1
|
Sampei C, Kato K, Arasaki Y, Kimura Y, Konno T, Otsuka K, Kohara Y, Noda M, Ezura Y, Hayata T. Gprc5a is a novel parathyroid hormone-inducible gene and negatively regulates osteoblast proliferation and differentiation. J Cell Physiol 2024; 239:e31297. [PMID: 38769895 DOI: 10.1002/jcp.31297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Teriparatide is a peptide derived from a parathyroid hormone (PTH) and an osteoporosis therapeutic drug with potent bone formation-promoting activity. To identify novel druggable genes that act downstream of PTH signaling and are potentially involved in bone formation, we screened PTH target genes in mouse osteoblast-like MC3T3-E1 cells. Here we show that Gprc5a, encoding an orphan G protein-coupled receptor, is a novel PTH-inducible gene and negatively regulates osteoblast proliferation and differentiation. PTH treatment induced Gprc5a expression in MC3T3-E1 cells, rat osteosarcoma ROS17/2.8 cells, and mouse femurs. Induction of Gprc5a expression by PTH occurred in the absence of protein synthesis and was mediated primarily via the cAMP pathway, suggesting that Gprc5a is a direct target of PTH signaling. Interestingly, Gprc5a expression was induced additively by co-treatment with PTH and 1α, 25-dihydroxyvitamin D3 (calcitriol), or retinoic acid in MC3T3-E1 cells. Reporter analysis of a 1 kb fragment of human GPRC5A promoter revealed that the promoter fragment showed responsiveness to PTH via the cAMP response element, suggesting that GPRC5A is also a PTH-inducible gene in humans. Gprc5a knockdown promoted cell viability and proliferation, as demonstrated by MTT and BrdU assays. Gprc5a knockdown also promoted osteoblast differentiation, as indicated by gene expression analysis and mineralization assay. Mechanistic studies showed that Gprc5a interacted with BMPR1A and suppressed BMP signaling induced by BMP-2 and constitutively active BMP receptors, ALK2 (ACVR1) Q207D and ALK3 (BMPR1A) Q233D. Thus, our results suggest that Gprc5a is a novel gene induced by PTH that acts in an inhibitory manner on both cell proliferation and osteoblast differentiation and is a candidate for drug targets for osteoporosis.
Collapse
Affiliation(s)
- Chisato Sampei
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Kosuke Kato
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Yasuhiro Arasaki
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Yuta Kimura
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Takuto Konno
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Kanon Otsuka
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Yukihiro Kohara
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Department of Occupational Therapy, Faculty of Health and Medical Science, Teikyo Heisei University, Toshima-ku, Japan
| | - Tadayoshi Hayata
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Scharf MM, Humphrys LJ, Berndt S, Di Pizio A, Lehmann J, Liebscher I, Nicoli A, Niv MY, Peri L, Schihada H, Schulte G. The dark sides of the GPCR tree - research progress on understudied GPCRs. Br J Pharmacol 2024. [PMID: 38339984 DOI: 10.1111/bph.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
A large portion of the human GPCRome is still in the dark and understudied, consisting even of entire subfamilies of GPCRs such as odorant receptors, class A and C orphans, adhesion GPCRs, Frizzleds and taste receptors. However, it is undeniable that these GPCRs bring an untapped therapeutic potential that should be explored further. Open questions on these GPCRs span diverse topics such as deorphanisation, the development of tool compounds and tools for studying these GPCRs, as well as understanding basic signalling mechanisms. This review gives an overview of the current state of knowledge for each of the diverse subfamilies of understudied receptors regarding their physiological relevance, molecular mechanisms, endogenous ligands and pharmacological tools. Furthermore, it identifies some of the largest knowledge gaps that should be addressed in the foreseeable future and lists some general strategies that might be helpful in this process.
Collapse
Affiliation(s)
- Magdalena M Scharf
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Sandra Berndt
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Juliane Lehmann
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior Peri
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hannes Schihada
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gunnar Schulte
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| |
Collapse
|
3
|
Iglesias González PA, Valdivieso ÁG, Santa-Coloma TA. The G protein-coupled receptor GPRC5A-a phorbol ester and retinoic acid-induced orphan receptor with roles in cancer, inflammation, and immunity. Biochem Cell Biol 2023; 101:465-480. [PMID: 37467514 DOI: 10.1139/bcb-2022-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
GPRC5A is the first member of a new class of orphan receptors coupled to G proteins, which also includes GPRC5B, GPRC5C, and GPRC5D. Since its cloning and identification in the 1990s, substantial progress has been made in understanding the possible functions of this receptor. GPRC5A has been implicated in a variety of cellular events, such as cytoskeleton reorganization, cell proliferation, cell cycle regulation, migration, and survival. It appears to be a central player in different pathological processes, including tumorigenesis, inflammation, immune response, and tissue damage. The levels of GPRC5A expression differ depending on the type of cancer, with increased expression in colon, pancreas, and prostate cancers; decreased expression in lung cancer; and varied results in breast cancer. In this review, we discuss the early discovery of GPRC5A as a phorbol ester-induced gene and later as a retinoic acid-induced gene, its regulation, and its participation in important canonical pathways related to numerous types of tumors and inflammatory processes. GPRC5A represents a potential new target for cancer, inflammation, and immunity therapies.
Collapse
Affiliation(s)
- Pablo A Iglesias González
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| | - Ángel G Valdivieso
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| | - Tomás A Santa-Coloma
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| |
Collapse
|
4
|
Betto F, Chiricosta L, Mazzon E. An In Silico Analysis Reveals Sustained Upregulation of Neuroprotective Genes in the Post-Stroke Human Brain. Brain Sci 2023; 13:986. [PMID: 37508918 PMCID: PMC10377198 DOI: 10.3390/brainsci13070986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Ischemic stroke is a cerebrovascular disease caused by an interruption of blood flow to the brain, thus determining a lack of oxygen and nutrient supply. The ischemic event leads to the activation of several molecular signaling pathways involved in inflammation and the production of reactive oxygen species, causing irreversible neuronal damage. Several studies have focused on the acute phase of ischemic stroke. It is not clear if this traumatic event can influence some of the molecular processes in the affected area even years after the clinical event. In our study, we performed an in silico analysis using freely available raw data with the purpose of evaluating the transcriptomic state of post-mortem brain tissue. The samples were taken from non-fatal ischemic stroke patients, meaning that they suffered an ischemic stroke and lived for a period of about 2 years after the event. These samples were compared with healthy controls. The aim was to evaluate possible recovery processes useful to mitigating neuronal damage and the detrimental consequences of stroke. Our results highlighted differentially expressed genes codifying for proteins along with long non-coding genes with anti-inflammatory and anti-oxidant functions. This suggests that even after an amount of time from the ischemic insult, different neuroprotective mechanisms are activated to ameliorate brain conditions and repair post-stroke neuronal injury.
