterials and Biomimetics, New York University, New York, NY; Mechanical and Aerospace Engineering, NYU Tandon School of Engineering; and Hansjörg Wyss Department of Plastic Surgery, NYU Langone Medical Center, New York, NY
| |
Collapse
|
38
|
Poudel SB, Bhattarai G, Kim JH, Kook SH, Seo YK, Jeon YM, Lee JC. Local delivery of recombinant human FGF7 enhances bone formation in rat mandible defects. J Bone Miner Metab 2017; 35:485-496. [PMID: 27766421 DOI: 10.1007/s00774-016-0784-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor 7 (FGF7) plays an important role in regulating the proliferation, migration, and differentiation of cells. However, the role of FGF7 in bone formation is not yet fully understood. We examined the effect of FGF7 on bone formation using a rat model of mandible defects. Rats underwent mandible defect surgery and then either scaffold treatment alone (control group) or FGF7-impregnated scaffold treatment (FGF7 group). Micro-CT and histological analyses revealed that the FGF7 group exhibited greater bone formation than did the control group 10 weeks after surgery. With the exception of total porosity (%), all bone parameters had higher values in the FGF7 group than in the control group at each follow-up after surgery. The FGF7 group showed greater expression of osteogenic markers, such as runt-related transcription factor 2, osterix, osteocalcin, bone morphogenetic protein 2, osteopontin, and type I collagen in newly formed bone than did the control group. The delivery of FGF7 also increased the messenger RNA expression of stromal-cell-derived factor 1 (SDF-1) and CXCR4 in newly formed bone in the FGF7 group compared with the control group. Further, addition of exogenous FGF7 induced migration of rat bone marrow stromal cells and increased the expression of SDF-1 and CXCR4 in the cells. Furthermore, the addition of FGF7 augmented mineralization in the cells with increased expression of osteogenic markers, and this augmentation was significantly suppressed by an inhibitor specific for c-Jun N-terminal kinase (SP600125) or extracellular-signal-regulated kinase (PD98059). Collectively, these results suggest that local delivery of FGF7 increases bone formation in a mandible defect with enhanced osteogenesis and chemoattraction.
Collapse
Affiliation(s)
- Sher Bahadur Poudel
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences (BK21 Program) and School of Dentistry, Chonbuk National University, Jeonju, 54896, South Korea
| | - Govinda Bhattarai
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences (BK21 Program) and School of Dentistry, Chonbuk National University, Jeonju, 54896, South Korea
| | - Jae-Hwan Kim
- Chonnam National University Dental Hospital, Kwangju, 61186, South Korea
| | - Sung-Ho Kook
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences (BK21 Program) and School of Dentistry, Chonbuk National University, Jeonju, 54896, South Korea
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju, 54896, South Korea
| | - Young-Kwon Seo
- Research Institute of Biotechnology, Dongguk University, Seoul, 04620, South Korea
| | - Young-Mi Jeon
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences (BK21 Program) and School of Dentistry, Chonbuk National University, Jeonju, 54896, South Korea.
- Biomedical Research Institute of Chonbuk National University Hospital, Research Institute of Clinical Medicine of Chonbuk National University, Jeonju, 54896, South Korea.
- Research Institute of Clinical Medicine of Chonbuk National University, School of Dentistry, Chonbuk National University, Jeonju, 561-756, South Korea.
| | - Jeong-Chae Lee
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences (BK21 Program) and School of Dentistry, Chonbuk National University, Jeonju, 54896, South Korea.
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju, 54896, South Korea.
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, 561-756, South Korea.
