1
|
Dong J, Wang H, Zhang Z, Yang L, Qian X, Qian W, Han Y, Huang H, Qian P. Small but strong: Pivotal roles and potential applications of snoRNAs in hematopoietic malignancies. Front Oncol 2022; 12:939465. [PMID: 36033520 PMCID: PMC9413531 DOI: 10.3389/fonc.2022.939465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) belong to a family of noncoding RNAs that are 60-300 nucleotides in length, and they are classified into two classes according to their structure and function: C/D box snoRNAs, playing an essential role in 2’-O-methylation modification on ribosomal RNA; H/ACA box snoRNAs, involved in the pseudouridylation of rRNA. SnoRNAs with unclear functions, no predictable targets, and unusual subcellular locations are called orphan snoRNAs. Recent studies have revealed abnormal expression and demonstrated the pivotal roles of snoRNAs and their host genes in various types of hematological malignancies. This review discusses recent discoveries concerning snoRNAs in a variety of hematological malignancies, including multiple myeloma, lymphoma and leukemia, and sheds light on the application of snoRNAs as diagnostic and prognostic markers as well as therapeutic targets of hematological malignancies in the future.
Collapse
Affiliation(s)
- Jian Dong
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Hui Wang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zhaoru Zhang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Lin Yang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xinyue Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Wenchang Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yingli Han
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Pengxu Qian, ; He Huang,
| | - Pengxu Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
- *Correspondence: Pengxu Qian, ; He Huang,
| |
Collapse
|
2
|
Moir RD, Lavados C, Lee J, Willis IM. Functional characterization of Polr3a hypomyelinating leukodystrophy mutations in the S. cerevisiae homolog, RPC160. Gene 2020; 768:145259. [PMID: 33148458 DOI: 10.1016/j.gene.2020.145259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Mutations in RNA polymerase III (Pol III) cause hypomeylinating leukodystrophy (HLD) and neurodegeneration in humans. POLR3A and POLR3B, the two largest Pol III subunits, together form the catalytic center and carry the majority of disease alleles. Disease-causing mutations include invariant and highly conserved residues that are predicted to negatively affect Pol III activity and decrease transcriptional output. A subset of HLD missense mutations in POLR3A cluster in the pore region that provides nucleotide access to the Pol III active site. These mutations were engineered at the corresponding positions in the Saccharomyces cerevisiae homolog, Rpc160, to evaluate their functional deficits. None of the mutations caused a growth or transcription phenotype in yeast. Each mutation was combined with a frequently occurring pore mutation, POLR3A G672E, which was also wild-type for growth and transcription. The double mutants showed a spectrum of phenotypes from wild-type to lethal, with only the least fit combinations showing an effect on Pol III transcription. In one slow-growing temperature-sensitive mutant the steady-state level of tRNAs was unaffected, however global tRNA synthesis was compromised, as was the synthesis of RPR1 and SNR52 RNAs. Affinity-purified mutant Pol III was broadly defective in both factor-independent and factor-dependent transcription in vitro across genes that represent the yeast Pol III transcriptome. Thus, the robustness of yeast Rpc160 to single Pol III leukodystrophy mutations in the pore domain can be overcome by a second mutation in the domain.