Collapse
Affiliation(s)
- Federica Betto
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
5
|
Long E, Yin J, Funderburk KM, Xu M, Feng J, Kane A, Zhang T, Myers T, Golden A, Thakur R, Kong H, Jessop L, Kim EY, Jones K, Chari R, Machiela MJ, Yu K, Iles MM, Landi MT, Law MH, Chanock SJ, Brown KM, Choi J. Massively parallel reporter assays and variant scoring identified functional variants and target genes for melanoma loci and highlighted cell-type specificity. Am J Hum Genet 2022; 109:2210-2229. [PMID: 36423637 PMCID: PMC9748337 DOI: 10.1016/j.ajhg.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
The most recent genome-wide association study (GWAS) of cutaneous melanoma identified 54 risk-associated loci, but functional variants and their target genes for most have not been established. Here, we performed massively parallel reporter assays (MPRAs) by using malignant melanoma and normal melanocyte cells and further integrated multi-layer annotation to systematically prioritize functional variants and susceptibility genes from these GWAS loci. Of 1,992 risk-associated variants tested in MPRAs, we identified 285 from 42 loci (78% of the known loci) displaying significant allelic transcriptional activities in either cell type (FDR < 1%). We further characterized MPRA-significant variants by motif prediction, epigenomic annotation, and statistical/functional fine-mapping to create integrative variant scores, which prioritized one to six plausible candidate variants per locus for the 42 loci and nominated a single variant for 43% of these loci. Overlaying the MPRA-significant variants with genome-wide significant expression or methylation quantitative trait loci (eQTLs or meQTLs, respectively) from melanocytes or melanomas identified candidate susceptibility genes for 60% of variants (172 of 285 variants). CRISPRi of top-scoring variants validated their cis-regulatory effect on the eQTL target genes, MAFF (22q13.1) and GPRC5A (12p13.1). Finally, we identified 36 melanoma-specific and 45 melanocyte-specific MPRA-significant variants, a subset of which are linked to cell-type-specific target genes. Analyses of transcription factor availability in MPRA datasets and variant-transcription-factor interaction in eQTL datasets highlighted the roles of transcription factors in cell-type-specific variant functionality. In conclusion, MPRAs along with variant scoring effectively prioritized plausible candidates for most melanoma GWAS loci and highlighted cellular contexts where the susceptibility variants are functional.
Collapse
Affiliation(s)
- Erping Long
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jinhu Yin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Karen M. Funderburk
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mai Xu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - James Feng
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alexander Kane
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Timothy Myers
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alyxandra Golden
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Rohit Thakur
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Hyunkyung Kong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lea Jessop
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Eun Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Lab for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Mitchell J. Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Mark M. Iles
- Leeds Institute for Data Analytics, School of Medicine, University of Leeds, Leeds LS2 9NL, UK
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Matthew H. Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia,Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia,School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kevin M. Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA,Corresponding author
| |
Collapse
|
6
|
Guan K, Li H, Chen H, Qi X, Wang R, Ma Y. TMT-based quantitative proteomics analysis reveals the effect of bovine derived MFG-E8 against oxidative stress on rat L6 cells. Food Funct 2021; 12:7310-7320. [PMID: 34169949 DOI: 10.1039/d1fo01135a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sarcopenia is an aging-associated oxidative stress-induced mitochondrial dysfunction characterized by a decline in skeletal muscle mass, strength and function. Milk fat globule-EGF factor 8 (MFG-E8) is a secreted matrix glycoprotein that plays a crucial role in regulating tissue homeostasis and protecting against skeletal muscle injury. To explore the molecular mechanism of MFG-E8 in ameliorating the rotenone (Rot)-induced L6 skeletal muscle cell oxidative stress injury, differential proteomics of inner L6 cells was conducted. Tandem mass tag (TMT) labeling combined with mass spectrometry (MS) was performed to find associations among control, Rot and Rot + MFG-E8 groups. Over 3248 proteins were identified in the L6 cells. A total of 639 significantly differential proteins were identified, including 294 up-regulated proteins (>1.2 fold) and 345 down-regulated proteins (<0.83 fold) after the exogenous intervention of MFG-E8. Based on the analysis of Gene Ontology (GO), STRING and KEGG databases, MFG-E8 relieves oxidative stress induced-L6 cell damage by regulating the expression of these differential proteins mainly via carbon metabolism, glutathione metabolism and mitochondria-mediated metabolic pathways, e.g. carbohydrate, lipid and amino acid metabolism. Furthermore, to verify the protective effect of MFG-E8 on oxidative stress injured L6 cells, the levels of intracellular reactive oxygen species (ROS), nicotinamide adenine dinucleotide/reduced nicotinamide adenine dinucleotide (NAD+/NADH) contents and the protein expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) were detected.
Collapse
Affiliation(s)
- Kaifang Guan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China.
| | | | | | | | | | | |
Collapse
|
7
|
Qian X, Jiang C, Shen S, Zou X. GPRC5A: An emerging prognostic biomarker for predicting malignancy of Pancreatic Cancer based on bioinformatics analysis. J Cancer 2021; 12:2010-2022. [PMID: 33753999 PMCID: PMC7974517 DOI: 10.7150/jca.52578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Pancreatic cancer (PaCa) is a highly lethal malignancy. The treatment options for PaCa lack efficacy. The study aimed to explore the molecular biomarkers for predicting survival of PaCa and identify the potential carcinogenic mechanisms of the selected gene. Methods: Based on public databases of PaCa, differentially expressed genes (DEGs) were identified using Networkanalyst. Survival analyses were exerted on GEPIA. Oncomine and The Human Protein Atlas were used for verifying the expression on mRNA and protein levels. Enrichment analyses were generated on Metascape and gene set enrichment analysis (GSEA). Univariate analyses were performed to determine the clinical factors associated with the expression of GPRC5A. Results: GPRC5A was identified as the most valuable gene in predicting survival of PaCa patients. Patients with high expression of GPRC5A showed larger tumor size, higher TNM stages, higher tumor grade, and more positive resection margin. In mutant KRAS, TP53, CDKN2A and SMAD4 group, the expression of GPRC5A was higher than non-mutant group. Mechanistically, GPRC5A may promote metastasis of PaCa mainly via regulating epithelial-mesenchymal transition (EMT) and neuroactive ligand-receptor interaction. Conclusion: GPRC5A may act as an oncogene in the progression of PaCa and could be a prognostic biomarker in predicting survival of PaCa.