| |
Collapse
|
39
|
Majidinia M, Sadeghpour A, Yousefi B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol 2017; 233:2937-2948. [DOI: 10.1002/jcp.26042] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research Center; Urmia University of Medical Sciences; Urmia Iran
| | - Alireza Sadeghpour
- Department of Orthopedic Surgery, School of Medicine and Shohada Educational Hospital; Tabriz University of Medical Sciences; Tabriz Iran
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Bahman Yousefi
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Molecular Targeting Therapy Research Group; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
- Stem cell and Regenerative Medicine Institute; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
40
|
Thiel A, Reumann MK, Boskey A, Wischmann J, von Eisenhart-Rothe R, Mayer-Kuckuk P. Osteoblast migration in vertebrate bone. Biol Rev Camb Philos Soc 2017. [PMID: 28631442 DOI: 10.1111/brv.12345] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone formation, for example during bone remodelling or fracture repair, requires mature osteoblasts to deposit bone with remarkable spatial precision. As osteoblast precursors derive either from circulation or resident stem cell pools, they and their progeny are required to migrate within the three-dimensional bone space and to navigate to their destination, i.e. to the site of bone formation. An understanding of this process is emerging based on in vitro and in vivo studies of several vertebrate species. Receptors on the osteoblast surface mediate cell adhesion and polarization, which induces osteoblast migration. Osteoblast migration is then facilitated along gradients of chemoattractants. The latter are secreted or released proteolytically by several cell types interacting with osteoblasts, including osteoclasts and vascular endothelial cells. The positions of these cellular sources of chemoattractants in relation to the position of the osteoblasts provide the migrating osteoblasts with tracks to their destination, and osteoblasts possess the means to follow a track marked by multiple chemoattractant gradients. In addition to chemotactic cues, osteoblasts sense other classes of signals and utilize them as landmarks for navigation. The composition of the osseous surface guides adhesion and hence migration efficiency and can also provide steering through haptotaxis. Further, it is likely that signals received from surface interactions modulate chemotaxis. Besides the nature of the surface, mechanical signals such as fluid flow may also serve as navigation signals for osteoblasts. Alterations in osteoblast migration and navigation might play a role in metabolic bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Antonia Thiel
- Bone Cell and Imaging Laboratory, Department of Orthopedics, Klinikum rechts der Isar, Ismaninger Straße 22, Technical University Munich, 81675 München, Germany
| | - Marie K Reumann
- Siegfried Weller Institute, BG Hospital, University of Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Adele Boskey
- Mineralized Tissue Laboratory, Research Division, Hospital for Special Surgery, 535 E 70th Street, New York, NY 10021, U.S.A
| | - Johannes Wischmann
- Bone Cell and Imaging Laboratory, Department of Orthopedics, Klinikum rechts der Isar, Ismaninger Straße 22, Technical University Munich, 81675 München, Germany
| | - Rüdiger von Eisenhart-Rothe
- Bone Cell and Imaging Laboratory, Department of Orthopedics, Klinikum rechts der Isar, Ismaninger Straße 22, Technical University Munich, 81675 München, Germany
| | - Philipp Mayer-Kuckuk
- Bone Cell and Imaging Laboratory, Department of Orthopedics, Klinikum rechts der Isar, Ismaninger Straße 22, Technical University Munich, 81675 München, Germany
| |
Collapse
|
41
|
Seefried L, Müller-Deubert S, Krug M, Youssef A, Schütze N, Ignatius A, Jakob F, Ebert R. Dissection of mechanoresponse elements in promoter sites of the mechanoresponsive CYR61 gene. Exp Cell Res 2017; 354:103-111. [PMID: 28322825 DOI: 10.1016/j.yexcr.2017.03.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 12/26/2022]
Abstract
Mechanotransduction is important for mesenchymal regeneration and differentiation. Exaggerated high or very low impact yields pathological outcome resulting in fracture or tissue atrophy. Pathological strain in animal models was described but tools to dissect the respective stimuli and downstream pathways are limited. We expand the analytical tools to describe DNA strain response elements in a reporter gene approach. Deletion constructs of the human cysteine-rich protein 61 (CYR61) promoter were cloned into luciferase vectors and stably transfected into human telomerase-immortalised mesenchymal stem cells (hMSC-TERT). Cells were mechanically stimulated with variable frequencies, amplitudes and durations. Promoter activity was determined as well as CYR61 mRNA and protein expression. In silico promoter analysis identified putative transcription factor binding sites, one of which was a cAMP response element, verified by electrophoretic mobility shift assay. We demonstrate for the first time that the activity of promoter regions is inhibited in low, but stimulated in high frequency stimulations. We conclude that by varying conditions of mechanical strain it is possible to characterize stimulatory versus inhibitory strain on cellular levels. Our work may be helpful in future studies to dissect the molecular pathways of physiological versus pathological strain and may have implications for clinical exercise based treatment strategies.