Collapse
Affiliation(s)
- Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Christian Lavados
- Graduate Program in Biomedical Science, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - JaeHoon Lee
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ian M Willis
- Departments of Biochemistry and Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
3
|
Firdaus-Raih M, Hashim NHF, Bharudin I, Abu Bakar MF, Huang KK, Alias H, Lee BKB, Mat Isa MN, Mat-Sharani S, Sulaiman S, Tay LJ, Zolkefli R, Muhammad Noor Y, Law DSN, Abdul Rahman SH, Md-Illias R, Abu Bakar FD, Najimudin N, Abdul Murad AM, Mahadi NM. The Glaciozyma antarctica genome reveals an array of systems that provide sustained responses towards temperature variations in a persistently cold habitat. PLoS One 2018; 13:e0189947. [PMID: 29385175 PMCID: PMC5791967 DOI: 10.1371/journal.pone.0189947] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023] Open
Abstract
Extremely low temperatures present various challenges to life that include ice formation and effects on metabolic capacity. Psyhcrophilic microorganisms typically have an array of mechanisms to enable survival in cold temperatures. In this study, we sequenced and analysed the genome of a psychrophilic yeast isolated in the Antarctic region, Glaciozyma antarctica. The genome annotation identified 7857 protein coding sequences. From the genome sequence analysis we were able to identify genes that encoded for proteins known to be associated with cold survival, in addition to annotating genes that are unique to G. antarctica. For genes that are known to be involved in cold adaptation such as anti-freeze proteins (AFPs), our gene expression analysis revealed that they were differentially transcribed over time and in response to different temperatures. This indicated the presence of an array of adaptation systems that can respond to a changing but persistent cold environment. We were also able to validate the activity of all the AFPs annotated where the recombinant AFPs demonstrated anti-freeze capacity. This work is an important foundation for further collective exploration into psychrophilic microbiology where among other potential, the genes unique to this species may represent a pool of novel mechanisms for cold survival.
Collapse
Affiliation(s)
- Mohd Firdaus-Raih
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- * E-mail:
| | - Noor Haza Fazlin Hashim
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Izwan Bharudin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Faizal Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Malaysia Genome Institute, Jalan Bangi Lama, Kajang, Selangor, Malaysia
| | - Kie Kyon Huang
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Halimah Alias
- Malaysia Genome Institute, Jalan Bangi Lama, Kajang, Selangor, Malaysia
| | - Bernard K. B. Lee
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Noor Mat Isa
- Malaysia Genome Institute, Jalan Bangi Lama, Kajang, Selangor, Malaysia
| | - Shuhaila Mat-Sharani
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Malaysia Genome Institute, Jalan Bangi Lama, Kajang, Selangor, Malaysia
| | - Suhaila Sulaiman
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Lih Jinq Tay
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Radziah Zolkefli
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Yusuf Muhammad Noor
- Malaysia Genome Institute, Jalan Bangi Lama, Kajang, Selangor, Malaysia
- Department of Biosciences Engineering, Faculty of Chemical & Natural Resources Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Douglas Sie Nguong Law
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Siti Hamidah Abdul Rahman
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Rosli Md-Illias
- Department of Biosciences Engineering, Faculty of Chemical & Natural Resources Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Farah Diba Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nazalan Najimudin
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | |
Collapse
|
4
|
Li T, He H, Wang Y, Zheng H, Skogerbø G, Chen R. In vivo analysis of Caenorhabditis elegans noncoding RNA promoter motifs. BMC Mol Biol 2008; 9:71. [PMID: 18680611 PMCID: PMC2527325 DOI: 10.1186/1471-2199-9-71] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 08/05/2008] [Indexed: 03/09/2023] Open
Abstract
Background Noncoding RNAs (ncRNAs) play important roles in a variety of cellular processes. Characterizing the transcriptional activity of ncRNA promoters is therefore a critical step toward understanding the complex cellular roles of ncRNAs. Results Here we present an in vivo transcriptional analysis of three C. elegans ncRNA upstream motifs (UM1-3). Transcriptional activity of all three motifs has been demonstrated, and mutational analysis revealed differential contributions of different parts of each motif. We showed that upstream motif 1 (UM1) can drive the expression of green fluorescent protein (GFP), and utilized this for detailed analysis of temporal and spatial expression patterns of 5 SL2 RNAs. Upstream motifs 2 and 3 do not drive GFP expression, and termination at consecutive T runs suggests transcription by RNA polymerase III. The UM2 sequence resembles the tRNA promoter, and is actually embedded within its own short-lived, primary transcript. This is a structure which is also found at a few plant and yeast loci, and may indicate an evolutionarily very old dicistronic transcription pattern in which a tRNA serves as a promoter for an adjacent snoRNA. Conclusion The study has demonstrated that the three upstream motifs UM1-3 have promoter activity. The UM1 sequence can drive expression of GFP, which allows for the use of UM1::GFP fusion constructs to study temporal-spatial expression patterns of UM1 ncRNA loci. The UM1 loci appear to act in concert with other upstream sequences, whereas the transcriptional activities of the UM2 and UM3 are confined to the motifs themselves.