Collapse
Affiliation(s)
- Xuetian Qian
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, People's Republic of China
| | - Chengfei Jiang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Shanshan Shen
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Xiaoping Zou
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, People's Republic of China
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| |
Collapse
|
8
|
Tabet F, Lee S, Zhu W, Levin MG, Toth CL, Cuesta Torres LF, Vinh A, Kim HA, Chu HX, Evans MA, Kuzmich ME, Drummond GR, Remaley AT, Rye KA, Sobey CG, Vickers KC. microRNA-367-3p regulation of GPRC5A is suppressed in ischemic stroke. J Cereb Blood Flow Metab 2020; 40:1300-1315. [PMID: 31296130 PMCID: PMC7238381 DOI: 10.1177/0271678x19858637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ischemic stroke is a major cause of mortality and long-term disability with limited treatment options, and a greater understanding of the gene regulatory mechanisms underlying ischemic stroke-associated neuroinflammation is required for new therapies. To study ischemic stroke in vivo, mice were subjected to sustained ischemia by intraluminal filament-induced middle cerebral artery occlusion (MCAo) for 24 h without reperfusion or transient ischemia for 30 min followed by 23.5 h reperfusion, and brain miRNA and mRNA expression changes were quantified by TaqMan OpenArrays and gene (mRNA) expression arrays, respectively. Sustained ischemia resulted in 18 significantly altered miRNAs and 392 altered mRNAs in mouse brains compared to Sham controls; however, the transient ischemic condition was found to impact only 6 miRNAs and 126 mRNAs. miR-367-3p was found to be significantly decreased in brain homogenates with sustained ischemia. G protein-coupled receptor, family C, group 5, member A (Gprc5a), a miR-367-3p target gene, was found to be significantly increased with sustained ischemia. In primary neurons, inhibition of endogenous miR-367-3p resulted in a significant increase in Gprc5a expression. Moreover, miR-367-3p was found to be co-expressed with GPRC5A in human neurons. Results suggest that loss of miR-367-3p suppression of GPRC5A may contribute to neuroinflammation associated with ischemic stroke.
Collapse
Affiliation(s)
- Fatiha Tabet
- Mechanisms of Disease and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Seyoung Lee
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Wanying Zhu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael G Levin
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia L Toth
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Luisa F Cuesta Torres
- Mechanisms of Disease and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Antony Vinh
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Hyun Ah Kim
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Hannah X Chu
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Megan A Evans
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Meaghan E Kuzmich
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Grant R Drummond
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Alan T Remaley
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kerry-Anne Rye
- Mechanisms of Disease and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Christopher G Sobey
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
9
|
GPRC5A: An Emerging Biomarker in Human Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1823726. [PMID: 30417009 PMCID: PMC6207857 DOI: 10.1155/2018/1823726] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022]
Abstract
Aberrant expression of G protein-coupled receptors (GPCRs) is frequently associated with tumorigenesis. G Protein-coupled receptor class C group 5 member A (GPRC5A) is a member of the GPCR superfamily, is expressed preferentially in lung tissues, and is regulated by various entities at multiple levels. GPRC5A exerts a tumor suppressive role in lung cancer and GPRC5A deletion promotes lung tumor initiation and progression. Recent advances have highlighted that GPRC5A dysregulation is found in various human cancers and is related to many tumor-associated signaling pathways, including the cyclic adenosine monophosphate (cAMP), nuclear factor (NF)-κB, signal transducer and activator of transcription (STAT) 3, and focal adhesion kinase (FAK)/Src signaling. This review aimed to summarize our updated view on the biology and regulation of GPRC5A, its expression in human cancers, and the linked signaling pathways. A better comprehension of the underlying cellular and molecular mechanisms of GPRC5A will provide novel insights into its potential diagnostic and therapeutic value.
Collapse
|
10
|
Insel PA, Sriram K, Wiley SZ, Wilderman A, Katakia T, McCann T, Yokouchi H, Zhang L, Corriden R, Liu D, Feigin ME, French RP, Lowy AM, Murray F. GPCRomics: GPCR Expression in Cancer Cells and Tumors Identifies New, Potential Biomarkers and Therapeutic Targets. Front Pharmacol 2018; 9:431. [PMID: 29872392 PMCID: PMC5972277 DOI: 10.3389/fphar.2018.00431] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of targets for approved drugs, are rarely targeted for cancer treatment, except for certain endocrine and hormone-responsive tumors. Limited knowledge regarding GPCR expression in cancer cells likely has contributed to this lack of use of GPCR-targeted drugs as cancer therapeutics. We thus undertook GPCRomic studies to define the expression of endoGPCRs (which respond to endogenous molecules such as hormones, neurotransmitters and metabolites) in multiple types of cancer cells. Using TaqMan qPCR arrays to quantify the mRNA expression of ∼340 such GPCRs, we found that human chronic lymphocytic leukemia (CLL) cells/stromal cells associated with CLL, breast cancer cell lines, colon cancer cell lines, pancreatic ductal adenocarcinoma (PDAC) cells, cancer associated fibroblasts (CAFs), and PDAC tumors express 50 to >100 GPCRs, including many orphan GPCRs (which lack known physiologic agonists). Limited prior data exist regarding the expression or function of most of the highly expressed GPCRs in these cancer cells and tumors. Independent results from public cancer gene expression databases confirm the expression of such GPCRs. We propose that highly expressed GPCRs in cancer cells (for example, GPRC5A in PDAC and colon cancer cells and GPR68 in PDAC CAFs) may contribute to the malignant phenotype, serve as biomarkers and/or may be novel therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
- Paul A. Insel
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Krishna Sriram
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Shu Z. Wiley
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Andrea Wilderman
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Trishna Katakia
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Thalia McCann
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Hiroshi Yokouchi
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Lingzhi Zhang
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Ross Corriden
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Dongling Liu
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Michael E. Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Randall P. French
- Department of Surgery, University of California, San Diego, San Diego, CA, United States
- Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Andrew M. Lowy
- Department of Surgery, University of California, San Diego, San Diego, CA, United States
- Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Fiona Murray
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
11
|
Jin C, Wang W, Liu Y, Zhou Y. RAI3 knockdown promotes adipogenic differentiation of human adipose-derived stem cells by decreasing β-catenin levels. Biochem Biophys Res Commun 2017; 493:618-624. [PMID: 28870805 DOI: 10.1016/j.bbrc.2017.08.142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 01/14/2023]
Abstract
Retinoic acid-induced protein 3 (RAI3) has been found to play significant roles in embryonic development, cellular proliferation and differentiation, but its role in adipogenesis has not been explored. In this study, we discovered RAI3 was downregulated during the adipogenic differentiation of human adipose derived stem cells (hASCs). Moreover, we demonstrated that knockdown of RAI3 promoted adipogenic differentiation of hASCs both in vitro and in vivo. Mechanistically, our findings showed that inhibition of RAI3 in hASCs reduced the expression of β-catenin, and lithium chloride which can activate the β-catenin pathway abolished the effect of RAI3 knockdown on the adipogenesis. These results suggest RAI3 plays an important role in adipogenesis of hASCs and may have a potential use in the future application.