Collapse
Affiliation(s)
- Lothar Seefried
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Sigrid Müller-Deubert
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Melanie Krug
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Almoatazbellah Youssef
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Norbert Schütze
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Regina Ebert
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany.
| |
Collapse
|
42
|
Barcia JM, Portolés S, Portolés L, Urdaneta AC, Ausina V, Pérez-Pastor GMA, Romero FJ, Villar VM. Does Oxidative Stress Induced by Alcohol Consumption Affect Orthodontic Treatment Outcome? Front Physiol 2017; 8:22. [PMID: 28179886 PMCID: PMC5263147 DOI: 10.3389/fphys.2017.00022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
HIGHLIGHTS Ethanol, Periodontal ligament, Extracellular matrix, Orthodontic movement. Alcohol is a legal drug present in several drinks commonly used worldwide (chemically known as ethyl alcohol or ethanol). Alcohol consumption is associated with several disease conditions, ranging from mental disorders to organic alterations. One of the most deleterious effects of ethanol metabolism is related to oxidative stress. This promotes cellular alterations associated with inflammatory processes that eventually lead to cell death or cell cycle arrest, among others. Alcohol intake leads to bone destruction and modifies the expression of interleukins, metalloproteinases and other pro-inflammatory signals involving GSKβ, Rho, and ERK pathways. Orthodontic treatment implicates mechanical forces on teeth. Interestingly, the extra- and intra-cellular responses of periodontal cells to mechanical movement show a suggestive similarity with the effects induced by ethanol metabolism on bone and other cell types. Several clinical traits such as age, presence of systemic diseases or pharmacological treatments, are taken into account when planning orthodontic treatments. However, little is known about the potential role of the oxidative conditions induced by ethanol intake as a possible setback for orthodontic treatment in adults.
Collapse
Affiliation(s)
- Jorge M. Barcia
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Sandra Portolés
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Laura Portolés
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Alba C. Urdaneta
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Verónica Ausina
- Facultad de Ciencias de la Salud, Universidad Europea de ValenciaValencia, Spain
| | - Gema M. A. Pérez-Pastor
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Francisco J. Romero
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
- Facultad de Ciencias de la Salud, Universidad Europea de ValenciaValencia, Spain
| | - Vincent M. Villar
- Department of Biomedical Sciences, Universidad Cardenal Herrera, CEUMoncada, Spain
| |
Collapse
|
43
|
|
44
|
Wang D, Wang H, Gao F, Wang K, Dong F. ClC-3 Promotes Osteogenic Differentiation in MC3T3-E1 Cell After Dynamic Compression. J Cell Biochem 2016; 118:1606-1613. [PMID: 27922190 DOI: 10.1002/jcb.25823] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/02/2016] [Indexed: 11/11/2022]
Abstract
ClC-3 chloride channel has been proved to have a relationship with the expression of osteogenic markers during osteogenesis, persistent static compression can upregulate the expression of ClC-3 and regulate osteodifferentiation in osteoblasts. However, there was no study about the relationship between the expression of ClC-3 and osteodifferentiation after dynamic compression. In this study, we applied dynamic compression on MC3T3-E1 cells to detect the expression of ClC-3, runt-related transcription factor 2 (Runx2), bone morphogenic protein-2 (BMP-2), osteopontin (OPN), nuclear-associated antigen Ki67 (Ki67), and proliferating cell nuclear antigen (PCNA) in biopress system, then we investigated the expression of these genes after dynamic compression with Chlorotoxin (specific ClC-3 chloride channel inhibitor) added. Under transmission electron microscopy, there were more cell surface protrusions, rough surfaced endoplasmic reticulum, mitochondria, Golgi apparatus, abundant glycogen, and lysosomes scattered in the cytoplasm in MC3T3-E1 cells after dynamic compression. The nucleolus was more obvious. We found that ClC-3 was significantly up-regulated after dynamic compression. The compressive force also up-regulated Runx2, BMP-2, and OPN after dynamic compression for 2, 4 and 8 h. The proliferation gene Ki67 and PCNA did not show significantly change after dynamic compression for 8 h. Chlorotoxin did not change the expression of ClC-3 but reduced the expression of Runx2, BMP-2, and OPN after dynamic compression compared with the group without Cltx added. The data from the current study suggested that ClC-3 may promotes osteogenic differentiation in MC3T3-E1 cell after dynamic compression. J. Cell. Biochem. 118: 1606-1613, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Stomatology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Hao Wang
- Department of Stomatology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Feng Gao
- Department of Pathology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Kun Wang
- Department of Stomatology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Fusheng Dong
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital of Hebei Medical University, Shijiazhuang 050017, Hebei, China.,Hebei Key Laboratory of Oral Medicine, Shijiazhuang 050017, Hebei, China
| |
Collapse
|
45
|
Haffner-Luntzer M, Liedert A, Ignatius A. Mechanobiology of bone remodeling and fracture healing in the aged organism. Innov Surg Sci 2016; 1:57-63. [PMID: 31579720 PMCID: PMC6753991 DOI: 10.1515/iss-2016-0021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/14/2016] [Indexed: 01/18/2023] Open
Abstract
Bone can adapt to changing load demands by mechanically regulated bone remodeling. Osteocytes, osteoblasts, and mesenchymal stem cells are mechanosensitive and respond to mechanical signals through the activation of specific molecular signaling pathways. The process of bone regeneration after fracture is similarly and highly regulated by the biomechanical environment at the fracture site. Depending on the tissue strains, mesenchymal cells differentiate into fibroblasts, chondrocytes, or osteoblasts, determining the course and the success of healing. In the aged organism, mechanotransduction in both intact and fractured bones may be altered due to changed hormone levels and expression of growth factors and other signaling molecules. It is proposed that altered mechanotransduction may contribute to disturbed healing in aged patients. This review explains the basic principles of mechanotransduction in the bone and the fracture callus and summarizes the current knowledge on aging-induced changes in mechanobiology. Furthermore, the methods for external biomechanical stimulation of intact and fractured bones are discussed with respect to a possible application in the elderly patient.
