1
|
Ke F, Yu XD, Wang ZH, Gui JF, Zhang QY. Replication and transcription machinery for ranaviruses: components, correlation, and functional architecture. Cell Biosci 2022; 12:6. [PMID: 34991685 PMCID: PMC8734342 DOI: 10.1186/s13578-021-00742-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ranaviruses (family Iridoviridae) are promiscuous pathogens that can infect across species barriers in poikilotherms and can replicate in amphibian and fish cells and even in cultured mammalian cells. However, as nucleocytoplasmic large DNA viruses (NCLDVs), their replication and transcription mechanisms remain largely unknown. Here, we screened and uncovered the replication and transcription machinery of two ranaviruses, Andrias davidianus ranavirus (ADRV) and Rana grylio virus (RGV), by a combination of methods, including the isolation of proteins on nascent DNA, recombinant virus-based affinity, and NanoLuc complementation assay. RESULTS The ranavirus replication and transcription machinery was deeply dissected and identified as a complicated apparatus containing at least 30 viral and 6 host proteins. The viral proteins ADRV-47L/RGV-63R (DNA polymerase, vDPOL), ADRV-23L/RGV-91R (proliferating cell nuclear antigen, vPCNA), ADRV-85L/RGV-27R (single-stranded DNA binding protein, vSSB), ADRV-88L/RGV-24R (vhelicase/primase), etc., constitute the core replisome. Specifically, the core of the transcription complex, the viral RNA polymerase, contain the host RNAPII subunits Rpb3, Rpb6, and Rpb11, which was a first report in NCLDVs. Furthermore, correlations and interactions among these factors in the machinery were described. Significantly, the replisome core protein vDPOL (ADRV-47L) can interact with numerous viral and host proteins and could act as a linker and regulation center in viral DNA replication and transcription. Thus, these results depicted an architecture for ranavirus replication and transcription. CONCLUSIONS Up to 36 components from ranavirus and their host were found to form viral replisomes and transcription complexes using a series of precise methods, which further constructed an architecture for ranavirus replication and transcription in which vDPOL was a key central factor and various components correlated and cooperated. Therefore, it provides a cornerstone for further understanding the mechanisms of the replication and transcription of ranaviruses which can ensure the efficient production of progeny virus and adaptation to cross-species infection.
Collapse
Affiliation(s)
- Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, 430072, China.,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xue-Dong Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zi-Hao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, 430072, China.,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, 430072, China. .,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Ke F, Wang ZH, Ming CY, Zhang QY. Ranaviruses Bind Cells from Different Species through Interaction with Heparan Sulfate. Viruses 2019; 11:v11070593. [PMID: 31261956 PMCID: PMC6669447 DOI: 10.3390/v11070593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 11/16/2022] Open
Abstract
Ranavirus cross-species infections have been documented, but the viral proteins involved in the interaction with cell receptors have not yet been identified. Here, viral cell-binding proteins and their cognate cellular receptors were investigated using two ranaviruses, Andrias davidianus ranavirus (ADRV) and Rana grylio virus (RGV), and two different cell lines, Chinese giant salamander thymus cells (GSTC) and Epithelioma papulosum cyprinid (EPC) cells. The heparan sulfate (HS) analog heparin inhibited plaque formation of ADRV and RGV in the two cell lines by more than 80% at a concentration of 5 μg/mL. In addition, enzymatic removal of cell surface HS by heparinase I markedly reduced plaque formation by both viruses and competition with heparin reduced virus-cell binding. These results indicate that cell surface HS is involved in ADRV and RGV cell binding and infection. Furthermore, recombinant viral envelope proteins ADRV-58L and RGV-53R bound heparin-Sepharose beads implying the potential that cell surface HS is involved in the initial interaction between ranaviruses and susceptible host cells. To our knowledge, this is the first report identifying cell surface HS as ranavirus binding factor and furthers understanding of interactions between ranaviruses and host cells.
Collapse
Affiliation(s)
- Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Hao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Cheng-Yue Ming
- State Key Laboratory of Freshwater Ecology and Biotechnology, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Ke F, Zhang QY. Aquatic animal viruses mediated immune evasion in their host. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1096-1105. [PMID: 30557608 DOI: 10.1016/j.fsi.2018.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/09/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Viruses are important and lethal pathogens that hamper aquatic animals. The result of the battle between host and virus would determine the occurrence of diseases. The host will fight against virus infection with various responses such as innate immunity, adaptive immunity, apoptosis, and so on. On the other hand, the virus also develops numerous strategies such as immune evasion to antagonize host antiviral responses. Here, We review the research advances on virus mediated immune evasions to host responses containing interferon response, NF-κB signaling, apoptosis, and adaptive response, which are executed by viral genes, proteins, and miRNAs from different aquatic animal viruses including Alloherpesviridae, Iridoviridae, Nimaviridae, Birnaviridae, Reoviridae, and Rhabdoviridae. Thus, it will facilitate the understanding of aquatic animal virus mediated immune evasion and potentially benefit the development of novel antiviral applications.