Collapse
Affiliation(s)
- Chanyuan Jin
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Wensi Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| |
Collapse
|
12
|
Jin E, Wang W, Fang M, Wang L, Wu K, Zhang Y, Zhang S, Ma S. Lung cancer suppressor gene GPRC5A mediates p53 activity in non‑small cell lung cancer cells in vitro. Mol Med Rep 2017; 16:6382-6388. [PMID: 28849235 DOI: 10.3892/mmr.2017.7343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 03/23/2017] [Indexed: 11/06/2022] Open
Abstract
Cellular tumor antigen p53 (p53) functions to maintain genomic stability and regulate cell apoptosis, while G protein‑coupled receptor class C group 5 member A (GPCR5A) is a lung cancer suppressor gene whose expression is induced by retinoids. The present in vitro study assessed the effects of p53 on the regulation of GPRC5A expression and on non‑small cell lung cancer (NSCLC) cells. Human NSCLC H1299 (p53‑null) and A549 (wild‑type p53) cell lines were subjected to p53 cDNA and small interfering (si)RNA transfection, respectively. GPRC5A expression was analyzed by reverse transcription‑quantitative polymerase chain reaction and western blotting, and cell behavior was analyzed using cell viability and apoptosis assays. The results of the present study demonstrated that knockdown of GPRC5A expression markedly upregulated tumor cell viability and reduced tumor cell apoptosis, while p53 overexpression in H1299 cells significantly increased the expression level of GPRC5A. p53 overexpression and GPRC5A induction markedly inhibited tumor cell viability and induced apoptosis, while knockdown of p53 resulted in a decrease in GPRC5A expression, inhibited tumor cell apoptosis and increased tumor cell viability. In serum‑free culture conditions, GPRC5A expression was decreased in the two cell lines; this decrease was less marked in p53 cDNA‑transfected H1299 cells and more marked in p53 siRNA‑transfected A549 cells. The results of the present study indicated that p53 antitumor activity may be mediated by GPRC5A in NSCLC cells.
Collapse
Affiliation(s)
- Er Jin
- Department of Respiratory Medicine, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Wenzhe Wang
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310012, P.R. China
| | - Mengdie Fang
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310012, P.R. China
| | - Limin Wang
- Department of Respiratory Medicine, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Kan Wu
- Department of Medical Oncology, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Yemei Zhang
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310012, P.R. China
| | - Shirong Zhang
- Department of Medical Oncology, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Shenglin Ma
- Department of Medical Oncology, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
13
|
Bulanova DR, Akimov YA, Rokka A, Laajala TD, Aittokallio T, Kouvonen P, Pellinen T, Kuznetsov SG. Orphan G protein-coupled receptor GPRC5A modulates integrin β1-mediated epithelial cell adhesion. Cell Adh Migr 2017; 11:434-446. [PMID: 27715394 PMCID: PMC5810789 DOI: 10.1080/19336918.2016.1245264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
G-Protein Coupled Receptor (GPCR), Class C, Group 5, Member A (GPRC5A) has been implicated in several malignancies. The underlying mechanisms, however, remain poorly understood. Using a panel of human cell lines, we demonstrate that CRISPR/Cas9-mediated knockout and RNAi-mediated depletion of GPRC5A impairs cell adhesion to integrin substrates: collagens I and IV, fibronectin, as well as to extracellular matrix proteins derived from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma (Matrigel). Consistent with the phenotype, knock-out of GPRC5A correlated with a reduced integrin β1 (ITGB1) protein expression, impaired phosphorylation of the focal adhesion kinase (FAK), and lower activity of small GTPases RhoA and Rac1. Furthermore, we provide the first evidence for a direct interaction between GPRC5A and a receptor tyrosine kinase EphA2, an upstream regulator of FAK, although its contribution to the observed adhesion phenotype is unclear. Our findings reveal an unprecedented role for GPRC5A in regulation of the ITGB1-mediated cell adhesion and it's downstream signaling, thus indicating a potential novel role for GPRC5A in human epithelial cancers.
Collapse
Affiliation(s)
- Daria R Bulanova
- a Institute for Molecular Medicine Finland (FIMM), University of Helsinki , Helsinki , Finland
| | - Yevhen A Akimov
- a Institute for Molecular Medicine Finland (FIMM), University of Helsinki , Helsinki , Finland
| | - Anne Rokka
- c Turku Centre for Biotechnology , University of Turku and Abo Academy , Turku , Finland
| | - Teemu D Laajala
- a Institute for Molecular Medicine Finland (FIMM), University of Helsinki , Helsinki , Finland.,b Department of Mathematics and Statistics , University of Turku , Turku , Finland
| | - Tero Aittokallio
- a Institute for Molecular Medicine Finland (FIMM), University of Helsinki , Helsinki , Finland.,b Department of Mathematics and Statistics , University of Turku , Turku , Finland
| | - Petri Kouvonen
- c Turku Centre for Biotechnology , University of Turku and Abo Academy , Turku , Finland
| | - Teijo Pellinen
- a Institute for Molecular Medicine Finland (FIMM), University of Helsinki , Helsinki , Finland
| | - Sergey G Kuznetsov
- a Institute for Molecular Medicine Finland (FIMM), University of Helsinki , Helsinki , Finland
| |
Collapse
|
14
|
Chhuon C, Pranke I, Borot F, Tondelier D, Lipecka J, Fritsch J, Chanson M, Edelman A, Ollero M, Guerrera I. Changes in lipid raft proteome upon TNF-α stimulation of cystic fibrosis cells. J Proteomics 2016; 145:246-253. [DOI: 10.1016/j.jprot.2016.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/20/2016] [Accepted: 07/03/2016] [Indexed: 01/22/2023]
|
15
|
Zhou H, Telonis AG, Jing Y, Xia NL, Biederman L, Jimbo M, Blanco F, Londin E, Brody JR, Rigoutsos I. GPRC5A is a potential oncogene in pancreatic ductal adenocarcinoma cells that is upregulated by gemcitabine with help from HuR. Cell Death Dis 2016; 7:e2294. [PMID: 27415424 PMCID: PMC4973341 DOI: 10.1038/cddis.2016.169] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/05/2023]
Abstract