Collapse
Affiliation(s)
- Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| |
Collapse
|
46
|
Liu L, Chen L, Mai Z, Peng Z, Yu K, Liu G, Ai H. Cyclical compressive stress induces differentiation of rat primary mandibular condylar chondrocytes through phosphorylated myosin light chain II. Mol Med Rep 2016; 14:4293-4300. [PMID: 27748856 DOI: 10.3892/mmr.2016.5788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/05/2016] [Indexed: 11/05/2022] Open
Abstract
The role of myosin light chain II (MLC‑II) in cellular differentiation of rat mandibular condylar chondrocytes (MCCs) induced by cyclical uniaxial compressive stress (CUCS) remains unclear. In the current study, a four‑point bending system was used to apply CUCS to primary cultured MCCs from rats. It was identified that CUCS stimulated features of cellular differentiation including morphological alterations, cytoskeleton rearrangement and overproduction of proteoglycans. Furthermore, CUCS promoted runt‑related transcription factor‑2 (RUNX2) expression at mRNA (P<0.01) and protein levels (P<0.05) and elevated alkaline phosphatase (ALP) activity (P<0.01), which are both markers of osteogenic differentiation. Under conditions of stress, western blotting indicated that the ratio of phosphorylated MLC‑II to total MLC‑II was increased significantly (P<0.05). Silencing MLC‑II by RNA interference reduced ALP activity (P<0.01), and eliminated RUNX2 mRNA expression (P<0.01). Addition of the MLC kinase inhibitor, ML‑7, reduced the CUCS‑associated upregulation of RUNX2 expression (P<0.01) and ALP activity (P<0.01). The data indicated that CUCS promoted cellular differentiation of rat primary MCCs, and this was suggested to be via the phosphorylation of MLC‑II.
Collapse
Affiliation(s)
- Limin Liu
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Lin Chen
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhihui Mai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhuli Peng
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Kafung Yu
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Guanqi Liu
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Hong Ai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
47
|
Puts R, Rikeit P, Ruschke K, Kadow-Romacker A, Hwang S, Jenderka KV, Knaus P, Raum K. Activation of Mechanosensitive Transcription Factors in Murine C2C12 Mesenchymal Precursors by Focused Low-Intensity Pulsed Ultrasound (FLIPUS). IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1505-1513. [PMID: 27392348 DOI: 10.1109/tuffc.2016.2586972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, we investigated the mechanoresponse of C2C12 mesenchymal precursor cells to focused low-intensity pulsed ultrasound (FLIPUS). The setup has been developed for in vitro stimulation of adherent cells in the defocused far field of the ultrasound propagating through the bottom of the well plate. Twenty-four-well tissue culture plates, carrying the cell monolayers, were incubated in a temperature-controlled water tank. The ultrasound was applied at 3.6-MHz frequency, pulsed at 100-Hz repetition frequency with a 27.8% duty cycle, and calibrated at an output intensity of ISATA = 44.5 ±7.1 mW/cm2. Numerical sound propagation simulations showed no generation of standing waves in the well plate. The response of murine C2C12 cells to FLIPUS was evaluated by measuring activation of mechanosensitive transcription factors, i.e., activator protein-1 (AP-1), specificity protein 1 (Sp1), and transcriptional enhancer factor (TEAD), and expression of mechanosensitive genes, i.e., c-fos, c-jun, heparin binding growth associated molecule (HB-GAM), and Cyr-61. FLIPUS induced 50% ( p ≤ 0.05 ) and 70% ( p ≤ 0.05 ) increases in AP-1 and TEAD promoter activities, respectively, when stimulated for 5 min. The Sp1 activity was enhanced by about 20% ( p ≤ 0.05 ) after 5-min FLIPUS exposure and the trend persisted for 30-min ( p ≤ 0.05 ) and 1-h ( p ≤ 0.05 ) stimulation times. Expressions of mechanosensitive genes c-fos ( p ≤ 0.05 ), c-jun ( p ≤ 0.05 ), HB-GAM ( p ≤ 0.05 ), and cystein-rich protein 61 ( p ≤ 0.05 ) were enhanced in response to 5-min FLIPUS stimulation. The increase in proliferation of C2C12s occurred after the FLIPUS stimulation ( p ≤ 0.05 ), with AP-1, Sp1, and TEAD possibly regulating the observed cellular activities.