Collapse
Affiliation(s)
- Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
4
|
Abstract
We first review fundamental insights into anti-ranavirus immunity learned with the Xenopus laevis/ranavirus FV3 model that are generally applicable to ectothermic vertebrates. We then further investigate FV3 genes involved in immune evasion. Focusing on FV3 knockout (KO) mutants defective for a putative viral caspase activation and recruitment domain-containing (CARD)-like protein (Δ64R-FV3), a β-hydroxysteroid dehydrogenase homolog (Δ52L-FV3), and an immediate-early18kDa protein (FV3-Δ18K), we assessed the involvement of these viral genes in replication, dissemination and interaction with peritoneal macrophages in tadpole and adult frogs. Our results substantiate the role of 64R and 52L as critical immune evasion genes, promoting persistence and dissemination in the host by counteracting type III IFN in tadpoles and type I IFN in adult frogs. Comparably, the substantial accumulation of genome copy numbers and exacerbation of type I and III IFN gene expression responses but deficient release of infectious virus suggests that 18K is a viral regulatory gene.
Collapse
Affiliation(s)
- Robert Jacques
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States.
| | - Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Sanchez Jazz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Torres-Luquis Odalys
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - De Jesús Andino Francisco
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| |
Collapse
|
5
|
Li WT, Chang HW, Pang VF, Wang FI, Liu CH, Chen TY, Guo JC, Wada T, Jeng CR. Mycolactone-producing Mycobacterium marinum infection in captive Hong Kong warty newts and pathological evidence of impaired host immune function. DISEASES OF AQUATIC ORGANISMS 2017; 123:239-249. [PMID: 28322210 DOI: 10.3354/dao03092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A mass mortality event of captive Hong Kong warty newts Paramesotriton hongkongensis with non-granulomatous necrotic lesions occurred in Taipei Zoo, Taiwan, in 2014. Clinically, the sick newts were lethargic and often covered with water mold Saprolegnia sp. on the skin of the body trunk or extremities. Predominant pathological findings were multifocal non-granulomatous necrotic lesions in the liver, spleen, and kidneys and severe skin infection with Saprolegnia sp., with deep invasion and involvement of underlying muscles. The possibility of ranavirus infection was ruled out by negative PCR results. Unexpectedly, abundant intralesional acid-fast positive bacilli were found in the necrotic lesions of the liver, spleen, and kidney in all 14 sick newts. PCR targeting the hsp65, ITS region, and partial 16S rRNA genes was performed, and the sequence identity from amplified amplicons of hsp65 and partial 16S rRNA genes was 100% identical to that of the corresponding gene fragment of Mycobacterium marinum. Further molecular investigations demonstrated that the current M. marinum was a mycolactone-producing mycobacterium with the presence of esxA/esxB genes. Mycolactone is a plasmid-encoded, immunosuppressive, and cytotoxic toxin. The possible immunosuppression phenomenon characterized by systemic non-granulomatous necrotic lesions caused by M. marinum and the unusual deep invasive infection caused by water mold might be associated with the immunosuppressive effect of mycolactone. Therefore, it should be noted that non-granulomatous necrotic lesions in amphibians can be caused not only by ranavirus infection but also by mycobacteriosis.