GPRC5A is an orphan G-protein coupled receptor with an intriguing dual behavior, acting as an oncogene in some cancers and as a tumor suppressor in other cancers. In the pancreatic cancer context, very little is known about GPRC5A. By analyzing messenger RNA (mRNA) expression data from 675 human cancer cell lines and 10 609 samples from The Cancer Genome Atlas (TCGA) we found that GPRC5A's abundance in pancreatic cancer is highest (cell lines) or second highest (TCGA) among all tissues and cancer types. Further analyses of an independent set of 252 pancreatic normal and cancer samples showed GPRC5A mRNA to be more than twofold upregulated in primary tumor samples compared with normal pancreas (P-value<10−5), and even further upregulated in pancreatic cancer metastases to various organs (P-value=0.0021). Immunostaining of 208 cores (103 samples) of a tissue microarray showed generally low expression of GPRC5A protein in normal pancreatic ductal cells; on the other hand, in primary and metastatic samples, GPRC5A protein levels were dramatically increased in pancreatic ductal cells. In vitro studies of multiple pancreatic cancer cell lines showed that an increase in GPRC5A protein levels promoted pancreatic cancer cell growth and migration. Unexpectedly, when we treated pancreatic cancer cell lines with gemcitabine (2′,2′-difluorodeoxycytidine), we observed an increase in GPRC5A protein abundance. On the other hand, when we knocked down GPRC5A we sensitized pancreatic cancer cells to gemcitabine. Through further experimentation we showed that the monotonic increase in GPRC5A protein levels that we observe for the first 18 h following gemcitabine treatment results from interactions between GPRC5A's mRNA and the RNA-binding protein HuR, which is an established key mediator of gemcitabine's efficacy in cancer cells. As we discovered, the interaction between GPRC5A and HuR is mediated by at least one HuR-binding site in GPRC5A's mRNA. Our findings indicate that GPRC5A is part of a complex molecular axis that involves gemcitabine and HuR, and, possibly, other genes. Further work is warranted before it can be established unequivocally that GPRC5A is an oncogene in the pancreatic cancer context.
Collapse
Affiliation(s)
- H Zhou
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street Philadelphia, PA 19107, USA
| | - A G Telonis
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street Philadelphia, PA 19107, USA
| | - Y Jing
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street Philadelphia, PA 19107, USA
| | - N L Xia
- Department of Neuroscience and The Farber Institute for Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - L Biederman
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - M Jimbo
- Department of Surgery, The Jefferson Biliary and Related Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107, USA
| | - F Blanco
- Department of Surgery, The Jefferson Biliary and Related Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107, USA
| | - E Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street Philadelphia, PA 19107, USA
| | - J R Brody
- Department of Surgery, The Jefferson Biliary and Related Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107, USA
| | - I Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street Philadelphia, PA 19107, USA
| |
Collapse
|
16
|
Swegen A, Curry BJ, Gibb Z, Lambourne SR, Smith ND, Aitken RJ. Investigation of the stallion sperm proteome by mass spectrometry. Reproduction 2015; 149:235-44. [DOI: 10.1530/rep-14-0500] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stallion spermatozoa continue to present scientific and clinical challenges with regard to the biological mechanisms responsible for their survival and function. In particular, deeper understanding of sperm energy metabolism, defence against oxidative damage and cell–cell interactions should improve fertility assessment and the application of advanced reproductive technologies in the equine species. In this study, we used highly sensitive LC–MS/MS technology and sequence database analysis to identify and characterise the proteome of Percoll-isolated ejaculated equine spermatozoa, with the aim of furthering our understanding of this cell's complex biological machinery. We were able to identify 9883 peptides comprising 1030 proteins, which were subsequently attributed to 975 gene products. Gene ontology analysis for molecular and cellular processes revealed new information about the metabolism, antioxidant defences and receptors of stallion spermatozoa. Mitochondrial proteins and those involved in catabolic processes constituted dominant categories. Several enzymes specific to β-oxidation of fatty acids were identified, and further experiments were carried out to ascertain their functional significance. Inhibition of carnitine palmitoyl transferase 1, a rate-limiting enzyme of β-oxidation, reduced motility parameters, indicating that β-oxidation contributes to maintenance of motility in stallion spermatozoa.
Collapse
|
17
|
Ahmad R, Wojciech S, Jockers R. Hunting for the function of orphan GPCRs - beyond the search for the endogenous ligand. Br J Pharmacol 2014; 172:3212-28. [PMID: 25231237 DOI: 10.1111/bph.12942] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022] Open
Abstract
Seven transmembrane-spanning proteins (7TM), also called GPCRs, are among the most versatile and evolutionary successful protein families. Out of the 400 non-odourant members identified in the human genome, approximately 100 remain orphans that have not been matched with an endogenous ligand. Apart from the classical deorphanization strategies, several alternative strategies provided recent new insights into the function of these proteins, which hold promise for high therapeutic potential. These alternative strategies consist of the phenotypical characterization of organisms silenced or overexpressing orphan 7TM proteins, the search for constitutive receptor activity and formation of protein complexes including 7TM proteins as well as the development of synthetic, surrogate ligands. Taken together, a variety of ligand-independent functions can be attributed to orphan 7TM proteins that range from constitutive activity to complex formation with other proteins and include 'true' orphans for which no ligand exist and 'conditional' orphans that behave like orphans in the absence of ligand and as non-orphans in the presence of ligand.
Collapse
Affiliation(s)
- Raise Ahmad
- Institut Cochin, INSERM, Paris, France.,CNRS UMR 8104, Paris, France.,Paris Descartes University, Paris, France
| | - Stefanie Wojciech
- Institut Cochin, INSERM, Paris, France.,CNRS UMR 8104, Paris, France.,Paris Descartes University, Paris, France
| | - Ralf Jockers
- Institut Cochin, INSERM, Paris, France.,CNRS UMR 8104, Paris, France.,Paris Descartes University, Paris, France
| |
Collapse
|
18
|
Zhou H, Rigoutsos I. The emerging roles of GPRC5A in diseases. Oncoscience 2014; 1:765-76. [PMID: 25621293 PMCID: PMC4303886 DOI: 10.18632/oncoscience.104] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 12/14/2022] Open
Abstract
The ‘Retinoic Acid-Inducible G-protein-coupled receptors’ or RAIG are a group comprising the four orphan receptors GPRC5A, GPRC5B, GPRC5C and GPRC5D. As the name implies, their expression is induced by retinoic acid but beyond that very little is known about their function. In recent years, one member, GPRC5A, has been receiving increasing attention as it was shown to play important roles in human cancers. As a matter of fact, dysregulation of GPRC5A has been associated with several cancers including lung cancer, breast cancer, colorectal cancer, and pancreatic cancer. Here we review the current state of knowledge about the heterogeneity and evolution of GPRC5A, its regulation, its molecular functions, and its involvement in human disease.