Collapse
|
48
|
Simulation of intracellular $$\hbox {Ca}^{2+}$$ Ca 2 + transients in osteoblasts induced by fluid shear stress and its application. Biomech Model Mechanobiol 2016; 16:509-520. [DOI: 10.1007/s10237-016-0833-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
|
49
|
Liu X, Li M, Zhu Y, Yeung KWK, Chu PK, Wu S. The modulation of stem cell behaviors by functionalized nanoceramic coatings on Ti-based implants. Bioact Mater 2016; 1:65-76. [PMID: 29744396 PMCID: PMC5883996 DOI: 10.1016/j.bioactmat.2016.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022] Open
Abstract
Nanoceramic coating on the surface of Ti-based metallic implants is a clinical potential option in orthopedic surgery. Stem cells have been found to have osteogenic capabilities. It is necessary to study the influences of functionalized nanoceramic coatings on the differentiation and proliferation of stem cells in vitro or in vivo. In this paper, we summarized the recent advance on the modulation of stem cells behaviors through controlling the properties of nanoceramic coatings, including surface chemistry, surface roughness and microporosity. In addition, mechanotransduction pathways have also been discussed to reveal the interaction mechanisms between the stem cells and ceramic coatings on Ti-based metals. In the final part, the osteoinduction and osteoconduction of ceramic coating have been also presented when it was used as carrier of BMPs in new bone formation. The effects of basic physical properties like roughness, topography and porous stucture of ceramic coatings on the stem cells behaviors on Ti-based alloys have been reviewed together. The chemical way to modulate the cell behaviors is also discussed in this review paper; and the related mechanotransduction pathways have been described in this paper.
Collapse
Affiliation(s)
- Xiangmei Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Faculty of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Man Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Faculty of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Yizhou Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Faculty of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - K W K Yeung
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, 1 Haiyuan 1st Road, Futian District, Shenzhen, China.,Division of Spine Surgery, Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Paul K Chu
- Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shuilin Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Faculty of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
50
|
c-Fos induction by gut hormones and extracellular ATP in osteoblastic-like cell lines. Purinergic Signal 2016; 12:647-651. [PMID: 27439698 DOI: 10.1007/s11302-016-9526-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 07/10/2016] [Indexed: 12/21/2022] Open
Abstract
It is widely accepted that the c-Fos gene has a role in proliferation and differentiation of bone cells. ATP-induced c-Fos activation is relevant to bone homeostasis, because nucleotides that are present in the environment of bone cells can contribute to autocrine/paracrine signalling. Gut hormones have previously been shown to have an effect on bone metabolism. In this study, we used the osteoblastic Saos-2 cell line transfected with a c-Fos-driven reporter stimulated with five gut hormones: glucose inhibitory peptide (GIP), glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), ghrelin and obestatin, in the presence or absence of ATP. In addition, TE-85 cells were used to determine the time course of c-Fos transcript induction following stimulation with GLP-1, and GLP-2 with or without ATP, using reverse transcription qPCR. The significant results from the experiments are as follows: higher level of c-Fos induction in presence of GIP, obestatin (p = 0.019 and p = 0.011 respectively), and GIP combined with ATP (p < 0.001) using the luciferase assay; GLP-1 and GLP-2 combined with ATP (p = 0.034 and p = 0.002, respectively) and GLP-2 alone (p < 0.001) using qPCR. In conclusion, three of the gut peptides induced c-Fos, providing a potential mechanism underlying the actions of these hormones in bone which can be directed or enhanced by the presence of ATP.
Collapse
|