Collapse
Affiliation(s)
- Tiantian Li
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences Beijing 100101, PR China.
| | | | | | | | | | | |
Collapse
|
5
|
Goldfeder MB, Oliveira CC. Cwc24p, a novel Saccharomyces cerevisiae nuclear ring finger protein, affects pre-snoRNA U3 splicing. J Biol Chem 2007; 283:2644-53. [PMID: 17974558 DOI: 10.1074/jbc.m707885200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
U3 snoRNA is transcribed from two intron-containing genes in yeast, snR17A and snR17B. Although the assembly of the U3 snoRNP has not been precisely determined, at least some of the core box C/D proteins are known to bind pre-U3 co-transcriptionally, thereby affecting splicing and 3'-end processing of this snoRNA. We identified the interaction between the box C/D assembly factor Nop17p and Cwc24p, a novel yeast RING finger protein that had been previously isolated in a complex with the splicing factor Cef1p. Here we show that, consistent with the protein interaction data, Cwc24p localizes to the cell nucleus, and its depletion leads to the accumulation of both U3 pre-snoRNAs. U3 snoRNA is involved in the early cleavages of 35 S pre-rRNA, and the defective splicing of pre-U3 detected in cells depleted of Cwc24p causes the accumulation of the 35 S precursor rRNA. These results led us to the conclusion that Cwc24p is involved in pre-U3 snoRNA splicing, indirectly affecting pre-rRNA processing.
Collapse
Affiliation(s)
- Mauricio B Goldfeder
- Department of Biochemistry, Chemistry Institute, University of São Paulo, 748 Av. Prof. Lineu Prestes, São Paulo, SP, Brazil
| | | |
Collapse
|
6
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
7
|
Piekna-Przybylska D, Liu B, Fournier MJ. The U1 snRNA hairpin II as a RNA affinity tag for selecting snoRNP complexes. Methods Enzymol 2007; 425:317-53. [PMID: 17673090 DOI: 10.1016/s0076-6879(07)25014-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
When isolating ribonucleoprotein (RNP) complexes by an affinity selection approach, tagging the RNA component can prove to be strategically important. This is especially true for purifying single types of snoRNPs, because in most cases the snoRNA is thought to be the only unique component. Here, we present a general strategy for selecting specific snoRNPs that features a high-affinity tag in the snoRNA and another in a snoRNP core protein. The RNA tag (called U1hpII) is a small (26 nt) stem-loop domain from human U1 snRNA. This structure binds with high affinity (K(D)=10(-11)M) to the RRM domain of the snRNP protein U1A. In our approach, the U1A protein contains a unique affinity tag and is coexpressed in vivo with the tagged snoRNA to yield snoRNP-U1A complexes with two unique protein tags-one in the bound U1A protein and the other in the snoRNP core protein. This scheme has been used effectively to select C/D and H/ACA snoRNPs, including both processing and modifying snoRNPs, and the snoRNA and core proteins are highly enriched. Depending on selection stringency other proteins are isolated as well, including an RNA helicase involved in snoRNP release from pre-rRNA and additional proteins that function in ribosome biogenesis. Tagging the snoRNA component alone is also effective when U1A is expressed with a myc-Tev-protein A fusion sequence. Combined with reduced stringency, enrichment of the U14 snoRNP with this latter system revealed potential interactions with two other snoRNPs, including one processing snoRNP involved in the same cleavages of pre-rRNA.
Collapse
|