Collapse
Affiliation(s)
- Honglei Zhou
- Computational Medicine Center, Jefferson Alumni Hall, Thomas Jefferson University, Philadelphia, PA
| | - Isidore Rigoutsos
- Computational Medicine Center, Jefferson Alumni Hall, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
19
|
Liu J, Bai X, Li YX, Chen KS, Wen HT. Clinicopathological significance of GPRC5A and STAT3 expression in esophageal squamous cell carcinoma. Shijie Huaren Xiaohua Zazhi 2014; 22:4810-4815. [DOI: 10.11569/wcjd.v22.i31.4810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of G protein-coupled receptor family C, member 5, group A (GPRC5A) and signal transducer and activator of transcription 3 (STAT3) proteins in esophageal squamous cell carcinoma (ESCC) and to analyze their clinicopathological significance.
METHODS: Immunohistochemistry was used to detect the expression of GPRC5A and STAT3 proteins in ESCC, matched tumor-adjacent tissue and normal esophageal tissue. The correlation between the expression of these proteins and clinicopathologic features of ESCC was analyzed.
RESULTS: The rate of GPRC5A protein expression in ESCC was significantly lower than those in tumor-adjacent tissue and normal esophageal tissue (41.79% vs 58.21%, 68.66%, P < 0.05 for both). The positive rate of STAT3 expression was significantly higher in ESCC than in tumor-adjacent tissue and normal esophageal tissue (80.60% vs 71.64%, 53.73%, P < 0.05 for both). Expression of GPRC5A was significantly associated with tumor invasion depth and histological grade, but not with age, sex or lymph node metastasis. STAT3 expression was significantly associated with tumor invasion depth and histological grade, but not with age, sex or lymph node metastasis. GPRC5A protein expression was positively correlated with the expression of STAT3 proteins (r = -0.254, P < 0.05).
CONCLUSION: GPRC5A and STAT3 may participate in the occurrence and metastasis of esophageal carcinoma. Combined detection of the expression of these proteins will be helpful to the diagnosis of esophageal carcinoma and accurate determination of the biological behavior of this malignancy. GPRC5A and STAT3 may become new targets for gene therapy of esophageal carcinoma.
Collapse
|
20
|
EGFR phosphorylates and inhibits lung tumor suppressor GPRC5A in lung cancer. Mol Cancer 2014; 13:233. [PMID: 25311788 PMCID: PMC4200229 DOI: 10.1186/1476-4598-13-233] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 10/07/2014] [Indexed: 12/01/2022] Open
Abstract
Background GPRC5A is a retinoic acid inducible gene that is preferentially expressed in lung tissue. Gprc5a– knockout mice develop spontaneous lung cancer, indicating Gprc5a is a lung tumor suppressor gene. GPRC5A expression is frequently suppressed in majority of non-small cell lung cancers (NSCLCs), however, elevated GPRC5A is still observed in a small portion of NSCLC cell lines and tumors, suggesting that the tumor suppressive function of GPRC5A is inhibited in these tumors by an unknown mechanism. Methods In this study, we examined EGF receptor (EGFR)-mediated interaction and tyrosine phosphorylation of GPRC5A by immunoprecipitation (IP)-Westernblot. Tyrosine phosphorylation of GPRC5A by EGFR was systematically identified by site-directed mutagenesis. Cell proliferation, migration, and anchorage-independent growth of NSCLC cell lines stably transfected with wild-type GPRC5A and mutants defective in tyrosine phosphorylation were assayed. Immunohistochemical (IHC) staining analysis with specific antibodies was performed to measure the total and phosphorylated GPRC5A in both normal lung and lung tumor tissues. Result We found that EGFR interacted with GPRC5A and phosphorylated it in two conserved double-tyrosine motifs, Y317/Y320 and Y347/ Y350, at the C-terminal tail of GPRC5A. EGF induced phosphorylation of GPRC5A, which disrupted GPRC5A-mediated suppression on anchorage-independent growth of NSCLC cells. On contrary, GPRC5A-4 F, in which the four tyrosine residues have been replaced with phenylalanine, was resistant to EGF-induced phosphorylation and maintained tumor suppressive activities. Importantly, IHC analysis with anti-Y317/Y320-P sites showed that GPRC5A was non-phosphorylated in normal lung tissue whereas it was highly tyrosine-phosphorylated in NSCLC tissues. Conclusion GPRC5A can be inactivated by receptor tyrosine kinase via tyrosine phosphorylation. Thus, targeting EGFR can restore the tumor suppressive functions of GPRC5A in lung cancer.
Collapse
|
21
|
Sokolenko AP, Bulanova DR, Iyevleva AG, Aleksakhina SN, Preobrazhenskaya EV, Ivantsov AO, Kuligina ES, Mitiushkina NV, Suspitsin EN, Yanus GA, Zaitseva OA, Yatsuk OS, Togo AV, Kota P, Dixon JM, Larionov AA, Kuznetsov SG, Imyanitov EN. High prevalence of GPRC5A germline mutations in BRCA1-mutant breast cancer patients. Int J Cancer 2014; 134:2352-8. [PMID: 24470238 DOI: 10.1002/ijc.28569] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/21/2013] [Accepted: 10/18/2013] [Indexed: 01/22/2023]
Abstract
In a search for new breast cancer (BC) predisposing genes, we performed a whole exome sequencing analysis using six patient samples of familial BC and identified a germline inactivating mutation c.183delG [p. Arg61fs] in an orphan G protein-coupled receptor GPRC5A. An extended case-control study revealed a tenfold enrichment for this mutation in BC patients carrying the 5382insC allele of BRCA1, the major founder mutation in the Russian population, compared to wild-type BRCA1 BC cases [6/117 (5.1%) vs. 8/1578 (0.5%), p = 0.0002]. In mammary tumors (n = 60), the mRNA expression of GPRC5A significantly correlated with that of BRCA1 (p = 0.00018). In addition, the amount of GPRC5A transcript was significantly lower in BC obtained from BRCA1 mutation carriers (n = 17) compared to noncarriers (n = 93) (p = 0.026). Accordingly, a siRNA-mediated knockdown of either BRCA1 or GPRC5A in the MDA-MB-231 human BC cell line reduced expression of GPRC5A or BRCA1, respectively. Knockdown of GPRC5A also attenuated radiation-induced BRCA1- and RAD51-containing nuclear DNA repair foci. Taken together, these data suggest that GPRC5A is a modifier of BC risk in BRCA1 mutation carriers and reveals a functional interaction of these genes.