Collapse
Affiliation(s)
- Wen-Ta Li
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang J, Gui L, Chen ZY, Zhang QY. Mutations in the C-terminal region affect subcellular localization of crucian carp herpesvirus (CaHV) GPCR. Virus Genes 2016; 52:484-94. [PMID: 27059239 PMCID: PMC4923094 DOI: 10.1007/s11262-016-1325-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/18/2016] [Indexed: 11/25/2022]
Abstract
G protein-coupled receptors (GPCRs) are known as seven transmembrane domain receptors and consequently can mediate diverse biological functions via regulation of their subcellular localization. Crucian carp herpesvirus (CaHV) was recently isolated from infected fish with acute gill hemorrhage. CaHV GPCR of 349 amino acids (aa) was identified based on amino acid identity. A series of variants with truncation/deletion/substitution mutation in the C-terminal (aa 315–349) were constructed and expressed in fathead minnow (FHM) cells. The roles of three key C-terminal regions in subcellular localization of CaHV GPCR were determined. Lysine-315 (K-315) directed the aggregation of the protein preferentially at the nuclear side. Predicted N-myristoylation site (GGGWTR, aa 335–340) was responsible for punctate distribution in periplasm or throughout the cytoplasm. Predicted phosphorylation site (SSR, aa 327–329) and GGGWTR together determined the punctate distribution in cytoplasm. Detection of organelles localization by specific markers showed that the protein retaining K-315 colocalized with the Golgi apparatus. These experiments provided first evidence that different mutations of CaHV GPCR C-terminals have different affects on the subcellular localization of fish herpesvirus-encoded GPCRs. The study provided valuable information and new insights into the precise interactions between herpesvirus and fish cells, and could also provide useful targets for antiviral agents in aquaculture.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lang Gui
- Fisheries and Life Science, Shanghai Ocean University, Shanghai, 200120, China
| | - Zong-Yan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
7
|
Virus genomes and virus-host interactions in aquaculture animals. SCIENCE CHINA-LIFE SCIENCES 2015; 58:156-69. [DOI: 10.1007/s11427-015-4802-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/29/2014] [Indexed: 12/20/2022]
|
8
|
He LB, Ke F, Wang J, Gao XC, Zhang QY. Rana grylio virus (RGV) envelope protein 2L: subcellular localization and essential roles in virus infectivity revealed by conditional lethal mutant. J Gen Virol 2014; 95:679-690. [DOI: 10.1099/vir.0.058776-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rana grylio virus (RGV) is a pathogenic iridovirus that has resulted in high mortality in cultured frog. Here, an envelope protein gene, 2L, was identified from RGV and its possible role in virus infection was investigated. Database searches found that RGV 2L had homologues in all sequenced iridoviruses and is a core gene of iridoviruses. Western blotting detection of purified RGV virions confirmed that 2L protein was associated with virion membrane. Fluorescence localization revealed that 2L protein co-localized with viral factories in RGV infected cells. In co-transfected cells, 2L protein co-localized with two other viral envelope proteins, 22R and 53R. However, 2L protein did not co-localize with the major capsid protein of RGV in co-transfected cells. Meanwhile, fluorescence observation showed that 2L protein co-localized with endoplasmic reticulum, but did not co-localize with mitochondria and Golgi apparatus. Moreover, a conditional lethal mutant virus containing the lac repressor/operator system was constructed to investigate the role of RGV 2L in virus infection. The ability to form plaques and the virus titres were strongly reduced when expression of 2L was repressed. Therefore, the current data showed that 2L protein is essential for virus infection. Our study is the first report, to our knowledge, of co-localization between envelope proteins in iridovirus and provides new insights into the understanding of envelope proteins in iridovirus.
Collapse
Affiliation(s)
- Li-Bo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Jun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Xiao-Chan Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| |
Collapse
|
9
|
He LB, Gao XC, Ke F, Zhang QY. A conditional lethal mutation in Rana grylio virus ORF 53R resulted in a marked reduction in virion formation. Virus Res 2013; 177:194-200. [DOI: 10.1016/j.virusres.2013.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 01/07/2023]
|
10
|
Lei XY, Ou T, Zhang QY. Rana grylio virus (RGV) 50L is associated with viral matrix and exhibited two distribution patterns. PLoS One 2012; 7:e43033. [PMID: 22912781 PMCID: PMC3418244 DOI: 10.1371/journal.pone.0043033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/16/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The complete genome of Rana grylio virus (RGV) was sequenced and analyzed recently, which revealed that RGV 50 L had homologues in many iridoviruses with different identities; however, the characteristics and functions of 50 L have not been studied yet. METHODOLOGY/PRINCIPAL FINDINGS We cloned and characterized RGV50L, and revealed 50 L functions in virus assembly and gene regulation. 50 L encoded a 499-amino acid structural protein of about 85 kDa in molecular weight and contained a nuclear localization signal (NLS) and a helix- extension-helix motif. Drug inhibition assay demonstrated that 50 L was an immediate-early (IE) gene. Immuno-fluorescence assay revealed that 50 L appeared early and persisted in RGV-infected cells following two distribution patterns. One pattern was that 50 L exhibited a cytoplasm-nucleus- viromatrix distribution pattern, and mutagenesis of the NLS motif revealed that localization of 50 L in the nucleus was NLS-dependent; the other was that 50 L co-localized with viral matrix which plays important roles in virus assembly and the life circle of viruses. CONCLUSIONS/SIGNIFICANCE RGV 50L is a novel iridovirus IE gene encoded structural protein which plays important roles in virus assembly.
Collapse
Affiliation(s)
- Xiao-Ying Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan, China
| | - Tong Ou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
11
|
Lei XY, Chen ZY, He LB, Pei C, Yuan XP, Zhang QY. Characterization and virus susceptibility of a skin cell line from red-spotted grouper (Epinephelus akaara). FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1175-1182. [PMID: 22252337 DOI: 10.1007/s10695-012-9603-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 01/07/2012] [Indexed: 05/31/2023]
Abstract
A red-spotted grouper Epinephelus akaara skin (RGS) cell line was established and characterized. RGS cells had a normal diploid chromosome number of 2n = 48, the morphology of which was fibroblastic-like in 3 days and epithelial-like over 5 after 16 passages. The cells multiplied well in Dulbecco's modified Eagle's medium supplemented with 10% of fetal bovine serum at 25°C. Susceptibilities of RGS and grass carp ovary (GCO) cells to two viruses were tested, and the results showed that the titer of an iridovirus Rana grylio virus (RGV) in RGS cells was 10³·⁵ TCID₅₀ ml⁻¹, which was much higher than a rhabdovirus spring viremia of carp virus (SVCV) in the cells (10⁰·⁵ TCID₅₀ ml⁻¹). The titers of RGV and SVCV in GCO were 10⁶·⁰ TCID₅₀ ml⁻¹ and 10⁸·⁰ TCID₅₀ ml⁻¹, respectively, which were higher than those in RGS cells. The data may imply that RGS cells could be selectively resistible to some viruses during infection. RT-PCR analysis of RGV-infected RGS cells showed that RGV could replicate in RGS cells. Further study of virus replications in RGS cells was conducted by electron microscopy and immunofluorescence microscopy has shown that virus particles scattered in the cytoplasm and virus protein appeared in both the cytoplasm and nucleus. The results suggested that RGS cells could be used as a potential in vitro model to study the cutaneous barrier function against virus infection.
Collapse
Affiliation(s)
- Xiao-Ying Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhong-Yuan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Li-Bo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chao Pei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiu-Ping Yuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
12
|
Lei XY, Ou T, Zhu RL, Zhang QY. Sequencing and analysis of the complete genome of Rana grylio virus (RGV). Arch Virol 2012; 157:1559-64. [DOI: 10.1007/s00705-012-1316-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/19/2012] [Indexed: 12/29/2022]
|
13
|
He LB, Ke F, Zhang QY. Rana grylio virus as a vector for foreign gene expression in fish cells. Virus Res 2011; 163:66-73. [PMID: 21889962 DOI: 10.1016/j.virusres.2011.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 01/25/2023]
Abstract
In the present study, Rana grylio virus (RGV, an iridovirus) thymidine kinase (TK) gene and viral envelope protein 53R gene were chosen as targets for foreign gene insertion. ΔTK-RGV and Δ53R-RGV, two recombinant RGV, expressing enhanced green fluorescence protein (EGFP) were constructed and analyzed in Epithelioma papulosum cyprinid (EPC) cells. The EGFP gene which fused to the virus major capsid protein (MCP) promoter p50 was inserted into TK and 53R gene loci of RGV, respectively. Cells infected with these two recombinant viruses not only displayed plaques, but also emitted strong green fluorescence under fluorescence microscope, providing a simple method for selection and purification of recombinant viruses. ΔTK-RGV was purified by seven successive rounds of plaque isolation and could be stably propagated in EPC cells. All of the plaques produced by the purified recombinant virus emitted green fluorescence. However, Δ53R-RGV was hard to be purified even through twenty rounds of plaque isolation. The purified recombinant virus ΔTK-RGV was verified by PCR analysis and Western blotting. These results showed EGFP was expressed in ΔTK-RGV infected cells. Furthermore, one-step growth curves and electron microscopy revealed that infection with recombinant ΔTK-RGV and wild-type RGV are similar. Therefore, RGV was demonstrated could be as a viral vector for foreign gene expression in fish cells.