Collapse
Affiliation(s)
- Anna P Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Hirano M, Tanaka S, Asami O. Classification of polycyclic aromatic hydrocarbons based on mutagenicity in lung tissue through DNA microarray. ENVIRONMENTAL TOXICOLOGY 2013; 28:652-659. [PMID: 21887816 DOI: 10.1002/tox.20761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 07/03/2011] [Accepted: 07/10/2011] [Indexed: 05/31/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants produced in the combustion of organic matter. Exposure to PAHs raises the risk of lung cancer and inflammatory and allergic disorders such as asthma. DNA microarray technologies have been applied to research on toxicogenomics in the recent years. To evaluate the mutagenicity of PAHs and constituents of environmental pollutants in lung tissue, including metabolic activation, human alveolar epithelial type II cells (A549) were treated with nonmutagenic PAH pyrene and with the mutagenic PAHs benzo-[a]-pyrene, 1-nitropyrene, or 1,8-dinitropyrene. Comparison of genome-wide microarray expression profiles between a nonmutagenic and a mutagenic PAH-treated group revealed that xenobiotic response genes such as CYP1B1 were commonly upregulated in two groups and that DNA damage induced genes, especially p53-downstream genes such as p21 (CDKN1A) were upregulated only in the mutagenic PAH-treated group. Pretreatment with cytochrome P450 inhibitor α-naphthoflavone or p53 inhibitor pifithrin-α inhibited the benzo-[a]-pyrene-induced p21 expression. These data suggest that when PAHs enter the cells, lung epithelium induces PAH metabolic activating enzymes, and then the DNA damages-recognition signal is converged with p53 downstream genes. This metabolic activation and DNA damage is induced in lung epithelium, and the mutagenicity of PAHs can be classified by DNA microarray expression profiles.
Collapse
Affiliation(s)
- Minoru Hirano
- Toyota Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan
| | | | | |
Collapse
|
24
|
Amisten S, Salehi A, Rorsman P, Jones PM, Persaud SJ. An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans. Pharmacol Ther 2013; 139:359-91. [PMID: 23694765 DOI: 10.1016/j.pharmthera.2013.05.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/17/2022]
Abstract
G-protein coupled receptors (GPCRs) regulate hormone secretion from islets of Langerhans, and recently developed therapies for type-2 diabetes target islet GLP-1 receptors. However, the total number of GPCRs expressed by human islets, as well as their function and interactions with drugs, is poorly understood. In this review we have constructed an atlas of all GPCRs expressed by human islets: the 'islet GPCRome'. We have used this atlas to describe how islet GPCRs interact with their endogenous ligands, regulate islet hormone secretion, and interact with drugs known to target GPCRs, with a focus on drug/receptor interactions that may affect insulin secretion. The islet GPCRome consists of 293 GPCRs, a majority of which have unknown effects on insulin, glucagon and somatostatin secretion. The islet GPCRs are activated by 271 different endogenous ligands, at least 131 of which are present in islet cells. A large signalling redundancy was also found, with 119 ligands activating more than one islet receptor. Islet GPCRs are also the targets of a large number of clinically used drugs, and based on their coupling characteristics and effects on receptor signalling we identified 107 drugs predicted to stimulate and 184 drugs predicted to inhibit insulin secretion. The islet GPCRome highlights knowledge gaps in the current understanding of islet GPCR function, and identifies GPCR/ligand/drug interactions that might affect insulin secretion, which are important for understanding the metabolic side effects of drugs. This approach may aid in the design of new safer therapeutic agents with fewer detrimental effects on islet hormone secretion.
Collapse
Affiliation(s)
- Stefan Amisten
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London School of Medicine, London, UK.
| | | | | | | | | |
Collapse
|
25
|
Barradas AMC, Monticone V, Hulsman M, Danoux C, Fernandes H, Tahmasebi Birgani Z, Barrère-de Groot F, Yuan H, Reinders M, Habibovic P, van Blitterswijk C, de Boer J. Molecular mechanisms of biomaterial-driven osteogenic differentiation in human mesenchymal stromal cells. Integr Biol (Camb) 2013; 5:920-31. [PMID: 23752904 DOI: 10.1039/c3ib40027a] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Calcium phosphate (CaP) based ceramics are used as bone graft substitutes in the treatment of bone defects. The physico-chemical properties of these materials determine their bioactivity, meaning that molecular and cellular responses in the body will be tuned accordingly. In a previous study, we compared two porous CaP ceramics, hydroxyapatite (HA) and β-tricalcium phosphate (TCP), which, among other properties, differ in their degradation behaviour in vitro and in vivo, and we demonstrated that the more degradable β-TCP induced more bone formation in a heterotopic model in sheep. This is correlated to in vitro data, where human bone marrow derived mesenchymal stromal cells (MSC) exhibited higher expression of osteogenic differentiation markers, such as osteopontin, osteocalcin and bone sialoprotein, when cultured in β-TCP than in HA. More recently, we also showed that this effect could be mimicked in vitro by exposure of MSC to high concentrations of calcium ions (Ca(2+)). To further correlate surface physico-chemical dynamics of HA and β-TCP ceramics with the molecular response of MSC, we followed Ca(2+) release and surface changes in time as well as cell attachment and osteogenic differentiation of MSC on these ceramics. Within 24 hours, we observed differences in cell morphology, with MSC cultured in β-TCP displaying more pronounced attachment and spreading than cells cultured in HA. In the same time frame, β-TCP induced expression of G-protein coupled receptor (GPCR) 5A and regulator of G-protein signaling 2, revealed by DNA microarray analysis. These genes, associated with the protein kinase A and GPCR signaling pathways, may herald the earliest response of MSC to bone-inducing ceramics.
Collapse
Affiliation(s)
- Ana M C Barradas
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Overexpression of retinoic acid-induced protein 3 predicts poor prognosis for hepatocellular carcinoma. Clin Transl Oncol 2013; 16:57-63. [PMID: 23632812 DOI: 10.1007/s12094-013-1040-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/01/2013] [Indexed: 02/07/2023]
Abstract
AIM To investigate clinical significance of retinoic acid-induced protein 3 (RAI3) in hepatocellular carcinoma (HCC). METHODS Expression of RAI3 at both mRNA and protein levels in tumor, para-tumor and normal liver tissues was detected in 106 HCC patients by real-time quantitative RT-PCR, Western blot and immunohistochemistry. Then, the correlation of RAI3 expression with clinicopathological characteristics and survivals of HCC patients was analyzed. RESULTS Our data first found that RAI3 mRNA and protein expression were both significantly higher in HCC than in para-tumor (both P < 0.001) and normal liver tissues (both P < 0.001). The correlation analysis showed a positive correlation between RAI3 mRNA level and RAI3 protein level in HCC tissues (r = 0.8, P < 0.001). Immunohistochemistry data also revealed that overexpression of RAI3 was present in 73.6 % (78/106) of HCC tissues. In addition, high RAI3 protein expression was correlated with advanced TNM stage (P = 0.001), high serum AFP (P = 0.008), vascular invasion (P = 0.01) and tumor recurrence (P = 0.008). Moreover, HCC patients with overexpression of RAI3 had significantly shorter overall (P = 0.01) and disease-free survival (P = 0.01). Furthermore, multivariate analysis showed that overexpression of RAI3 was an independent prognostic factor for both overall (P = 0.02) and disease-free survival (P = 0.03) in HCC. CONCLUSION Our data for the first time provide a basis for the concept that overexpression of RAI3 may contribute to the malignant progression of HCC and predict poor prognosis for patients with this deadly disease after curative hepatectomy. RAI3 might be an important marker for tumor progression and prognosis, as well as a potential therapeutic target of HCC.
Collapse
|
27
|
Kurtenbach S, Mayer C, Pelz T, Hatt H, Leese F, Neuhaus EM. Molecular evolution of a chordate specific family of G protein-coupled receptors. BMC Evol Biol 2011; 11:234. [PMID: 21827690 PMCID: PMC3238225 DOI: 10.1186/1471-2148-11-234] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 08/09/2011] [Indexed: 11/23/2022] Open
Abstract
Background Chordate evolution is a history of innovations that is marked by physical and behavioral specializations, which led to the development of a variety of forms from a single ancestral group. Among other important characteristics, vertebrates obtained a well developed brain, anterior sensory structures, a closed circulatory system and gills or lungs as blood oxygenation systems. The duplication of pre-existing genes had profound evolutionary implications for the developmental complexity in vertebrates, since mutations modifying the function of a duplicated protein can lead to novel functions, improving the evolutionary success. Results We analyzed here the evolution of the GPRC5 family of G protein-coupled receptors by comprehensive similarity searches and found that the receptors are only present in chordates and that the size of the receptor family expanded, likely due to genome duplication events in the early history of vertebrate evolution. We propose that a single GPRC5 receptor coding gene originated in a stem chordate ancestor and gave rise by duplication events to a gene family comprising three receptor types (GPRC5A-C) in vertebrates, and a fourth homologue present only in mammals (GPRC5D). Additional duplications of GPRC5B and GPRC5C sequences occurred in teleost fishes. The finding that the expression patterns of the receptors are evolutionarily conserved indicates an important biological function of these receptors. Moreover, we found that expression of GPRC5B is regulated by vitamin A in vivo, confirming previous findings that linked receptor expression to retinoic acid levels in tumor cell lines and strengthening the link between the receptor expression and the development of a complex nervous system in chordates, known to be dependent on retinoic acid signaling. Conclusions GPRC5 receptors, a class of G protein-coupled receptors with unique sequence characteristics, may represent a molecular novelty that helped non-chordates to become chordates.
Collapse
Affiliation(s)
- Stefan Kurtenbach
- 1Department of Cell Physiology, Ruhr University Bochum, Universitaetsstrasse150, 44801 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Fujita H, Hirano M, Shimizu K, Nagamori E. Rapid decrease in active tension generated by C2C12 myotubes after termination of artificial exercise. J Muscle Res Cell Motil 2010; 31:279-88. [DOI: 10.1007/s10974-010-9230-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 11/16/2010] [Indexed: 11/30/2022]
|
29
|
Jörissen H, Bektas N, Dahl E, Hartmann A, ten Haaf A, Di Fiore S, Kiefer H, Thess A, Barth S, Klockenbring T. Production and characterisation of monoclonal antibodies against RAI3 and its expression in human breast cancer. BMC Cancer 2009; 9:200. [PMID: 19552806 PMCID: PMC2711971 DOI: 10.1186/1471-2407-9-200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 06/24/2009] [Indexed: 11/19/2022] Open
Abstract
Background RAI3 is an orphan G-protein coupled receptor (GPCR) that has been associated with malignancy and may play a role in the proliferation of breast cancer cells. Although its exact function in normal and malignant cells remains unclear and evidence supporting its role in oncogenesis is controversial, its abundant expression on the surface of cancer cells would make it an interesting target for the development of antibody-based therapeutics. To investigate the link with cancer and provide more evidence for its role, we carried out a systematic analysis of RAI3 expression in a large set of human breast cancer specimens. Methods We expressed recombinant human RAI3 in bacteria and reconstituted the purified protein in liposomes to raise monoclonal antibodies using classical hybridoma techniques. The specific binding activity of the antibodies was confirmed by enzyme-linked immunosorbent assay (ELISA), western blot and immunocytochemistry. We carried out a systematic immunohistochemical analysis of RAI3 expression in human invasive breast carcinomas (n = 147) and normal breast tissues (n = 44) using a tissue microarray. In addition, a cDNA dot blot hybridisation assay was used to investigate a set of matched normal and cancerous breast tissue specimens (n = 50) as well as lymph node metastases (n = 3) for RAI3 mRNA expression. Results The anti-RAI3 monoclonal antibodies bound to recombinant human RAI3 protein with high specificity and affinity, as shown by ELISA, western blot and ICC. The cDNA dot blot and immunohistochemical experiments showed that both RAI3 mRNA and RAI3 protein were abundantly expressed in human breast carcinoma. However, there was no association between RAI3 protein expression and prognosis based on overall and recurrence-free survival. Conclusion We have generated a novel, highly-specific monoclonal antibody that detects RAI3 in formaldehyde-fixed paraffin-embedded tissue. This is the first study to report a systematic analysis of RAI3 expression in normal and cancerous human breast tissue at both the mRNA and protein levels.
Collapse
Affiliation(s)
- Hannah Jörissen
- Fraunhofer IME, Department of Pharmaceutical Product Development, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Whitaker RD, Walt DR. Multianalyte Single-Cell Analysis with Multiple Cell Lines Using a Fiber-Optic Array. Anal Chem 2007; 79:9045-53. [DOI: 10.1021/ac701744x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ragnhild D. Whitaker
- Chemistry Department, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155
| | - David R. Walt
- Chemistry Department, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155
| |
Collapse
|