Collapse
Affiliation(s)
- Li-Bo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan 430072, China
| | | | | |
Collapse
|
14
|
Viral envelope protein 53R gene highly specific silencing and iridovirus resistance in fish Cells by AmiRNA. PLoS One 2010; 5:e10308. [PMID: 20428238 PMCID: PMC2859056 DOI: 10.1371/journal.pone.0010308] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 03/31/2010] [Indexed: 12/11/2022] Open
Abstract
Background Envelope protein 53R was identified from frog Rana grylio virus (RGV), a member of the family Iridoviridae, and it plays an important role in the virus assembly. Although inhibition of iridovirus major capsid protein (MCP) by small hairpin RNAs (shRNAs) has been shown to cause resistance to viral infection in vitro, RNA interference (RNAi) to inhibit aquatic animal virus envelope protein gene product has not been reported. Methodology We devised artificial microRNAs (amiRNAs) that target a viral envelope protein gene RGV 53R. By incorporating sequences encoding amiRNAs specific to 53R of RGV into pre-miRNA155 (pSM155) vectors, which use the backbone of natural miR-155 sequence and could intracellularly express 53R-targeted pre-amiRNAs. The pre-amiRNAs could be processed by the RNase III-like enzyme Dicer into 21–25 nt amiRNAs (amiR-53Rs) in fish cell lines. The levels of 53R expression were analyzed through real-time PCR and RGV virions assembly were observed by electronic microscopy in fish cells transfected with or without amiR-53Rs at 72 h of RGV infection. Conclusion/Significance The results argue that viral envelope protein RGV 53R can be silenced and the virions assembly was deficient by amiR-53R-1, and further identified the first amiRNA of envelope protein gene from iridovirus that was able to cause resistance to virus infection in fish cells. The data demonstrate that the viral infection is efficiently suppressed (58%) by amiR-53R-1 targeting positon 36–57 of RGV 53R. Moreover, electron microscopic observations revealed virion assembly defect or reduced virions assembly capacity was closely correlated to expression of amiR-53R-1. Based on real time PCR of the Mx gene, we found no evidence of activation of IFN by amiR-53R-1.
Collapse
|
15
|
Rana grylio virus thymidine kinase gene: an early gene of iridovirus encoding for a cytoplasmic protein. Virus Genes 2009; 38:345-52. [DOI: 10.1007/s11262-008-0318-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 12/18/2008] [Indexed: 11/27/2022]
|
16
|
Abstract
Members of the family Iridoviridae infect a diverse array of invertebrate and cold-blooded vertebrate hosts and are currently viewed as emerging pathogens of fish and amphibians. Iridovirid replication is unique and involves both nuclear and cytoplasmic compartments, a circularly permuted, terminally redundant genome that, in the case of vertebrate iridoviruses, is also highly methylated, and the efficient shutoff of host macromolecular synthesis. Although initially neglected largely due to the perceived lack of health, environmental, and economic concerns, members of the genus Ranavirus, and the newly recognized genus Megalocytivirus, are rapidly attracting growing interest due to their involvement in amphibian population declines and their adverse impacts on aquaculture. Herein we describe the molecular and genetic basis of viral replication, pathogenesis, and immunity, and discuss viral ecology with reference to members from each of the invertebrate and vertebrate genera.
Collapse
|
17
|
Zhao Z, Ke F, Huang YH, Zhao JG, Gui JF, Zhang QY. Identification and characterization of a novel envelope protein in Rana grylio virus. J Gen Virol 2008; 89:1866-1872. [DOI: 10.1099/vir.0.2008/000810-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Viral envelope proteins have been proposed to play significant roles in virus infection and assembly. In this study, an envelope protein gene,53R, was cloned and characterized fromRana gryliovirus (RGV), a member of the familyIridoviridae. Database searches found its homologues in all sequenced iridoviruses, and sequence alignment revealed several conserved structural features shared by virus capsid or envelope proteins: a myristoylation site, two predicted transmembrane domains and two invariant cysteine residues. Subsequently, RT-PCR and Western blot detection revealed that the transcripts encoding RGV 53R and the protein itself appeared late during infection of fathead minnow cells and that their appearance was blocked by viral DNA replication inhibitor, indicating that RGV53Ris a late expression gene. Moreover, immunofluorescence localization found an association of 53R with virus factories in RGV-infected cells, and this association was further confirmed by expressing a 53R–GFP fusion protein in pEGFP-N3/53R-transfected cells. Furthermore, detergent extraction and Western blot detection confirmed that RGV 53R was associated with virion membrane. Therefore, the current data suggest that RGV 53R is a novel viral envelope protein and that it may play an important role in virus assembly. This is thought to be the first report on a viral envelope protein that is conserved in all sequenced iridoviruses.
Collapse
Affiliation(s)
- Zhe Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Wuhan 430072, PR China
| | - You-Hua Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Jiu-Gang Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Wuhan 430072, PR China
| |
Collapse
|